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Recently, miniaturization of Raman, mid-infrared (MIR) and near-infrared (NIR) spectrometers 
have made substantial progress, and marketing companies predict this segment of 
instrumentation a significant growth rate within the next few years. This increase will be 
based on a more frequent implementation for industrial quality and process control and 
a broader adoption of spectrometers for in-the-field testing, on-site measurements, and 
every-day-life consumer applications. The reduction in size, however, must not lead to 
compromises in measurement performance and the hand-held instrumentation will only 
have a real impact if spectra of comparable quality to laboratory spectrometers can be 
obtained. The present communication will, on the one hand, explain the instrumental reasons 
why NIR spectroscopy is presently the most advanced technique regarding miniaturization 
and on the other hand, it will emphasize the impact of NIR spectroscopy for plant analysis 
by discussing in some detail a qualitative and a quantitative application example.

Keywords: hand-held spectrometers, instrumentation, near-infrared (NIR), qualitative and quantitative analysis, 
authentication of fengdous, nutritional parameters of mulberry fruits

INTRODUCTION
Miniaturization of vibrational spectrometers started more than two decades ago, but only within the 
last decade real hand-held Raman, MIR and NIR scanning spectrometers have become commercially 
available and have been utilized for a broad range of analytical applications (Sorak et al., 2012; 
Guillemain et al., 2017; Crocombe, 2018; Karunathilaka et al., 2018; Soriano-Disla et al., 2018; 
Vargas Jentzsch et al., 2018). While the weight of the majority of Raman and MIR spectrometers is 
still in the s1 kg range, the miniaturization of NIR spectrometers has advanced down to the ~100 
g level and developments are underway to integrate them into mobile phones (Tino et al., 2016). 
Furthermore, miniaturized NIR systems have recently reached the <1,000 US$ level. Therefore, 
only the acquisition of NIR systems can be taken into consideration for private use whereas hand-
held Raman and MIR spectrometers will be restricted to industrial, military or homeland security 
applications and public use by first responders, customs or environmental institutions.

Because of the substantial progress in the miniaturization of near-infrared spectrometers in combination 
with a drastic cost reduction, marketing experts predict this type of instrumentation a significant growth 
rate. These trends have made hand-held NIR spectroscopy also attractive for everyday life consumer 
applications of a new, non-expert user community ranging from food testing to the detection of fraud 
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and adulteration in a broad area of materials. Notwithstanding this 
wide-spread application range of hand-held NIR spectroscopy, the 
focus of this communication will be for plant analytical aspects only. 
The discussion of a qualitative and a quantitative analytical problem 
shall serve as examples, to demonstrate the vital role that hand-held 
NIR spectroscopy will play in the near future for plant analysis.

Before these selected qualitative and quantitative case studies 
are discussed, however, an overview of the various instrumental 
features of the most frequently used hand-held NIR spectrometers 
will be given.

INSTRUMeNTATION
The recent progress in miniaturization of hand-held NIR 
spectrometers has taken advantage of new micro-technologies 
such as MEMS (Micro-Electro-Mechanical Systems), MOEMS 
(Micro-Opto-Electro- Mechanical Systems), DMD™ (digital 
mirror device), or LVFs (Linear Variable Filters) and has led 
to a drastic reduction of spectrometer size (the weight of the 
spectrometers discussed in this communication varies between 
100 and 200 g) while allowing excellent performance due to the 
high-precision implementation of essential elements in the final 
device (Wolffenbuttel, 2005). High-volume manufacturability 
will further reduce costs and thereby contribute towards 
broader dissemination of such instruments. In what follows the 
specific instrumental features of four different hand-held NIR 
spectrometers will be shortly outlined.

Based on the type of detector, the hand-held NIR spectrometers 
can be classified in the two categories of array-detector and 

single-detector instruments (Wolffenbuttel, 2005). Probably 
the first commercial, real hand-held NIR spectrometer (VIAVI 
MicroNIR 1700 (formerly JDSU), Santa Rosa, CA, USA) has an 
array detector that covers the wavelength range from 908 to 1,676 
nm and uses an LVF as a monochromator. It has so far been used 
for a multiplicity of applications ranging from authentication 
of seafood and determination of food nutrients to the analysis 
of hydrocarbon contaminants in soil and authentication and 
quantitative determination of pharmaceutical drugs (Altinpinar 
et al., 2013; O’Brien et al., 2013; Jantra et al., 2017; Yan and Siesler, 
2018b). However, compared to an array detector, the price for a 
single detector is much lower, and in an attempt to further reduce 
the hardware costs, new developments focus on systems with 
single detectors. Thus, the DLP NIRscan Nano EVM (Dallas, 
TX, USA), for example, is based on Texas Instruments’ DMD™ 
in combination with a grating and a single-element detector and 
also covers the wavelength range from 900 to 1,701 nm. Very 
recently a MEMS-based FT-NIR instrument, that contains a 
single-chip Michelson interferometer with a monolithic opto-
electro-mechanical structure has been introduced by Si-Ware 
Systems (Cairo, Egypt). Contrary to most of the other handheld 
spectrometers, this instrument can scan FT-NIR spectra over the 
extended range from 1,298 to 2,606 nm. Finally, Spectral Engines 
(Helsinki, Finland) developed miniaturized NIR spectrometers, 
that are based on a tunable Fabry-Perot interferometer. In order to 
cover the NIR wavelength region 1,350–2,450 nm, however, four 
spectrometers are required.

