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Introduction: Traveling to nearby extraterrestrial objects having a reduced gravity 
level (partial gravity) compared to Earth’s gravity is becoming a realistic objective for 
space agencies. The use of plants as part of life support systems will require a better 
understanding of the interactions among plant growth responses including tropisms, 
under partial gravity conditions.

Materials and Methods: Here, we present results from our latest space experiments 
on the ISS, in which seeds of Arabidopsis thaliana were germinated, and seedlings grew 
for six days under different gravity levels, namely micro-g, several intermediate partial-g 
levels, and 1g, and were subjected to irradiation with blue light for the last 48 h. RNA 
was extracted from 20 samples for subsequent RNAseq analysis. Transcriptomic analysis 
was performed using the HISAT2-Stringtie-DESeq pipeline. Differentially expressed genes 
were further characterized for global responses using the GEDI tool, gene networks and 
for Gene Ontology (GO) enrichment. 

Results: Differential gene expression analysis revealed only one differentially expressed 
gene (AT4G21560, VPS28-1 a vacuolar protein) across all gravity conditions using FDR 
correction (q < 0.05). However, the same 14 genes appeared differentially expressed 
when comparing either micro-g, low-g level (< 0.1g) or the Moon g-level with 1g control 
conditions. Apart from these 14-shared genes, the number of differentially expressed 
genes was similar in microgravity and the Moon g-level and increased in the intermediate 
g-level (< 0.1g), but it was then progressively reduced as the difference with the Earth 
gravity became smaller. The GO groups were differentially affected at each g-level: light 
and photosynthesis GO under microgravity, genes belonged to general stress, chemical 
and hormone responses under low-g, and a response related to cell wall and membrane 
structure and function under the Moon g-level. 

Discussion: Transcriptional analyses of plants under blue light stimulation suggests that 
root blue-light phototropism may be enough to reduce the gravitational stress response 
caused by the lack of gravitropism in microgravity. Competition among tropisms induces 
an intense perturbation at the micro-g level, which shows an extensive stress response 
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INTRODUcTION 
Long-term exploration of the Solar System will require that 
humans travel within a nearly close life-support systems, 
reducing to the minimum the amount of water, oxygen, and 
nutrients to be transported and optimizing the recycling of 
reusable waste. Such a system is being under development, 
for example, in the Melissa project from the European Space 
Agency (Godia et  al., 2004), but it will require an edible plant 
to be successfully cultivated in the environmental conditions 
expected to be achieved during spaceflight and on arrival 
at nearby objects. Isolation chambers could avoid, at least 
partially, some of the suboptimal environmental conditions 
that can greatly compromise organism adaptation to spaceflight 
(Beckingham, 2010), including temperature, radiation, air, and 
soil composition constrains. However, providing artificial gravity 
will require large diameter centrifuge (Van Loon et al., 2008) or 
even expensive railroad-based platforms that could be subjected 
to other biological limitations.

Gravity influences the direction of plant growth and 
the pattern of development, from seedlings to adult plants 
(Volkmann and Baluska, 2006), and even gravitational effects 
on in vitro plant cell cultures have been reported (Babbick et 
al., 2007; Barjaktarovic et al., 2007). Light is the only tropistic 
response that plays a substantial role in determining overall plant 
architecture with a contribution similar to gravity. Typically, 
plants orient their roots towards the gravity vector (positive 
gravitropic response), and away from blue/white light exposure 
(negative phototropic response). Shoots show the opposite 
orientation, growing away from the gravity vector (negative 
gravitropic response) and towards a blue/white light source 
(positive phototropic response; Kutschera and Briggs, 2016; 
Briggs, 2014; Chen et al., 1999). Any tropistic response is divided 
into three stages; perception, transduction and response. During 
the perception phase, starch-filled statoliths interact with other 
cellular components in the specialized columella cells. Once the 
gravity signal is perceived, a differential auxin gradient develops 
along the root to the root elongation zone (transduction stage), 
where differential plant growth occurs and leads to reorientation 
of the root in the direction of the gravity vector (reviewed in 
Vandenbrink et al., 2014).

