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How one trait developmentally varies as a function of others shapes a spectrum of 
biological phenomena. Despite its importance to trait dissection, the understanding of 
whether and how genes mediate such developmental covariation is poorly understood. 
We integrate developmental allometry equations into the functional mapping framework 
to map specific QTLs that govern the correlated development of different traits. Based 
on evolutionary game theory, we assemble and contextualize these QTLs into an 
intricate but organized network coded by bidirectional, signed, and weighted QTL-QTL 
interactions. We use this approach to map shoot height-diameter allometry QTLs in an 
ornamental woody species, mei (Prunus mume). We detect “pioneering” QTLs (piQTLs) 
and “maintaining” QTLs (miQTLs) that determine how shoot height varies with diameter 
and how shoot diameter varies with height, respectively. The QTL networks inferred can 
visualize how each piQTL regulates others to promote height growth at a cost of diameter 
growth, how miQTL regulates others to benefit radial growth at a cost of height growth, 
and how piQTLs and miQTLs regulate each other to form a pleiotropic web of primary 
and secondary growth in trees. Our approach provides a unique gateway to explore the 
genetic architecture of developmental covariation, a widespread phenomenon in nature.

Keywords: phenotypic covariation, developmental covariation, height-diameter allometry, functional mapping, 
QTL network, woody plant

INTRODUCTION
Understanding the pattern of how different traits interact with each other during developmental 
processes can gain insight into the mechanistic basis underlying plant productivity and adaptation to 
changing environments (Walker et al., 2017; Rosado et al., 2018). For example, the stemwood production 
of trees is determined by stem height and stem diameter that covary during ontogeny (Feldpausch et al., 
2011). The allocation pattern of stem growth to height and diameter determines reflects a tree’s capacity 
to survive, reproduce, and adapt to environmental conditions (King et al., 2006; Hulshof et al., 2015; 
Bourque et al., 2019). The relationship between tree height and diameter varies substantially along spatial 
and environmental gradients. Trees that are more densely packed tend to have a higher height-diameter 
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ratio than those that are more widely spaced. These differences 
may be associated with increased competition for sunlight in dense 
stands and increased capacity to resist wind stress in open-grown 
stands (Henry and Aarssen, 1999). Temperature and to some extent 
precipitation can in part explain the allometric allocation of stem 
height and diameter growth (Hulshof et al., 2015).

Trait covariation is determined by developmental processes 
where genetic and environmental factors intervene jointly. A 
number of studies suggest that the capacity by which plants 
produce coordinated variation among different traits, known as 
morphological integration (Olson and Miller, 1958; Hallgrímsson 
et al., 2009), is under genetic control (Andersson et al., 2007; 
Niklas and Marler, 2007; Kroon et al., 2008). For example, specific 
quantitative trait loci (QTLs) responsible for height-diameter 
covariation have been detected in a variety of tree species (Wu, 
1998; Tsarouhas et al., 2002; Sun et al., 2014; Curtolo et al., 
2017. Several studies have develop statistical approaches for 
mapping allometry quantitative trait loci (QTLs) that govern the 
developmental change of one trait as a function of another trait 
(Li et al., 2007; Huang et al., 2014). Stimulated by the importance 
of stem height-diameter allometry in tree genetics, we have 
extended these approaches to map different batteries of QTLs 
responsible for reciprocal changes of one trait with the other (Jiang 
et al., 2016). By analyzing genetic mapping data of stem height 
and diameter growth in Populus trees, our approach can map 
and detect the “pioneering” QTLs (piQTLs) that determine how 
height scales with diameter and “maintaining” QTLs (miQTLs) 
that determine how diameter scales with height. Interestingly, 
most of these QTLs have been validated through a detailed gene 
enrichment analysis, thereby thought to provide new insight into 
the genetic architecture of the developmental allometry between 
primary and secondary growth in woody plants.