The schematic principles of the different monochromator 
designs of the described NIR spectrometers are summarized 
in Figure 1.

FIgURe 1 |  The optical schemes of hand-held NIR spectrometers based on different monochromator principles (A) VIAVI MicroNIR 1700, linear variable filter; 
(B) DLP NIRscan Nano EVM with Texas Instruments´ digital micromirror device (DMD™); (C) Si-Ware Systems, MEMS-based FT-NIR spectrometer; (D) Spectral 
Engines NIR spectrometer with tunable Fabry-Perot interferometer.
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APPlICATIONS
Although the NIR technique is usually applied for a broad range 
of industrial material quality and control applications (Grassi 
et al., 2018; Piao et al., 2018; Silva et al., 2018; Yan and Siesler, 
2018a; Yan and Siesler, 2018b), the present communication is 
targeted at practical, everyday life applications in order to attract 
the attention of a prospective non-expert user community. 
These days, qualitative and quantitative analysis is more than 
ever needed also by ordinary people. Because both fraud and 
adulteration are widely spread, and public health awareness has 
grown strongly over the last years, the control of nutritional 
parameters of everyday life food and pharmaceuticals has become 
an important issue. Therefore, the progress in miniaturization 
and increasing affordability of hand-held NIR spectrometers 
make them an attractive tool to fight the above evils efficiently in 
the public domain.

To demonstrate the potential of hand-held NIR spectrometers 
for plant analysis, a qualitative and a quantitative application 
example will be presented here.

Identification of Fengdous
In China, the stem of the Dendrobium is processed into a 
fengdou (Figure 2), that is considered a convenient dosage 
form of not only a valuable health-care food but also Chinese 
traditional medicine (TCM) with efficacy in liver protection, 
treatment of pharyngitis and many other diseases (Chen and 
Guo, 2001). Fengdou processed from Dendrobium officinale 
Kimura et Migo (DOK) have not only high medicinal value but 
are also in short supply, and, are very expensive. Therefore, it 

would be desirable to discriminate them from fengdou based on 
Dendrobium devonianum Paxt (DDP) with lower efficacy and 
correspondingly much lower (1/4–1/5) price. However, this is 
not possible by visual inspection only (Figure 2).

Because of the high public interest, an analytical method based 
on hand-held NIR spectroscopy with the DLP NIRscan Nano EVM 
system in combination with a partial least squares discriminant 
analysis (PLS-DA) evaluation method was developed, to rapidly 
discriminate fengdou processed either from DOK or DDP.

Materials and Methods
Samples
A total of 468 fengdou samples based on DOK (288) and DDP (180) 
were collected from Luosiwan (Yunnan, China), and the calibration 
and validation sets were randomly distributed at a ratio of 2:1.

Measurement of Spectra
NIR spectra were collected with the DLP NIRScan Nano EVM 
spectrometer by accumulating 32 scans in the wavelength range 
of 909–1,649 nm (209 wavelength variables) in approximately 
7 s. After each measurement, the sample was rotated for 
approximately 120°, and the average of three spectra was then 
used as the final raw spectrum (Figure 3). A certified reflection 
standard (Labsphere, North Sutton, NA, USA) was used to 
measure the reference spectrum.

Evaluation of Spectra
Spectral Pretreatment. Due to the fact that NIR spectra frequently 
contain interferences of background information, drift, and noise, 
the raw NIR spectra were subjected to spectral preprocessing. 

FIgURe 2 | Schematic diagram of the fengdou processing.
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For this purpose, the first derivative based on a Savitzky Golay 
smoothing procedure with a five data point window and a 2nd 
order polynomial followed by a standard normal variate (SNV) 
transformation as a scatter correction was used.

Competitive Adaptive Reweighted Sampling. In NIR 
spectroscopy, the spectral information is not evenly distributed 
over the whole wavelength range under investigation. Some 
data may be superimposed by noise or contain irrelevant 
information, that can decrease the performance of the 
calibration models. Therefore, the selection of the informative 
variables is a significant preprocessing step (Li et al., 2009; Li 
et al., 2013; Yun et al., 2013). In this work, the competitive 
adaptive reweighted sampling (CARS), based on the simple but 
effective principle “survival of the fittest” was applied to select 
the optimal combinations of spectral variables (Zhang et al., 
2015). Compared to the moving window algorithm and Monte 
Carlo uninformative variable elimination procedure, CARS 
shows a strong capability of increasing the predictive accuracy 
(Li et al., 2009). For the present analysis, the CARS was run 
by the libPLS toolbox (http://www.libpls.net) based on the best 
combination of pretreated spectra.

PLSDA Analysis
The informative spectral variables determined by CARS 
were used to develop classification models with the PLS-DA. 
PLS-DA is a linear classification method that is based on the 
well-known partial least-squares (PLS) regression. In this 
work, the leave-one-out (LOO) method was applied to obtain 
the optimal number of latent variables (LVs) of each model, 
and the LVs with the lowest root mean square error (RMSE) of 
cross-validation set (RMSECV) were employed to establish the 
PLS-DA classification model.

The indices of class accuracy, which are described in the 
following equation, were calculated to evaluate the performance 
of each classification model. The higher the accuracy values, the 
better the predictive ability of the classification model:

 
Class accuracy Number of correct assignments of each c= llass

Total samplenumber of eachclasstested
.
 