Phototropism and gravitropism have been well characterized, 
but little was known about the interaction among tropisms until 
recently. Experiments with plants in microgravity have allowed 
for the study of phototropism in the absence of the influence of 
gravity (Kiss, 2015). Our previous research showed that light 
perception by the roots can have an effect on shoot gravitropism 
in Arabidopsis thaliana (Hopkins and Kiss, 2012). In addition, 
phototropic curvature of roots in response to unilateral blue light 

was tied to the magnitude of the gravity vector (Vandenbrink 
et  al., 2016). This latter study also identified an association 
between red-light-based phototropism in roots and the 
magnitude of the gravity vector. Other experiments involving 
assays of cell growth and cell proliferation have demonstrated 
that there is an imbalance between these key plant development 
functions in microgravity (Matía et al., 2010) in dark-grown 
plants. Recent spaceflight results also demonstrated that red light 
can compensate this effect (Valbuena et al., 2018), particularly 
increasing cell growth (i.e., as assayed by ribosome biosynthesis 
in the nucleolus) that was depleted without light stimulation.

Studies on the response of living organisms to altered gravity 
are greatly facilitated by the development of ground-based 
facilities for simulation of gravity alterations to perform basic 
science as well as to design and prepare for space experiments 
(Herranz et al., 2013). The biological system (cell proliferation 
and growth during early plant development) had previously been 
studied under real microgravity in the ISS (Driss-Ecole et al., 
2008; Matía et al., 2010; Mazars et al., 2014). Similar effects to 
the ones observed during spaceflight (increased cell proliferation 
rates together with decreased cell growth parameters) also were 
observed in root meristem cells in simulated microgravity studies 
(Bouchern-Dubuisson et al., 2016; Valbuena et al., 2018) and in 
two partial-g paradigms. The imbalance of the cell proliferation 
and cell growth rates is also observable at the Moon´s gravity 
level, while less pronounced effects were observed at Mars g level 
(Kamal et al., 2018; Manzano et al., 2018).

In terms of spaceflight transcriptional experiments, a 
number of studies performed in orbit are available in public 
databases (Paul et al., 2012; Paul et al., 2013; Johnson et al., 
2017; Zupanska et al., 2017). In these studies, some Gene 
Ontology categories as responses to biotic or abiotic stress, 
oxidative stress, cell wall reorganization and secondary 
metabolism remodeling commonly show the highest variation 
in gene expression. Transcriptional response in microgravity is 
different in each experiment, due to both the biological material 
(developmental stage or organ analyzed) and the technical/
environmental constraints of each spaceflight experiment [late 
or early access to the sample during spaceflight, the hardware 
used, type of dissection/fixation/preservation see for example 
(Kruse et al., 2017)].

In a previous report, we focused on the effects of microgravity 
in the transcriptional profile of blue-light photostimulated 
seedlings (Vandenbrink et al., 2019). Here, we will describe 
the plant transcriptional response to several partial gravity 
levels in young blue-light photostimulated A. thaliana 
seedlings cultivated into the European Module Cultivation 
System (EMCS) centrifuge on board the International Space 
Station (ISS). The results from plants cultivated on the ISS 

that is progressively attenuated. Our results show a major effect on cell wall/membrane 
remodeling (detected at the interval from the Moon to Mars gravity), which can be 
potentially related to graviresistance mechanisms.

Keywords: Arabidopsis, fractional gravity, microgravity, stress response, RNA-Seq, spaceflight

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1529

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Plant Fractional Gravity RNAseq ProfileHerranz et al.

3

within the SEEDLING GROWTH experiment series illustrate 
the adaptation strategy of plants at the level of the whole 
transcriptome to cope with reduced gravity conditions.

MATeRIALS AND MeThODS

Seedling Growth Spaceflight experiments
Seeds of A. thaliana ecotype Landsberg erecta (Ler) were flown 
to the ISS via the SpaceX Dragon. Spaceflight experiments were 
conducted utilizing the European Modular Cultivation System 
(EMCS) in the Columbus Module of the ISS. The EMCS facility 
provides two centrifuges for creation of simulated gravity vectors, 
as well as atmospheric, temperature and hydration monitoring 
and control (Brinckmann and Schiller, 2002; Brinckmann, 
2005; Kiss et al., 2014). In addition, the EMCS contains a video 
camera for image acquisition as well as monitoring of growth. 
The Seedling Growth series of experiments was conducted in two 
parts. The first set of seedlings were uploaded on SpaceX CRS-2 
(March 2013) followed by return via CRS-3 (May 2014), and the 
second set of seedlings were carried to the ISS on SpaceX CRS-4 
(September 2014) and returned on CRS-5 (February 2015).