While existing reductionist-based approaches aimed at 
characterizing individual significant QTLs are powerful for 
genetic dissection, it has become increasingly clear that complex 
traits, especially morphological integration between different but 
developmentally coordinated traits, may also be controlled by QTL-
QTL interactions that coalesce into a highly intricate but coordinated 
network. A wealth of literature supporting network thinking has 
arisen from medical research (Barabási et al., 2011; Chan and 
Loscalzo, 2012), but in recent years a consensus has been reached on 
the necessity of using holistic, system-oriented approaches to study 
plant complex traits (Ogura and Busch, 2016; Lavarenne et al., 2018. 
Approaches for inferring various regulatory networks from genomic, 
proteomic, and transcriptomic data have been well developed and 
widely used as a routine approach for modern biological research 
(Mizrachi et al., 2017). However, the characterization of QTL 
interaction networks remains largely unexplored, mainly because 
no powerful statistical methods have been developed.

We argue that a QTL interacts with others through a rule that 
can be explained by game theory. Game theory, originated in 
economic research (von Neumann and Morgenstern, 1944), has 
been widely used as a tool to unravel some uncertain machineries 
behind social or biological complexities (Falster and Westoby, 
2003). The integration of game theory and evolutionary biology has 
created a new discipline—evolutionary game theory (Smith and 
Price, 1973). Through mathematical modeling, this discipline has 

found its new applications to studying the developmental pattern 
of trait covariation (Zhu et al., 2016; Wang et al., 2017; Fu et al., 
2018). The combination of functional mapping and evolutionary 
game theory has led to the identification of QTL-QTL networks for 
phenotypic plasticity (Ye et al., 2019). In this article, we extend this 
combination approach to reconstructing genetic networks that code 
how different QTLs interact with each other to affect developmental 
covariation. From such networks, we further identify key QTLs or 
key pathways that are the determinants of developmental allometry. 
To test and validate our framework, we initiated an experiment of 
genetic mapping for a well-studied woody plant species—mei 
(Prunus mume) (Sun et al., 2017; Zhang et al., 2018). We detected 
several piQTLs and miQTLs and coalesced these QTLs into the 
interacting networks for a better understanding of the genetic 
architecture underlying H-D allometry.

MATeRIALs AND MeThODs

Functional Mapping of Developmental 
Covariation
As a quantitative description of morphological integration, trait 
covariation is defined as the coordinated change of one trait as 
a function of other traits. Developmental covariation describes 
how one trait changes as a function of other traits during 
ontogeny. We start our model derivations by considering the 
developmental covariation between stem height growth and stem 
diameter growth as an example. In our previous study, we also 
used this example to map height-diameter allometry QTLs (Jiang 
et al., 2016). We recapitulate part of our previous procedure as a 
first step for our QTL network inference.

A number of biologically meaningful mathematical equations 
have been developed to quantify the allometric relationship of 
stem height and diameter in trees (Henry and Aarssen, 1999; 
Hulshof et al., 2015). Let H(t) and D(t) denote stem height and 
diameter growth at age t (t = 1, …, T), respectively. One such 
representative model (Huang et al., 1992) is expressed as

 
        H t H e

a d

b
H D

H D

H D
D t( ) = +

←
←

←
( )+

+
0  (1A)

 

       
ln

 D t d
a H t H

bD H

D H
D H( ) =

− ( ) −( ) −←

←
←

0  (1B)

where H0 is the stem height at an initiate time point at which stem 
height is measured; aH←D, bH←D, and dH←D are three power coefficients 
of stem height scaling with stem diameter; and aD←H, bD←H, and 
dD←H are those of stem diameter scaling with height. Although 
equations (1A) and (1B) are mathematically interchangeable in 
terms of describing the H-D relationship, they differ in the direction 
of allometric scaling. Equation (1A) describes how stem height 
increases in response to the increase in stem diameter through 
parameters aH←D, bH←D and dH←D, whereas equation (1B) specifies the 
impact of stem height on radial growth during ontogeny through 
parameters aD←H, bD←H, and dD←H. As will be shown below, (aH←D, bH←D, 
dH←D) and (aD←H, bD←H, dD←H) are two different sets of parameters, if 
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the genotypic value of a QTL as a response at the left side of equation 
(1A) or (1B) is predicted by the phenotypic value as a dependent 
variable at the right side. Parameters aH←D and aD←H play an important 
role in mediating H-D allometry when independent variables grows 
bigger in a late stage, while bH←D and bD←H play the same role when 
independent variables are smaller in an early stage. Parameters dH←D 
and dD←H are the relative growth rates which determine the spread of 
the curve alongside the induced variable axis.