All calculations were performed in MATLAB environment 
(R2009, Mathworks, Natick, MA, USA) and PLS-DA models 
were built using the “PLS Toolbox 6.21” from Eigenvector 
Research (Manson, WA, USA).

Results and Discussion
NIR Spectra
In Figure 4 the raw NIR spectra of the fengdou calibration set, 
the mean spectra of all DOK and DDP calibration samples, and 
the spectra of Figure 4A after the different pretreatment steps 
are shown. As can be seen from the pretreated NIR spectra in 
Figures 4C, D, the 1st derivative eliminates most of the baseline 
shift, whereas the SNV is applied for the scatter correction. The 
bands at 981 nm, 1,199 nm, and 1,450 nm can be assigned to the 
2nd overtones of the N‒H, C‒H and O‒H stretching vibrations, 
respectively, while the band at 1,568 nm is the 1st overtone of the 
N‒H stretching vibration.

The diagrams of the wavelength optimization variable 
screening are shown in Figures 5A–C. As the number of 
sampling operations increase, the number of selected wavelength 
variables decreases first gradually, and then quickly. It embodies 
the algorithm’s ability of an initial rough selection followed by 
a fine-tuning (Figure 5A). The gradual zone for the RMSECV 
screening process indicates that wavelength variables irrelevant to 
the type of fengdou were removed, and the growth zone indicates 
that the essential variables relating to the type of fengdou were 
excluded. Finally, the trend of the regression coefficient of each 
wavelength variable in the screening process was achieved. The 
position of "*" in the figure corresponds to the minimum value 
of the RMSECV (Figure 5C). The 65 selected variables, finally 
selected for the calibration procedure, are shown in Figure 5D.

Identification of DOK
After spectral pretreatment by 1st derivative, SNV and mean 
centering, the CARS wavelength optimization algorithm was 
used to filter out the wavelengths with high information, and 
then the optimized wavelength variables were used to develop a 
classification model with the PLS-DA method.

The results showed that for the calibration, cross-validation 
and prediction sets the accuracy is 93.9%, 89.6%, and 84.1%, 
respectively (Figure 6A). As shown by the blue dots (calibration 
set) and the red dots (test set) in this graph, the samples clearly 
cluster in two categories and can be readily discriminated. 
Furthermore, the probabilities of being identified as DOK were 
calculated and summarized in Figure 6B. For the majority 
of samples, the probability was 1 or 0, which means that these 
samples were either DOK or DDP. Probability values >0.5 or <0.5 
refer to DOK or DDP, respectively.

Sensitivity and specificity are statistical measures of the 
performance of a binary classification test and are very 
important for qualitative analysis. Sensitivity (also called the 
true positive rate) measures the proportion of actual positives 
that are correctly identified as such. Specificity (also called the 
true negative rate), on the other hand, measures the proportion 
of actual negatives that are correctly identified. In this study, 
for the calibration set, cross-validation set, and test set, the 

FIgURe 3 | The sample presentation to record NIR spectra of fengdous.
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FIgURe 4 | The raw NIR spectra of the fengdou calibration set (A), the mean spectra of the DOK and DDP calibration samples (B), the NIR spectra after 
pretreatment by the 1st derivative (C), and the NIR spectra pretreated by the 1st derivative and subsequent SNV (D). 

FIgURe 5 | Wavelength-variable screening by CARS: (A) number of sampled variables versus number of sampling runs; (B) RMSECV versus number of sampling 
runs; (C) regression coefficients path versus number of sampling runs; (D) wavelength variables selected by CARS.
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sensitivities are 0.927, 0.875, 0.896, and the corresponding 
specificities are 0.950, 0.917, 0.783, respectively.

The sensitivity and specificity derived from the PLS-DA model 
for the test set samples are represented in Figure 7. In Figure 7B, 
the threshold value used to classify the DOK is drawn as a dashed 
line. With the increase of the threshold value, the specificity 
increases, i.e., the number of false-positives DECREASES. 
Likewise, a sensitivity decrease represents the INCREASE of the 
false-negatives. With the receiver operator characteristic curve 
(ROC) graph in Figure 7A similar information is provided in 
a different format. The presented results, clearly demonstrate 
that handheld spectroscopy, combined with CARS-PLS-DA 

data evaluation, can be utilized for the rapid discrimination of 
fengdous produced from DOK or DDP.

Quantitative Analysis of Mulberry Fruits
The mulberry fruits have a bumpy surface, and because of 
the fruits’ tightly-packed and seed-bearing ovaries, they 
have a superficial resemblance to blackberries (Huang et al., 
2011). The mulberry fruits are eaten, mostly unprocessed, in 
their fresh state. As traditional Chinese medicine, the fresh 
mulberry fruit is used in the treatment of sore throats, fever, 
hypertension, and anemia (Kamiloglu et al., 2013); they 
are also used widely in the production of jams, pies, tarts, 
marmalades, juices, wines, and liquors, natural dyes and in 
the pharmaceutical, food and cosmetic industry (Huang et al., 
2011; Khalifa et al., 2018).