Spaceflight Procedures
Experimental containers were uploaded to the ISS and loaded into 
the EMCS as previously described (Kiss et al., 2014; Vandenbrink 
and Kiss, 2016; Vandenbrink et al., 2019). Experimental conditions 
were controlled remotely from the Norwegian User Support 
and Operations Centre (N-USOC; Trondheim, Norway). The 
experiment was initiated via hydration of the seeds. Plants were 
grown under 6 nominal gravity conditions produced by different 
rotational speeds on the EMCS centrifuge, microgravity (stopped 
EMCS centrifuge), 0.1, 0.3, 0.5, 0.8, and 1.0 g. The angular speed to 
generate each fractional gravity level was calculated for the cassette 
in the center of the Experimental Container. In the case of the 1.0 
g cassettes, the value was calculated for the fifth cassette in order 
to prevent values higher than Earth nominal gravity. Seedlings 
were illuminated under white light (30–40 µmol m−2 s−1) for 96 
h, followed by 48 h of unidirectional photostimulation with blue 
light. Light sources were LEDs (Kiss et al., 2014). RNA-Seq analysis 
was only conducted on seedlings exposed to unidirectional blue 
light. After conclusion of the experiments, seedlings were frozen 
in dedicated holders by placing them at -80°C in the General 
Laboratory Active Cryogenic ISS Experiment Refrigerator 
(GLACIER) freezer of the ISS. Upon return of frozen seedlings 
to Earth, samples were transported on dry ice and immediately 
preserved with RNALater for subsequent RNA-Seq analysis.

RNA extraction and Sequencing
RNA was extracted individually for each EC TROPI cassette 
for most of the samples (i.e. from 24 cassettes, 20 samples were 
obtained to collect approximately 10–15 seedlings per extraction). 
A plant specific RNA extraction NucleoSpin kit (MACHEREY-
NAGEL, Catalog # 740949.250) including a DNase treatment was 
used to isolate whole plant mRNA. The quantity and quality of 
the extracted RNA was determined by Nanodrop 2000 (Thermo 

Scientific). Extracted RNA was keep frozen at −80 C until 
shipped on dry ice to the David H. Murdoch Research Institute 
in Kannapolis; North Carolina, USA. During sequencing, twenty 
total RNA samples were used to generate twenty sequencing 
libraries using the Illumina TruSeq RNA Library Preparation 
Kit (Illumina, USA). Samples were individually indexed. The 
samples then were combined at equimolar proportions into three 
pools with 6–7 samples per pool. Each pool was loaded onto a 
single lane of a flow cell. A 125bp paired end sequencing run was 
performed on the Illumina HiSeq2500.

Paired-end 125bp reads were aligned to the Arabidopsis 
TAIR10 genomes using the HISAT2 pipeline on the Clemson 
University Palmetto Cluster (Kim et al., 2015). Fragments 
with a Phred score below 33 were filtered using Trimmomatic 
(Trimmomatic, 2013). HISAT2 (v2.1.0) was used to align 
sequencing reads. Reads were assembled into transcripts using 
StringTie (v1.3.4). Annotation was conducted using TAIR10 
FASTA sequence the TAIR10 genome GTF annotation file 
(https://www.arabidopsis.org). This transcriptional dataset has 
been submitted to the GENELAB database (https://genelab.nasa.
gov) and it will be released with the reference GLDS-251.

Differential Gene expression Analysis
Statistical analyses of differential gene expression was conducted 
utilizing DESeq2 (v1.18.1; Anders and Huber, 2010). A multiple-
test corrected p-value (q-value; Benjamini and Hochberg, 1995) 
of 0.05 was employed. The 20 samples were organized to reduce 
the g-level interval within biological replicates so the following 
groups were established: microgravity (stopped EMCS centrifuge, 
4 replicates), low gravity (0.09 ± 0.02g, 3 replicates), Moon 
gravity (0.18 ± 0.04g, 3 replicates), Mars gravity (0.36 ± 0.02g, 3 
replicates), reduced Earth gravity (0.57 ± 0.05g, 4 replicates) and 
1g control (0.99 ± 0.06g, 3 replicates). Venn Diagrams comparing 
the number of differentially expressed genes (DEG) across 
gravity levels were created using jvenn [http://jvenn.toulouse.
inra.fr/app/index.html (Bardou et al., 2014)] with both q-value 
< 0.05 and p-value < 0.05. Afterwards, gene ontology (GO) 
analysis of specific groups of DEGs was performed using BinGO 
(Maere et al., 2005) with the full list of GO terms (GO_Full) or 
using PANTHER (Mi et al., 2019) with the molecular functions, 
biological process and cellular component GO lists. Subcellular 
localization of DEGs was analyzed using the abundance 
tool (MMAP) of the Subcellular Localization Database for 
Arabidopsis Proteins [SUBA4, (Hooper et al., 2017)].