We integrated H-D allometry equations into functional 
mapping through a multiplicative likelihood (Jiang et al., 2016). 
Let yi = (yi (1), …, yi (T)) and zi = (zi (1), …, zi (T)) denote 
stem height and diameter growth for individual i of a mapping 
population measured at a series of T time points, respectively. 
Their likelihoods are formulated as

 L f
j

J

i

n

j
H

i j i
H

i
H

j

y y( ) = ( )
= =

∏∏
1 1

; ,|µ Σ  (2A)

 L f z
j

J

i

n

j
D

i j i
D

i
D

j

z( ) = ( )
= =

∏∏
1 1

; ,  |µ Σ  (2B)

where j stands for the jth genotype of a SNP (j = 1,…, J); nj 

is the observation of the jth genotype; f yj
H
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D; ,|µ Σ( )  are multivariate normal distributions of stem 

height and diameter, respectively, with expected mean vector of 
genotype j for sample i over T time points, expressed as
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and with a (T×T) longitudinal matrix composed of time-
dependent variances and covariances expressed as
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We modeled the structure of genotype-specific mean vector 
(2A) and (2B) by allometry growth equations (1A) amd (1B), 
which are expressed as
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where µ j i
H t| ( )  and µ j i

D t| ( ) are the genotypic value of stem height 
and diameter at age t, respectively; and power parameters (ajH←D, 
bjH←D, djH←D) and (ajD←H, bjD←H, djD←H) are defined for genotype j. 
Equations (5A) and (5B) suggest that the genotypic value of a 
growth trait at a time is modelled by the phenotypic value of its 
allometrically related trait.

Functional mapping models the covariance matrices (4A) 
and (4B) by a parsimonious and flexible approach, such as 
an autoregressive (Ma et al., 2002), antedependence (Zhao 
et  al., 2005), autoregressive moving average (Li et al., 2010), 
or nonparametric and semiparametric approaches (Das et  al., 
2011). The first-order autoregressive [AR(1)] approach is 
computationally efficient, but needs the stationarity assumption. 
Compared with this approach, the others are more flexible, but 
may be computationally more expensive. Functional mapping 
has been implemented with several statistical algorithms 
for obtaining the maximum likelihood estimates (MLEs) of 
genotype-specific growth parameters and the parameters that 
model the covariance structure. These algorithms include the EM 
algorithm and some optimization techniques, like the simplex 
algorithm (Ma et al., 2002; Zhao et al., 2005).

Testing Pioneering QTLs or Maintaining 
QTLs and estimating Their Temporal 
Genetic effects
To test whether a particular SNP is associated with height–
diameter growth allometry, we just need to test whether a set 
of power parameters (ajH←D, bjH←D, djH←D), or (ajD←H, bjD←H, djD←H) 
differs jointly among genotypes. This can be done, respectively, 
by formulating the following two sets of hypotheses:
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After the MLEs of the unknown parameters under the H0 
and H1 for each test are obtained, the log-likelihood ratio (LR) 
is calculated. By comparing it with the critical threshold of a chi-
square distribution, the P-value reflecting the significance of the 
SNP considered is then obtained. The approach for adjusting for 
multiple comparisons, such as Bonferroni, to take into account 
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all SNPs was used to obtain a genome-wide threshold. The SNPs 
whose significance level is beyond the adjusted criterion are 
regarded as QTLs. The significance tests based on hypotheses (6A) 
and (6B) produce ecologically different interpretations. Hypothesis 
(6A) intends to find a QTL that modulates how height growth 
increases per diameter growth, a process critically determining a 
tree’s capacity to pioneer growth space. Such a QTL is called the 
“pioneering” QTLs or piQTLs. On the other hand, hypothesis 
(6B) can detect the so-called “maintaining” QTLs or miQTLs that 
regulates the increase of stem growth per height growth, which is 
related to the capacity of a tree to maintain growth space.

For those QTLs tested to be significant based on hypothesis 
tests (6A) and (6B), we calculated their genetic effects or genetic 
variances over developmental allometry. For example, if a piQTL 
k is a testcross QTL with two genotypes kj (j = 1, 2), then its 
genetic effect on the allometry of height growth with diameter 
growth is calculated from genotypic values as shown in equations 
(5A), expressed as

 P t t t ttk k
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n
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Likewise, the genetic effect of a miQTL k on the allometry of 
diameter growth with height growth is calculated as
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Note that the genetic effects of QTLs estimated from equations 
(7A) and (7B) are those that temporally change.