Mulberry fruits contain high nutrient and bioactive contents, 
including soluble solids content (SSC), polyphenols, flavonoids, 
ascorbic acid, fatty acids, minerals, and anthocyanin (Lou et al., 
2012). The SSC and dry matter content (DMC) are closely related 
to senses and nutrition. polyphenols and flavonoids (contained 
in polyphenols) have many pharmacological effects. polyphenols 
are naturally secreting, and biologically active substances and 
a wide range of polyphenols are provided by mulberry fruits 
such as flavanols, phenolic acids, derivatives, and anthocyanins. 
Polyphenols show activities of antioxidant, detoxification, 
induction of apoptosis, antiangiogenic and antiproliferation, and 
so on (Khalifa et al., 2018). Polyphenols in mulberry fruits and 
their corresponding functionalities vary considerably according 
to the genetic diversity, climatic, agricultural practices, processing 
conditions, and stability during storage (Khalifa et al., 2018). 
Flavonoids are found mostly in glycosylated form, and they 
have complex flavonol glycosides profiles including 13 quercetin 
derivatives, five kaempferol derivatives, and O-methylated 
flavonol-analogs, such as rhamnetin and isorhamnetin. Levels of 
quercetin glycoside are reported to increase as the fruit ripens 
from white to black stages (Sánchez-Salcedo et al., 2015). The 
flavonoids variation in different breeds of mulberries is significant 
(Sánchez-Salcedo et al., 2015).

Fruit quality has traditionally been determined by visual 
inspection of the external appearance and its internal content 

FIgURe 6 | Classification results of the PLS-DA method: (A) DOK 
classification results of the calibration and test set, (B) classification 
probability of DOK of the calibration samples.

FIgURe 7 | Specificity and sensitivity of the calibration model: (A) predicted ROC, (B) predicted responses.
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determined by destructive methods, which require operators 
with the expertise to perform the analysis in a professional 
laboratory. However, this is impractical for routine analysis 
by ordinary people. In recent times, consumers have grown 
conscious of the health benefits of the ingredients of this fruit and 
a new approach to determine their concentrations is required. In 
this context it has been reported, that NIR spectroscopy can be 
used to nondestructively analyze the internal contents, including 
the SSC, DMC, and total polyphenol content (TPC) of apples 
(Pissard et al., 2012). Furthermore, Chen et al. employed FT-NIR 
spectroscopy to determine the TPC in green tea (Chen et al., 
2008). In view of this prior knowledge, the demand for a new 
analytical procedure of mulberry fruits, that will require little to 
no training originated. In the present work, this issue is addressed 
by applying the hand-held NIR spectrometer MicroNIR 1700 
for a feasibility study of the fast determination of SSC, DMC, 
polyphenols, and flavonoids in fresh mulberry fruits.

Materials and Methods
Samples
The mulberry varieties applied in this work are Zhongmu 1, 
8632, Mengchang 4, and Dashi. A total of 434 mulberry fruits 
(6–9 maturity) were collected from the conservation of mulberry 
germplasm resources of the Institute of Sericulture, Chinese 
Academy of Agricultural Sciences (Zhenjiang, Jiangsu, China).

Measurement of NIR Spectra
As shown in Figure 8, NIR diffuse reflection spectra of mulberry 
fruits were collected with the MicroNIR 1700 spectrometer by 
accumulating 50 scans with an integration time of 15 ms, and 125 
wavelength variables in the range from 908 to 1,676 nm. Triplicate 

measurements were made at different spots, and the average of 
the three spectra was used as the final spectrum of the sample 
for further processing. The measurements were performed at an 
environmental temperature of 25 °C and a humidity of about 40%.

Reference Analysis
Determination of Soluble Solids Content. After collection 
of the NIR spectra, the SSC was determined immediately by 
a refractometer. First, the equipment was calibrated to zero 
with distilled water, then the detection surface was dried, and 
then a few drops of mulberry fruit juice were applied to the 
detection surface. The juice drops were spread on the prism 
surface by gently closing the cover of the refractometer, and the 
corresponding refractive index value was taken.

Determination of Dry Matter Content. The DMC was obtained 
by measuring the weight percentage of the dried fruit against the 
corresponding value of the fresh fruit. The weight of the fresh 
mulberry fruit was measured as m1, and then the fruit was dried 
at 65 °C for 24 h and finally dried to constant weight m2 at 105 
°C. The DMC was calculated as DMC (%) = (m2/m1) × 100 (%).

Determination of Total Polyphenol Content. The TPC of 
mulberry fruit was determined by the Folin–Ciocalteau method 
(Yu and Dahlgren, 2000).

Determination of Total Flavonoid Content. The content of 
total flavonoids content (TFC) in the investigated mulberry fruits 
was measured by colorimetry (Marinova et al., 2005).

Evaluation of Spectra
Spectral Pretreatment. The standard normal variate (SNV) 
transformation and the 1st derivative based on a Savitzky Golay 
smoothing procedure with a five data point window and a 2nd 
order polynomial were applied.

Wavelength Optimization. In this work, two kinds of wavelength 
selection methods have been applied: genetic algorithm (GA) 
and CARS. GA is an adaptive search procedure based on the 
mechanism of genetics and natural selection (Shao et al., 2004; 
Yan et al., 2011). At first, the GA algorithm randomly generates a 
population (each individual in the population represents a way of 
solving the problem) that is composed of a binary string (called 
chromosome). The bit value “1” represents a selected variable 
whereas “0” is a variable that is not selected. The fitness of an 
individual (its ability to adapt to the environment) is calculated; 
high-quality individuals are retained, low-quality individuals 
are out. New individuals are generated through inheritance and 
evolved through natural selection. In this way, eventually, the 
solution of the problem is achieved. In the present work, the 
parameters chromosomes 30, mutation 1% and cross-over 50% 
were adopted in the GA to optimize the variables. The principle 
of the CARS technique has been described for the previous 
application example and will not be repeated here.