For a global view of the whole genome transcriptional status 
along g-levels into the SG1 and SG2 experiment (comparisons 
versus 1g), global expression patterns were calculated using the 
Gene Expression Dynamics Inspector (GEDI v2.1) program 
analysis (Eichler et al., 2003). GEDI profile allows the visualization 
of the gene expression across the transcriptome generating a 
mosaic image or dot matrix, consisting of 5 x 9 pixels (average 
of 5–14 probe sets/tile) using a self-organizing map algorithm 
and standard setting of the software (Eichler et al., 2003). 
Analysis was done using the signal log2 ratio of the selected 
probe sets through using the 5,571 probes with any significant 
(p < 0.05) change in expression from more than 21,000 sequences 
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assignated  to annotated genes. The same study was repeated 
adding the false discovery rate correction (FDR, q < 0.05, 861 
genes). Each pixel represents a group or cluster of genes that share 
a similar transcriptional profile in any experimental condition. 
Each pixel has a color which reflects the average expression of 
the genes included in the cluster for each experimental condition 
compared to 1g control in each panel. The GEDI program SOM 
algorithm determines which genes should be assigned to each 
cluster, and then places similar clusters in a nearby area of the 
mosaic, creating an image and allowing global transcriptome 
analysis as a single entity for display in different gravitational 
conditions. For certain pixels of interest, the gene list extracted 
from the clusters was used to find functional links between genes 
using Genemania App embedded into the Cytoscape v3.6.1 
(Shannon et al., 2003) software with default settings.

ReSULTS

Identification of Differentially expressed 
Genes (DeG)
We performed transcriptomic studies with young seedlings of 
A. thaliana that were grown on the ISS at different gravity levels 
depending on the rotational speed of the EMCS centrifuge 
(nominal g levels) and the distance of each cassette to the 
rotation center (Figure 1). Seeds were hydrated to initiate our 
spaceflight experiment as previously described (Kiss, 2015; 
Vandenbrink and Kiss, 2019) showing a positive blue-light 
phototropism in the microgravity samples that it is greatly 
reduced at 0.1g, and effectively negated at 0.3g and higher 
gravity levels (Vandenbrink et al., 2016). Root growth was also 
determined after blue-light stimulation. The results show longer 
roots in microgravity and 1g samples in comparison with 0.1g 
seedlings (Vandenbrink et al., 2016).

Differential expression analysis was conducted via DESeq2 
(Anders and Huber, 2010) among all five reduced gravity 
conditions taking into account the calculated g-level experienced 
in each EC due to the geometry of the EMCS container (Figure 
1B), using Earth’s gravity (1g) as the reference group, extending 
previous results from the microgravity samples (Vandenbrink 
et al., 2019). Initially, a reduced stringency analysis was done 
to isolate all genes identified as differentially expressed with 
a p-value of p < 0.05. Comparison between µg and 1g revealed 
2067 differentially expressed genes, comparisons between 
low gravity (lower than 0.1g) and 1g peaked at 2552 genes, 
comparisons between Moon g-level and 1g reduced to 2088 
genes, comparisons between Mars g-level and 1g revealed 978 
genes, and lastly, comparisons between reduced Earth g-level 
(0.57g) and 1g identified only 411 differentially expressed genes 
(Figure 2A). In addition to an uncorrected p-value of p < 
0.05, a stringent Benjamini and Hochberg (1995) FDR q-value 
<0.05 was used in the identification of differentially expressed 
genes (Figure 2B). Comparison between µg and 1g revealed 
296 differentially expressed genes, while fractional gravity 
comparisons between low gravity (lower than 0.1g) and 1g revealed 
568 genes. Comparisons between Moon g-level and 1g revealed 123 
genes and comparisons between Mars g-level and 1g revealed 19 genes.  

Lastly, comparisons between reduced Earth g-level (0.57g) and 
1g identified only 2 differentially expressed genes. Only one 
DEG appeared in all reduced gravity conditions (AT4G21560, 
VPS28-1 a vacuolar protein sorting homolog gene), another in all 
but reduced Earth g level (AT5G45428). There were 12 common 
DEG in microgravity, low g and Moon g conditions, being most 
of them related with calcium signaling, redox status and stress 
response (Supplementary Table 1).