Reconstructing Genetic Networks of QTL-
QTL Interactions
After the genetic effects of all QTLs are estimated, we formulate 
an evolutionary game theory model that specifies how one 
QTL is expressed depending on its own intrinsic property and 
the regulation of other QTLs on it. For a set of p piQTLs or m 
miQTLs, this can be mathematically expressed as a system of 
ordinary differential equations (ODEs), respectively,
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where the change of QTL k’s genetic effect per unit time is 
split into two component: the first describes the main effect 
of this QTL that is expressed independently from the effects 

of any other QTLs, specified by a QTL-specific smoothing 
function Uk(Pk(t):Φk) for piQTLs or Vk(Mk(t):Ψk) for 
miQTLs; and the second reflects an aggregated effect of the 
influences of all other SNPs on QTL k, specified by the sum of 

smoothing functions U P tkk k kk
k k k

p
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 for miQTLs. By estimating a 

set of ODE parameters Φk or Ψk, we can determine the pattern 
and magnitude of the independent effect of individual QTLs. 
Similarly, the estimation of another set of ODE parameters Φkk 
or Ψkk enables us to characterize whether and how the effect 
of a QTL k depends jointly on all other QTLs. The forms of 
smoothing functions can be derived parametrically or non-
parametrically, although a nonparametric approach can provide 
a general formulation [38].

Biological Interpretation of QTL-QTL 
Interactions
The strategy with which a QTL chooses to regulate or repress 
other QTLs based on the latter’s strategy can be interpreted by 
game theory. Although game theory is based on the rationality 
assumption, evolutionary game theory models the strategy of 
a QTL that interacts with others in either rational or irrational 
way. The quantitation of evolutionary game theory through 
a system of ODEs (8A and 8B) makes the dissection of the 
overall genetic effect of a focal QTL into its independent 
component and its dependent component affected by 
all possible other QTLs. We show that the fundamental 
principle of community ecology can be used to explain the  
dependent component.

In general, a QTL regulates others through the strategy of 
activation (+), neutrality (0), or repression (–). Consider two 
QTLs A and B, whose mutual strategies can be described in a 
matrix form:
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As shown in Ye et al. (2019), we classify QTL interactions 
into the following types: symmetric positive epistasis (+/+)—
two QTLs activate each other; symbiosis (0/0)—two QTLs do 
not affect each other; negative epistasis (–/–)—QTLs repress 
each other; directional positive epistasis (+/0 or 0/+)—one QTL 
activates its partner whereas the latter does not affect the former; 
directional negative epistasis (0/– or –/0), one QTL represses the 
other but the latter does not influence the former; and altruistic 
or repressive epistasis (+/– or –/+)—one QTL activates the 
other but is repressed by the latter. These patterns of regulation 
contain the direction and sign QTL-QTL interactions. The 
estimates of the dependent components from equations (8A) 
and (8B) will not only provide the direction and sign of genetic 
interactions but also the strengthen of each interaction.

Frontiers in Plant Science | www.frontiersin.org December 2019 | Volume 10 | Article 1557

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Inferring QTL Control NetworksWu et al.

5

experimental Design
To test and validate our model for illustrating the QTL network of 
stem H-D allometry, we designed and conducted an experiment 
of QTL mapping from full-sib families of mei, a woody plant. Mei, 
native to China, is an ornamental species of great economic value. 
Its colorful flowers, pleasant fragrance, and cold-hardiness make 
it a widely cultivated plant (Chen, 1996). Because of its genome 
sequencing (Zhang et al., 2011), mei has been widely used as a 
model system to study the genetic architecture of complex traits 
in woody plants and the evolution of Prunus species (Sun et al., 
2014; Sun et al., 2017; Zhang et al., 2018).

The ornamental value of mei mainly lies in its flowers, with 
an incredible diversity of floral size, color, shape, flower number, 
and flowering phenology (Zhang et al., 2018). However, all these 
floral traits are affected by the botanical structure of mei trees 
(Sun et al., 2017). The allometrical relationship of stem height 
and diameter growth is a determinant of mei’s branch display, 
leaf area, and growth vigor, and an understanding of its genetic 
control can help mei breeders select superior varieties of desirable 
ornamental features.