PLS Calibration. PLS calibration was developed using the PLS 
toolbox (version 6.21, Eigenvector Inc., Manson, WA, USA), and 

FIgURe 8 | Presentation of the mulberry fruit for NIR spectra measurement 
with the MicroNIR 1700.
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internal cross-validation (CV) was used to select the optimum 
number of factors. CV estimated the prediction error by splitting 
all samples into 20 segments, and one segment was reserved for 
validation, and the remaining (Næs et al., 2002) segments were 
used for calibration. This process was repeated until all segments 
were used for validation once.

Calibrations and Validation Statistics. Calibration and 
validation statistics included the RMSEof calibration set 
(RMSEC), RMSECV and RMSE of prediction set (RMSEP) 
and R-squares (Fan et al., 2016). The RMSEC, RMSECV, and 
RMSEP were used to evaluate the feasibility of the model and its 
predictive ability. The lower the RMSEP and the closer its value to 
the RMSEC, the stronger is the prediction ability, and the greater 
is the robustness of the model. The residual predictive deviation 
(RPD) defined by the Std Dev/RMSEC of the calibration set 
was also included to estimate how well the calibration model 
can predict the compositional data. Generally, an RPD value 
greater than three can be considered as very good for prediction 
purposes (Fearn, 2002).

Validation With Unknown Samples
Unknown mulberry fruit samples were collected as a test set 
to validate the prediction capability of the calibration models 
developed for SSC, DMC, TPC, and TFC.

Results and Discussion
Reference Values. The reference values of SSC, DMC, TPC, 
and TFC in mulberry fruits were determined after the spectra 
were recorded. As shown in Table 1, the mean of SSC, DMC, 
TPC, and TFC were 10.21 Brix, 11.92%, 3.06 mg/g, and 
2.26 mg/g, respectively, and the corresponding standard 
deviation values were 3.16 Brix, 2.26%, 1.25 mg/g and 0.84 
mg/g, respectively. The coefficients of variation (C.V.) were 
30.96%, 18.94%, 40.95%, and 37.32%, respectively, which 
suggested that the parameters vary strongly, especially for 
the TPC and TFC. It is indicative that the collected samples 
are representative, and the calibration model will show good 
performance for the determination of unknown samples.

NIR Spectra
The raw NIR spectra of the calibration set are shown in 
Figure 9. The absorption bands at 990 nm and 1,450 nm are 

related to the 2nd and 1st overtones of the ν(OH) stretching 
vibration, respectively. The absorption bands from 1,110 
nm to 1255 nm belong to the 2nd overtones of ν(CH)  
stretchng vibrations.

Spectral Pretreatment
Different methods were used to pretreat the spectral data. The 
spectra pretreated by SNV only, and a combination of SNV + 
1st derivative are shown in Figures 10A, B, respectively, and 
specifically in the second pretreatment, an accentuation of 
spectral features can be observed.

The results in Table 2 show that the pretreated spectra 
can significantly affect the prediction accuracy of the model. 
Because the SNV method corrects for scattering effects 
caused by sample roughness and particle heterogeneity (Yan 
and Siesler, 2018b) the prediction accuracy of the SSC and 
DMC calibration models is improved. For the TPC and 
TFC, the SNV followed by the 1st derivative yielded the 
best calibration performance. Obviously, besides the scatter 
correction effect of the SNV, the first derivative contributes 
spectral features that are beneficial for the calibration 

TABle 1 | Statistical analysis of the reference results of the 4 parameters of mulberry fruits.

Statistical Parameters SSC (Brix) DMC(g/g, %) TPC (mg/g) TFC(mg/g)

Total Cal.* Test * Total Cal. Test Total Cal. Test Total Cal. Test

Number 113 76 37 94 63 31 91 61 30 81 54 27
Mean 10.16 10.21 10.07 11.94 11.92 11.87 3.07 3.06 3.09 2.34 2.26 2.51
Max 17.39 17.39 16.37 16.54 16.54 16.43 6.67 6.67 6.48 4.01 4.01 3.98
Min 3.80 3.80 4.00 7.87 7.17 7.87 0.97 1.22 0.97 1.07 1.07 1.09
Range 13.59 13.59 12.37 8.67 9.37 8.55 5.70 5.45 5.51 2.94 2.94 2.90
Std. 3.10 3.16 3.02 2.29 2.26 2.35 1.23 1.25 1.19 0.83 0.84 0.78
C.V. 30.51 30.96 29.94 19.20 18.94 19.81 39.93 40.95 38.50 35.28 37.38 30.97

*Cal and Test stand for calibration and test set, respectively.

FIgURe 9 | The raw NIR spectra of the mulberry fruit calibration set.
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of low-content and complex components (such as the 
polyphenols and flavonoids).