The ten most significant GO terms (BinGO full GO terms list) 
of the genes differentially expressed (obtained with the adjusted 
q-value in Figure 2B) specifically expressed in µg, low-g, or 
Moon gravity only were identified (Figures 2C–E). Not only 
the number of significantly affected genes, but also the type of 
genes affected, were clearly different with the increasing partial g 
level. In microgravity, we observed an enrichment in GO terms 
related with light and photosynthesis. In low gravity, there was 
a quite global stress effect together with chemical and hormone 
responses. Finally, when plants are grown under the Moon gravity 
level, the more representative enrichment is related to cell wall 
and membrane structure and function related genes. In fact, the 
differential subcellular localization of the DEGs at the Moon g 
level shows a clear enrichment in plastid related genes and other 
cell wall/membrane systems, while the general stress response 
observed at the low g level is characterized by the very large 
unassigned Subcellular compartment group (Supplementary 
Figure 1 and Supplementary Table 2).

Partial Gravity Differential effect
Although the effects of partial-g on gene expression (at the 
levels of the Moon or Mars) appeared limited in the first analysis 
(Figure  2), we then evaluated how the expression recovers to 
normal values from microgravity to 1g condition by using a visual 
tool that creates a mosaic image for each g-level representing the 
gene expression level of similarly behaving DEG (in at least one 
of the conditions, n = 5571, p < 0.05 without FDR correction, 
Figure 3 first row). Except in the case of the low g condition, it 
is clear that the areas in red (up-regulated gene clusters) and the 
areas in blue (down-regulated genes clusters) that appear in the 
microgravity panels became quantitative and qualitatively smaller 
with increasing g-level. In the case of the low g condition, different 
clusters and with greater expression changes appears, suggesting 
an overlapping of two different responses at <0.1g level. The same 
result is shown if we apply the FDR correction (n = 861, p < 0.05 
and q < 0.05 FDR correction, Figure 3 second row).

Additionally, we took advantage of the GEDI self-organizing 
maps to select the list of commonly upregulated genes due to 
reduced gravity from the clusters in the first row of the GEDI 
panels. When the list of obtained genes (Supplementary Table 3) 
is used as a query in GeneMANIA, a tool to create networks from 
gene database content, a putative pathway for gravity response is 
proposed. Several processes related to mitochondria, plastid, cell 
wall and cell membrane processes are clearly affected together 
with 4 proteins (out of 156 annotated in the genome) belonging 
to the F-box/RMI-like/FDB-like domain family (including 
members as TIR-1 auxin signaling gene, cell wall remodeling and 
even cyclins, Figure 4).
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Finally, in an attempt to further dissect the differential response 
to partial gravity, we analyzed separately the up-regulated and 
down-regulated DEGs (Figure 5 and Supplementary Table 2). 
We can observe a general pattern in which the number of DEG 
fades with increasing g level but with a remarkable exception. 
In the list of down-regulated DEGs without FDR correction 
there is an unusually high number of affected genes in both low 
g and Moon g level (not shown). These DEGs are more clearly 
confirmed only in low g after FDR correction, in which more 
than 50% of the non-corrected DEG remains significant after 
the FDR correction. These genes belong to stress related GO 

terms, particularly related with the accessibility to plant nutrients 
(Figure 5).

DIScUSSION

Blue Light Phototropism May Be enough 
to Reduce the Gravitational Stress 
Response on Orbit
Image analysis of seedlings grown during the Seedling 
Growth suite of experiments previously characterized a novel 