We established three full-sib families as mapping populations 
by crossing three pairs of varieties: F-2014 of 156 progeny 
derived from Fenban (female) and Kouzi Yudie (male), Y-2015 
of 184 progeny derived from Liu Bandan (female) and Sanlun 
Yudie (male), and L-2015 of 190 progeny derived from Liuban 
(female) and Huang Lve (male). Scions from the seedlings of 
these three families were grafted on 5-year rootstocks of healthy 
mei trees in a winter time at the Experimental Station of Beijing 
Forestry University Center for Computational Biology, located 
in Nantong, Jiangsu Province, southeast China. In the coming 
spring, scions sprout into shoots. Ten randomly chosen shoots 
from each progeny were measured for their heights and diameters 
at base once every two weeks, starting at 1 week since sprouting 
and ending when trees stop their growth in the fall. To investigate 

yearly variation in shoot growth, trait phenotyping was repeated 
for family F-2014 in 2015.

DNA samples extracted from young leaves were used for 
SNP genotyping. After SNP calling, we extracted the SNPs 
with overall sequencing depths of more than 8, quality scores 
over 30, and at least four uniquely mapped reads per allele 
(Sun et al., 2013). The three families were genotyped for 1,484 
segregating SNPs (261 testcross markers and 1,223 intercross 
markers) in the F-2014 population, 5,393 segregating SNPs 
(3,986 testcross markers and 1,407 intercross markers) in the 
Y-2015 population, and 5,012 segregating SNPs (4,477 testcross 
markers and 535 intercross markers) in the L-2015 population. 
A testcross marker is one at which one parent is heterozygous 
but the other is homozygous, whereas an intercross marker is 
one at which both parents are heterozygous (Maliepaard et al., 
1997; Wu et  al., 2002; Lu et al., 2004; Tong et al., 2011).

ResULTs

Identification of piQTLs and miQTLs
We illustrate the allometric trajectories of stem height against 
stem diameter (Figure 1A) and the allometric trajectories of 
stem diameter against stem height (Figure 1B) for families 
F-2014 (in 2 years), Y-2014 (in 1 year), and L-2015 (in 1 year), 
totalizing four research materials. Huang et al. (1992) assessed 
a list of commonly used H-D relationship equations. By fitting 
each of these equations to the mean curves of all progeny from 
each dataset, we found that equations (1A) and (1B) are the most 
parsimonious for curve fitting based on AIC values calculated. 
Functional mapping implemented with equations (1A) and 
(1B) was used to map piQTLs and miQTLs. It appears that 
variation in H-D allometry among progeny in all materials is 
quite stationary over dependent variables. Thus, the structure of 

FIGURe 1 | Developmental covariation showing how shoot height varies as a function of shoot diameter (A) and how shoot diameter varies as a function of 
shoot height (B) during ontogeny in different mapping materials, F-2014 measured in 2 years, L-2015, and Y-2015. Light green lines represent height-diameter 
developmental allometry curves of each progeny and a dark green line is the mean allometry curve of all progeny fitted by Equation (1A) and (1B), respectively.
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residual covariance matrices (4A) and (4B) was modelled by the 
computationally efficient AR(1) approach.

We detected a number of significant QTLs distributed on 
various chromosomal positions that regulate H-D allometry in 
three mapping populations (Figure 2). Family F-2014 contains 
seven piQTLs and 9 miQTLs in year 1 and seven piQTLs and six 
miQTLs in year 2. SNPs 101832, 104243, and 105979 were identified 
simultaneously as piQTLs and miQTLs in year 1, and 101200 and 
99391 identified as piQTLs and miQTLs in year 2. We did not detect 
any pleiotropic piQTLs that affect how shoot height growth scales 
with shoot diameter growth across years and any miQTLs that 
affect how shoot diameter growth scale with shoot height across 
years. We detected seven piQTLs and seven miQTLs in family 
Y-2015 and seven piQTLs and four miQTLs in family L-2015, and 
in family Y-2015, a QTL (SNP 6,355) behaves as both piQTLs and 
miQTLs. The roles played by piQTLs and miQTLs differ in terms 
of their function: piQTLs modulate the ecological process of how 
stem diameter invests stem height to facilitate trees to capture spatial 
advantage for optimal fitness in a competitive environment, whereas 
miQTLs control a different ecological process in which spatial 
advantage can be maintained by investing radial growth.