Wavelength Selection
Figure 11A shows a diagram of the NIR wavelength selection 
screening for the SSC content that is similar to the previous 
application example. By the CARS selection, the most sensitive 
wavelength variables were obtained (see Table 3). For SSC, TPC, and 
TFC, the performance of CARS was better than that of GA. As shown 
in Figure 11B for DMC, 54 variables were selected in 200 runs of the 
genetic algorithms and subsequently used for the development of a 
PLS model. The different variables selected by these two methods 
for the four components are shown in Figure 12. It is of interest that 
the variables at about 900 nm, 1,110 nm and in the 1,380–1,440 nm 
range, selected for TFC are also selected for TPC; the reason maybe 
that the flavonoids belong to the class of polyphenols and these 
variables are important for both, TPC and TFC.

Analysis of the Calibration Statistics
The number of optimal factors chosen for a calibration model has 
a significant impact on its prediction ability. When the number 
of factors is too low, the model does not entirely reflect the 
characteristics of the substance, which leads to lower prediction 
accuracy. Too many factors lead to over-fitting and yield an—
apparently—high prediction accuracy. However, when the model 
is applied to unknown samples, the prediction effect is weak 
because the model is not robust. Cross-validation was applied 
to the calibration models with the smallest optimal number of 
factors. For SSC, DSC, TPC, and TFC, the optimal number of 
factors are 5,7,5 and 5, respectively. In Figure 13 the graphs of the 
RMSEC and RMSECV versus the number of factors are shown for 
the SSC, DMC, TPC, and TFC. The errors mark the final choice of 
the optimum number of factors for the individual parameter.

The calibration parameters for the different components 
are summarized in Table 3. Although only nine wavelength 

FIgURe 10 | Calibration spectra pretreated by SNV (A), and by SNV + 1st derivative (B).

TABle 2 | The influence of spectra pretreatment methods on the calibration performance (the best calibration results are reproduced in bold numbers).

Parameters Pretreatment Methods Factors Rc
2 RMSeC Rcv

2 RMSeCV Rp
2 RMSeP

SSC None 9 0.9142 0.9198 0.872 1.1931 0.9001 0.9667
SNV 7 0.9129 0.9266 0.8883 1.0962 0.8891 1.0412
SNV + 1st 7 0.918 0.8989 0.8867 1.1041 0.8974 1.0168
1st 7 0.9112 0.9358 0.8751 1.2263 0.8781 1.076
1st + SNV 6 0.9113 0.9352 0.8856 1.1038 0.8879 1.059

DSC None 7 0.9016 0.7031 0.8409 0.9695 0.8613 1.0215
SNV 7 0.9148 0.654 0.8683 0.8806 0.9164 0.7328
SNV + 1st 7 0.9324 0.5825 0.8894 0.8163 0.8962 0.8901
1st 7 0.9119 0.665 0.8621 0.8918 0.8919 0.9753
1st + SNV 5 0.8703 0.8072 0.8277 0.9656 0.8647 0.9776

TPC None 7 0.8176 0.5307 0.7312 0.688 0.8288 0.5764
SNV 7 0.8675 0.4524 0.8057 0.5917 0.8485 0.5184
SNV + 1st 6 0.8829 0.4253 0.8343 0.5364 0.8385 0.537
1st 6 0.865 0.4567 0.8165 0.5703 0.8422 0.5568
1st + SNV 5 0.8301 0.5123 0.7558 0.65 0.8395 0.5722

TFC None 7 0.7733 0.3977 0.6632 0.52 0.5665 0.5717
SNV 7 0.8146 0.3596 0.7124 0.48 0.7027 0.4662
SNV + 1st 6 0.8249 0.3494 0.7203 0.4737 0.7364 0.4023
1st 6 0.8088 0.3652 0.7208 0.4751 0.5864 0.5625
1st + SNV 6 0.8292 0.3451 0.7431 0.4567 0.7116 0.417

Frontiers in Plant Science | www.frontiersin.org  November 2019 | Volume 10 | Article 1548

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hand-Held Near-Infrared Spectroscopy for Plant ScienceYan et al.

10

FIgURe 11 | Wavelength-variable screening by CARS (A), and GA (B).

TABle 3 | Comparison of the impact of the two wavelength selection methods CARS and GA on the calibration performance of the four quality parameters of mulberry 
fruits (the bold numbers highlight the best calibration results).

Methods Parameters Variables Factors Rc
2 RMSeC Rcv

2 RMSeCV RPD Rp
2 RMSeP

Cars SSC 9 5 0.9179 0.8998 0.8979 1.0462 3.51 0.9313 0.8843
DMC 10 4 0.9036 0.6957 0.8842 0.7841 3.25 0.9194 0.7961
TPC 19 5 0.8989 0.3952 0.8643 0.4818 3.16 0.8651 0.4884
TFC 11 5 0.8154 0.3588 0.7711 0.412 2.34 0.7177 0.4061

GA SSC 14 7 0.9287 0.8382 0.9046 1.0108 3.77 0.9043 1.0146
DMC 54 7 0.9295 0.5950 0.8977 0.7608 3.80 0.9071 0.7758
TPC 75 6 0.8942 0.4042 0.8585 0.4916 3.09 0.8642 0.4876
TFC 27 6 0.7914 0.3815 0.7299 0.4536 2.20 0.7153 0.4097

FIgURe 12 | The wavelength variables selected by CARS (♦, •, ▴) and GA (▪) for the four parameters under investigation.
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variables were selected for SSC, the calibration performance 
is the highest. The Rc

2 and Rcv
2 are 0.9179 and 0.8979, and 

the corresponding RMSEC and RMSECV are 0.8998 Brix 
and 1.0462 Brix, respectively. The high R2 values and the low 
RMSEs are characteristic of a good prediction capability. 
Furthermore, the R2 and RMSE values for the calibration and 
cross-validation are similar, which indicates that the calibration 
model is robust. For DMC, the best calibration is built with 
the 54 wavelength variables selected by GA. The R2 values for 
the calibration and cross-validation are 0.9295 and 0.8977, 
respectively, and the corresponding RMSEC and RMSECV 
are 0.5950% and 0.7608%, also suggesting a good calibration 
performance. However, the robustness is not as good as that of 
the SSC calibration, because of the larger difference between 
the statistical parameters of the calibration and the cross-
validation. For TPC, 19 wavelength variables were selected for 
the calibration, and the R2 values are not as high as that of the 
DMC calibration. Therefore, the calibration yields results of 
lower accuracy than the DMC calibration, and furthermore, its 
robustness is also lower. Finally, the performance of the TFC 
calibration with 11 wavelength variables is also not as high as 
that of the TPC component. The Rc

2 and Rcv
2 are 0.8154 and 

0.7711, respectively, with the consequence of lower calibration 
accuracy. The RPD values are also included to estimate how 
well the calibration model can predict the compositional 
data (Williams and Sobering, 1993; Fearn, 2002). The RPDs 
for SSC, DMC, TPC, and TFC are 3.77, 3.80, 3.16 and 2.34, 
respectively, which furnish evidence that SSC, DMC, and TPC 
can be accurately predicted in the investigated concentration 
range, whereas, at best, a medium quality calibration has been 
achieved for TFC.

The scatter plots of the measured versus the predicted parameters 
are shown in Figure 14. In agreement with the previously discussed 
calibration statistics results, the scatter distances from the regression 
lines also reflect that proper calibrations have been developed 
for SSC, DMC and TPC whereas for TFC a comparatively lower 
calibration performance has been achieved.

Validation With Test Samples
In order to test the performance of the calibrations, a series 
of test samples (defined as “unknowns” despite available 
reference values) were used to validate the prediction accuracy. 
Their calibration statistics results have been summarized in 
Table 3. The Rp

2 for SSC, DMC, TPC and TFC are 0.9313, 

FIgURe 13 | The effect of the number of factors on the RMSEC and RMSECV for SSC (A), DMC (B), TPC (C) and TFC (D).
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0.9071, 0.8651 and 0.9071, respectively, and the corresponding 
RMSEPs are 0.8843 Brix, 0.7758 %, 0.4884 mg/g and 0.4061 
mg/g, respectively. The similar accuracy for the calibration 
set and cross-validation set suggests that the calibrations are 
robust. A detailed comparison of prediction and reference 
results is provided in Table 4. In general, for the SSC and 
DMC, the absolute and relative errors are small, which meets 
the application requirements. Large relative errors were 
obtained for the TPC and TFC, but because the absolute errors 
are small, the calibrations are suitable for screening purposes 
of consumers, who use a handheld NIR spectrometer to detect 
whether the mulberry fruits contain a high content of TPC or 
TFC that is beneficial for the human body.

CONClUSIONS
Generally, hand-held NIR instruments have launched 
vibrational spectroscopy into a new era of in-the-field and 
on-site analysis. In the present communication hand-held NIR 
spectrometers were applied for qualitative and quantitative 
plant analytical case studies. In the qualitative example, it 
was demonstrated that high-value fengdous based on DOK 
plants can be successfully discriminated from lower quality 
fengdous of DDP plants. The quantitative application example 
outlined in detail the assay of the nutritional parameters SSC, 
DMC, TPC, and TFC of mulberry fruits by hand-held NIR 
spectroscopy. In both cases, the analysis of the spectroscopic 

FIgURe 14 | Scatter plots of the measured and predicted parameter values of the calibration and test samples: SSC (A), DMC (B), TPC (C) and TFC (D).
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TABle 4 | Prediction results for the “unknown” test samples.

Parameters No. Measured Predicted Absolute error Relative error(%) No. Measured Predicted Absolute error Relative error(%)

SSC (Brix) S1 4.00 4.14 0.14 3.57 S20 10.00 10.80 0.80 8.00
S2 5.50 4.44 −1.06 −19.30 S21 10.20 10.41 0.21 2.06
S3 6.00 6.37 0.37 6.24 S22 10.40 11.44 1.04 10.00
S4 6.10 6.65 0.55 9.02 S23 10.00 9.07 −0.93 −9.30
S5 6.60 6.20 −0.40 −6.09 S24 13.90 13.46 −0.44 −3.17
S6 6.90 6.23 −0.67 −9.77 S25 11.00 9.87 −1.13 −10.27
S7 7.40 8.28 0.88 11.89 S26 11.20 11.10 −0.10 −0.89
S8 7.60 6.12 −1.48 −19.48 S27 11.40 9.96 −1.44 −12.63
S9 7.80 9.05 1.25 16.05 S28 11.60 12.47 0.87 7.50
S10 8.00 6.90 −1.10 −13.78 S29 12.40 13.26 0.86 6.94
S11 8.00 5.99 −2.01 −25.17 S30 12.70 13.14 0.44 3.46
S12 8.30 9.38 1.08 12.99 S31 12.90 14.76 1.86 14.42
S13 8.40 8.00 −0.40 −4.81 S32 13.20 13.10 −0.10 −0.76
S14 8.90 8.20 −0.70 −7.85 S33 13.80 13.60 −0.20 −1.45
S15 9.00 10.33 1.33 14.82 S34 14.20 15.07 0.87 6.13
S16 9.00 9.20 0.20 2.21 S35 15.00 15.75 0.75 5.00
S17 9.60 9.58 −0.07 −0.72 S36 15.70 15.66 -0.04 −0.25
S18 9.70 9.34 −0.02 −0.20 S37 16.40 16.92 0.52 3.17
S19 9.80 9.17 −0.63 −6.41