Next, we performed a GO analysis to interpret the biological 
functions of each piQTL and each miQTL detected. Most piQTLs 
residue in the chromosomal regions of many candidate genes 
encoding cell metabolism, growth and differentiation (Figure 2; 

Table S1). All these functions can be linked to stem growth. For 
example, piQTL 70.833/19860026 is in the proximity of genes that 
encode Leucine-rich repeat playing an important role in division 
and differentiation of stem cells and growth of apical meristem. 
piQTL 0.808/330310 situates in the gene family linked to plant 
peroxidase that, as a key enzyme, participates in lignin deposition. 
Among 32 miQTLs detected in F-2014 population, 31 are related 
to candidate genes of known function (Table S1). The biological 
function of those QTLs whose annotations are not available 
remains to be validated.

Functional mapping can illustrate how genetic effects of QTLs 
change developmentally over time course. To demonstrate the 
temporal change of QTL effects, we chose a significant piQTL and 
miQTL for each material to draw genotypic curves (Figure 3). 
We found that the genetic effect of each QTL increases with 
diameter growth for piQTLs and with height growth for miQTLs 
in all materials, consistent between 2 years for F-2014. However, 
the slope of effect increase is more abrupt for miQTLs than for 
piQTLs for all materials.

QTL Control Networks
Based on allometry-dependent genetic effects of each QTL, we 
reconstructed the control networks of piQTLs and miQTLs for the 
four materials, respectively (Figure 4). A piQTL control network 

t

FIGURe 2 | Manhattan plots of “pioneering” QTL (piQTL) (left) and “maintaining” QTL (miQTL) detection (right) on the mei genome in different mapping materials, 
F-2014 measured in 2 years, L-2015, and Y-2015. X-axis represents –log(P) value and y-axis represents mei’s eight chromosomes. Triangles and dots stand for 
intercross QTLs and testcross QTLs, respectively, with solid and dash lines denoted as the genome-wide thresholds of intercross QTL and testcross QTL detection 
at the 5% significance level. As comparison, the significance level at which a piQTL affects how diameter varies with height and a miQTL affects how diameter varies 
with height is also indicated. Names of the genes that reside in the QTL region are shown.
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FIGURe 3 | Genotype (nn and np)-dependent curves of developmental covariation between shoot height and shoot diameter at a significant “pioneering” QTL 
(piQTL) and “maintaining” QTL (miQTL) detected in different mapping materials, F-2014 measured in 2 years, L-2015, and Y-2015. The genetic effect curve of each 
QTL is also shown, where “Add” denotes the additive effect calculated as the homozygote—the heterozygote and “Dom” denotes the dominant effect calculated as 
the heterozygote—half of the sum of the two homozygotes.

FIGURe 4 | QTL control networks that govern developmental covariation between shoot height and shoot diameter in different mapping materials, F-2014 
measured in two years, L-2015, and Y-2015. The networks were reconstructed by “pioneering” QTLs (piQTLs), “maintaining” QTLs (miQTLs), and piQTLs + miQTLs, 
respectively, where dark circles denote hub QTLs, red arrowed lines stand for promotion, and blue arrowed lines stand for inhibition.

Frontiers in Plant Science | www.frontiersin.org December 2019 | Volume 10 | Article 1557

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Inferring QTL Control NetworksWu et al.

8

describes how different piQTLs interact with each other to control 
the allometric change of stem height growth with stem diameter 
growth. Similarly, a miQTL control network characterizes the 
impact of a web of miQTL-miQTL epistasis on the allometric 
change of stem diameter growth with stem height growth. We also 
reconstructed a joint QTL control network among piQTLs and 
miQTLs to illustrate how these two types of QTLs interact with 
determine H-D allometry. Three types of networks constituted by 
piQTLs, miQTLs, and a mix of piQTLs and miQTLs are sparse, 
suggesting that a single QTL may only interact with a limited 
number of others. However, a few QTLs within each network 
act as hubs, playing a central role in network behavior through 
linking more QTLs than the average. We found that directional 
positive epistasis and directional negative epistasis are two major 
links that constitute QTL control networks.