DMC (%) D1 7.87 7.61 −0.27 −3.37 D17 12.16 11.57 −0.59 −4.83
D2 8.40 8.48 0.08 0.90 D18 12.19 12.39 0.20 1.63
D3 8.82 10.39 1.57 17.79 D19 12.31 11.69 −0.61 −4.98
D4 8.96 9.94 0.98 10.94 D20 12.51 12.29 −0.21 −1.72
D5 9.25 10.64 1.39 15.00 D21 12.77 13.24 0.47 3.71
D6 9.47 9.45 −0.03 −0.29 D22 13.14 11.43 −1.71 −13.04
D7 9.66 9.45 −0.21 −2.14 D23 13.29 12.21 −1.08 -8.13
D8 10.09 10.28 0.20 1.96 D24 13.42 13.94 0.51 3.83
D9 10.17 10.34 0.18 1.74 D25 13.82 13.11 −0.71 −5.15

D10 10.23 10.20 −0.03 −0.33 D26 13.99 13.37 −0.62 −4.40
D11 10.82 10.74 −0.08 −0.76 D27 14.99 13.69 −1.29 −8.63
D12 10.91 10.92 0.01 0.05 D28 15.38 15.35 −0.02 −0.15
D13 10.93 11.18 0.25 2.28 D29 15.74 14.64 −1.10 −6.96
D14 11.31 10.17 −1.13 −10.02 D30 15.96 15.44 −0.52 −3.28
D15 11.42 11.00 −0.42 −3.70 D31 16.43 15.18 −1.25 −7.61
D16 11.60 10.83 −0.77 −6.63

TPC (mg/g) P1 2.05 2.27 0.23 11.01 P16 3.01 2.46 −0.55 −18.29
P2 1.58 1.80 0.22 14.04 P17 3.08 2.59 −0.49 −15.89
P3 1.40 1.38 −0.02 −1.38 P18 3.13 2.86 −0.27 −8.61
P4 1.86 1.28 −0.58 −31.05 P19 3.32 3.22 −0.10 −2.92
P5 1.94 1.27 −0.66 −34.30 P20 3.49 3.22 −0.27 −7.63
P6 2.09 2.87 0.78 37.45 P21 3.57 3.24 −0.33 −9.26
P7 3.20 3.32 0.12 3.71 P22 3.69 2.67 −1.02 −27.65
P8 2.35 1.77 −0.58 −24.63 P23 3.89 3.22 −0.67 −17.29
P9 2.42 1.99 −0.43 −17.85 P24 4.07 4.34 0.27 6.66

P10 2.55 2.66 0.11 4.41 P25 4.10 3.96 −0.14 −3.44
P11 2.60 2.48 −0.12 −4.67 P26 4.60 5.03 0.43 9.38
P12 2.74 2.19 −0.56 −20.28 P27 4.68 3.54 −1.14 −24.37
P13 2.79 3.39 0.60 21.58 P28 5.33 4.82 −0.51 −9.54
P14 2.88 3.11 0.22 7.78 P29 6.48 6.42 −0.06 −0.97
P15 2.97 2.90 −0.07 −2.43 P30 0.97 0.48 −0.49 −50.44

TFC (mg/g) F1 1.74 2.05 0.30 17.46 F15 2.90 2.84 −0.06 −2.00
F2 1.98 2.53 0.55 27.98 F16 3.04 3.17 0.13 4.39
F3 3.13 3.14 0.01 0.17 F17 3.84 3.42 −0.42 −10.92
F4 2.18 2.64 0.47 21.52 F18 1.37 1.83 0.46 33.80
F5 2.21 1.92 −0.29 −13.04 F19 2.02 2.00 −0.02 −1.04
F6 2.33 2.94 0.61 26.17 F20 2.73 2.15 −0.58 −21.23
F7 2.39 2.78 0.39 16.30 F21 3.19 3.50 0.31 9.76
F8 2.43 2.23 −0.20 −8.08 F22 3.28 2.97 −0.31 −9.37
F9 2.62 2.25 −0.37 −14.23 F23 1.37 1.60 0.23 16.66
F10 2.83 2.15 −0.68 −24.00 F24 1.09 0.92 −0.16 −15.07
F11 3.03 2.59 −0.44 −14.58 F25 2.38 2.68 0.30 12.45
F12 3.08 2.15 −0.93 −30.16 F26 1.83 2.17 0.33 18.30
F13 3.53 3.04 −0.48 −13.67 F27 1.23 1.51 0.28 22.99
F14 3.98 4.03 0.04 1.06
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data was performed with chemometric evaluation routines in 
combination with wavelength selection methods.

Although the measurement and evaluation routines have 
not yet reached the convenience for public use by a non-
expert user community, the integration of NIR spectrometers 
into mobile phones and the development of apps for specific 
analytical procedures in food, plant and material quality 
control will significantly change the every-day-life of 
consumers in the near future.
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