For F-2014(1), piQTLs 106224 and 101200 are two hubs that 
each regulate many other QTLs, although 101200 is regulated 
by 106224. We found that both hub QTLs trigger directional 
negative epistasis with most of these regulated QTLs because 
the latter has no effect on the former. QTL 101200 is also a 
hub in the miQTL network, but it receives many incoming 
regulations from other miQTLs. piQTL 99391 is a peripheral 
QTL because it resides at the edge of the piQTL network, with 
a single link with 101200. However, it is interesting to find that 
99391 is a hub in the joint piQTL and miQTL network that links 
with many miQTLs. QTL 106810 is a hub within the miQTL 
network, and it is still a hub in the joint piQTL and miQTL 
network, but it also interacts with many piQTLs. 110060 is a 
piQTL, but it links with both piQTLs and miQTLs in the joint 
network. Taken together, as two highly coordinated processes, 
how stem height growth scales with stem diameter growth and 
how stem diameter growth scales with stem height growth are 
controlled not only directly by pleiotropic QTLs, such as 101200 
and 99391 but also indirectly through the links of piQTLs 
and miQTLs. For L-2015 and Y-2015 materials, we have also 
identify similar features of piQTL, miQTL, and piQTL-miQTL 
networks (Figure 4). Overall, all QTL networks are dominated 
by directional negative and positive epistasis, including a few 
cases of symmetric positive and negative epistasis.

QTL networks display topological changes with year (Figure 4). 
For example, hubs of the piQTL network are 106224 and 101200 
in the first year, but they become 3072, 01832, and 108210 in 
the second year. Although 439 and 105979 are peripheral QTLs 
in both years, the QTLs with which they link vary with year. 
miQTL 101200 is a hub that links with many QTLs in the first 
year, but it becomes a periphery in the second year. There are 
many other QTLs that determine year-year variation in the 
developmental allometry of stem diameter with stem height. We 
can also identify year-dependent differences in the topological 
structure of the piQTL-miQTL network. Taken together, H-D 
allometry undergoes a year-specific change, which may be 
driven by QTL networks.

Computer simulation
We performed simulation studies to investigate the statistical 
properties of our QTL-networking model. We simulated two 

allometrically related growth traits by mimicking the allometric 
relationships of shoot length growth with shoot diameter 
growth in the F-2014 mapping population. We simulated the 
data of genetic effects on these two traits by assuming the 
involvement of 14 QTLs that interact with each other in a 
network characterized by
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where QTL 2 is regarded as a hub QTL, and Φ and Φ are the 
ODE parameters that determine independent and dependent 
genetic effect of a QTL, respectively, whose values are given 
by the estimates of the F-2014 population. The residuals 
of the simulated genetic effects are assumed to follow a 
multivariate normal distribution with mean 0 and covariance 
matrix structured by an AR(1) model. Based on the number 
of longitudinal measurements (T) and time-constant variance 
(υ2), we used four simulation scenarios, (1) T = 10, υ2 = 0.05, 
(2) T = 10, υ2 = 0.5, (3) T = 30, υ2 = 0.05, and (4) T = 30, υ2 = 
0.5. We examined and compared the statistical behavior of ODE 
parameter estimates under each scenario. As an example, we 
illustrate the estimation result under scenario 4 (Figure 5). 
We found that our model can reasonably well estimate ODE 
parameters and, therefore, reconstruct QTL networks under 
these simulation scenarios. The precision and accuracy of 
parameter estimates increase with increasing measurement 
number and/or decreasing residuals.

We further assessed the statistical power of our new model 
by estimating true positives (TP), false positive (FP), true 
positive rate (TPR), false positive rate (FPR), and the area 
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under curve (AUC) of receiver operating characteristic curve 
(Table 1). In general, FPR are quite low under all simulation 
scenarios, but the power of the model is very much scenario-
dependent. We do not recommend the use of a small number 
of measurements when residuals are large. If residuals are 
unavoidably large, the number of measurements should 
increase as much as possible to reach a good power of QTL 

network reconstruction. In general, when υ2 = 0.5 and T = 30, 
we obtain a power of 0.88.

DIsCUssION
Despite a universal phenomenon of fundamental importance to 
plant biology (Barbeito-Andrés et al., 2015), the genetic control 

FIGURe 5 | The estimates of time-varying genetic effect curves (slash line) under simulation scenario T = 30 and υ2 = 0.5, in a comparison with true genetic effects 
curves (solid line), for a 14-QTL interaction network. The overall curve (blue) is decomposed into its underlying independent curve (red) and dependent curves 
(green). The QTLs that affect a focal QTL are shown at the end of curve.
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mechanisms of developmental covariation have been poorly 
understood. Surprisingly, there is still no rich body of literature 
that reports the development of statistical approaches for 
mapping developmental allometry, although our recent work 
shows the promise of using a statistical model to map allometry 
QTLs (Jiang et al., 2016). Our previous model was based on 
reductionist thinking and, therefore, it may be powerful for 
identifying significant QTLs that act individually or pairwise 
(with epistasis), but fails to chart a global picture of genetic 
control from a holistic and system-oriented perspective. In this 
article, we develop a computational model for characterizing 
how each and every QTL interacts with others to determine trait 
allometry. Our QTL control networks fill a gap in complex-trait 
mapping by unraveling the emergent properties of the complex 
interplay of multiple QTLs.

As an example, our QTL networking model was used to 
address a fundamental question in tree biology, i.e., what is 
the genetic basis for the developmental allometry of primary 
growth (shoot height) vs. secondary growth (shoot diameter)? 
The ecological process of how stem diameter invests stem 
height determines a tree’s capacity to capture spatial advantage 
in a competitive environment. Given the same growth of stem 
diameter, a taller height has a better capacity to increase the 
exposure of leaves to light, increase the shading of competitors 
and elevate reproductive or dispersal organs than a shorter 
height. We created “pioneering QTLs” (or piQTLs) to define the 
QTLs that control the change in height growth with diameter 
growth, given that they play a pioneering role in stimulating 
trees to capture spatial resources for the optimal fitness [19]. On 
the other hand, the ecological process of how stem height invests 
stem diameter can help a tree to maintain its spatial advantage. 
Among those trees of the same height, stout ones can preserve 
the potential of growth towards next stages of competition than 
slender ones. We coined “maintaining QTLs” (or miQTLs) to 
define the QTLs that determine the increasing amount of radial 
growth at a cost of height growth. The identification of piQTLs 
and miQTLs helps to interpret the mechanistic basis of H-D 
allometry in response to environmental change.

In genetic mapping studies of a woody plant—mei (Prunus 
mume), we identified a set of piQTLs and miQTLs that determine 
the allometric variation of shoot heights vs. shoot diameters 
for scions grafted on rootstocks. These QTLs exert their effects 
on H-D allometry not only individually but also through a 
complex interaction network. We reconstructed piQTL control 

networks for the scaling process of height with diameter and 
miQTL networks for the scaling process of diameter with height 
for mei. In each network, we identified several hub QTLs that 
play a dominant role in network behavior by linking many 
other members. Because of the existence of these hub QTLs, 
other QTLs can be associated with H-D allometry through 
guilt by association in a gene network. To better respond to 
environmental change, a shoot needs to decide whether to 
prioritize height growth at a cost of diameter or diameter growth 
at a cost of height. Although each process is driven by its own 
network, these two processes as a whole to govern mei growth 
involve a coordinated network constituted by both piQTLs and 
miQTLs. In such a joint network, we identified piQTLs that 
affect the allometry of diameter with height through linking 
with miQTLs, and miQTLs that affect they allometry of diameter 
with height through linking with piQTLs. Such observations 
were seen from three different mapping populations.

Our QTL networking model offers systematic insights 
into the genetic architecture of developmental allometry 
between different phenotypic traits and thus extends beyond 
reductionist approaches that aim to detect the impacts of 
individual QTLs based on the law of parsimony. The model 
shows its utility for reconstructing QTL interaction networks 
underlying developmental covariation between stem height 
and stem diameter in trees, but its application is largely beyond 
this scope (Barabási et al., 2011). More recently, the advance of 
high-throughput phenotyping techniques has led to increasing 
amounts of high-dimensional phenotypic data that can better 
characterize the morphological, anatomical, physiological, and 
developmental features of plants as a coordinated whole to adapt 
to environmental change. Our model, coped to these data, will 
enable the recovery of intricate and dynamic QTL networks from 
which to identify key interaction pathways that can be genetically 
rewired to engineer or modify plant phenotypes of interest. 
Taken together, the new model could generate results that help to 
design more efficient, systems biology-based breeding strategies.
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