FIGURe 1 | Setup of SG1/SG2 experiment on board the International Space Station. (A) Image of an experimental container with 5 seedling cassettes inside the 
European Modular Cultivation System (EMCS) with the direction to the EMCS rotor center included. (B) Calculated g-level in each of the five culture chambers 
depending on the distance to the EMCS centrifuge rotor (note that only samples in the 3 positions in bold were included in this analysis, cassettes at 174 and 
206 mm from EMCS center did not contain wildtype samples) and different EMCS rotational speed (nominal g value). Different background grey tones are used to 
indicate the samples that were used as replicates for low gravity (0.09 ± 0.02g, 3 replicates), Moon gravity (0.18 ± 0.04g, 3 replicates), Mars gravity (0.36 ± 0.02g, 
3 replicates) and reduced Earth gravity (0.57 ± 0.05g, 4 replicates) and 1g control (0.99 ± 0.06g, 3 replicates) in addition to the microgravity samples (stopped 
centrifuge, 4 replicates). (c) Closer view of 6 day-old seedlings growing within a seed cassette at microgravity (CC116), low g (0.07g, CC136), Moon g (0.21g, 
CC156) or 1g control (1.05g, CC175) conditions with blue light stimulation (from the left). Hypocotyls show a clear positive phototropism at any g-level but roots 
only show this tropism at microgravity (arrows). For comparison, seed cassettes at low g (0.07g, CC126) and 1g control (1.05g, CC165) conditions exhibiting root 
positive phototropism to red light stimulation (from the left) are provided (see Vandenbrink et al., 2016 for a detailed phototropism discussion).
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blue-light phototropic response in roots of A. thaliana grown 
in conditions of microgravity (Vandenbrink et al., 2016). This 
relationship was shown to be linearly related to the magnitude 
of the gravity vector for plants exposed to red light, but plants 
exposed to blue light showed rapid attenuation of the response 
in the presence of increasing gravity levels. To determine the 
differential response to reduced gravity and attempt to dissect 
the molecular mechanisms of gravisensing, we performed RNA-
seq analysis to characterize changes in gene expression that 
may be associated with the novel blue phototropic response. 
Interestingly, the effect of blue-light illumination is clearly 
observable in the microgravity samples, with a clear enrichment 
in GO terms related with light perception, photosynthesis and 
biosynthesis of the photosynthetic complexes as previously 
reported (Vandenbrink et al., 2019), but it is barely appearing 
in the GO enrichment analyses that we performed on 
partial gravity samples, even bellow 0.1g (low g conditions). 

Surprisingly, the phototropic response to the blue light seems 
to be enough to cancel the effects of other genes of interest in 
gravitational research (as the ones observed at low g or Moon g 
level) to be not significantly affected in microgravity conditions. 
This result may be complementing previous reports from 
the same Seedling Growth spaceflight experiment but with 
plants exposed to red photostimulation. Fundamental plant 
functions, as cell proliferation and cell growth activity in root 
meristems, known to be affected by microgravity in the absence 
of light (Matía et al., 2010) are balanced just by providing a red 
photostimulation phase (Valbuena et al., 2018). In both red and 
blue photostimulation samples within the Seedling Growth 
experiment, roots are exhibiting a positive phototropism that 
can compensate the gravitropism stimuli role that it is required 
to preserve meristematic competence in orbit, as shown by 
the longer root growth in microgravity and 1g samples in 
comparison with 0.1g seedlings (Vandenbrink et al., 2016).

FIGURe 2 | Differentially expressed genes (DEGs) across the different gravity levels. (A) Venn diagram classifying DEGs using uncorrected p-value (p < 0.05).  
(B) Venn diagram classifying DEGs including an adjusted FDR q-value (p and q < 0.05). (c) Ten most significant gene ontology (BinGO GO Full Enrichment) categories 
from DEG in µg vs. 1g only (FDR q < 0.05). (D) Ten most significant gene ontology (BinGO GO Full Enrichment) categories from DEG in low gravity (circa 0.1g) vs. 1g 
only (FDR q < 0.05). (e) Ten most significant gene ontology (BinGO GO Full Enrichment) categories from DEG in Moon gravity vs. 1g only (FDR q < 0.05).
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Low-g effect: competition Between 
Tropisms or Artifacts of Reduced- 
Gravity Simulation?
The large number of DEGs detected in the low-g conditions (<0.1g) 
is a striking result of this study. The type of transcriptional response 
observed in this group is similar to stress-related responses reported 
in other spaceflight or simulated microgravity datasets (Paul et al., 
2012; Correll et al., 2013; Sugimoto et al., 2014; Ferl et al., 2015; 
Kwon et al., 2015; Johnson et al., 2017; Paul et al., 2017; Shi et al., 
2017; Zupanska et al., 2017; Choi et al., 2019). In this case, there 
is a very clear component of “Response to General Stress” with a 
FDR q value <10−10, without any other GO terms to be similarly 
affected. In contrast the responses at the microgravity level (FDR 
q value <10−6), or at the Moon g-level (FDR q value <10−2) are 
very subtle. We explain these results as being the consequence of 
the combination of two tropistic responses acting with very low 
intensity. It is very likely that the subtle blue phototropism and the 
weak gravitropism signal at approximately 0.09g are competing to 
take the leading role in providing the fundamental cue for driving 
seedling growth and plant development. The result is a stress for 
the plant (blue-LEDS are located laterally while the gravity vector 
is towards the bottom of the cassette), which needs to adapt its 
developmental plan to an environment without the usual tropistic 
cues. The transcriptional adaptation to provide a response to this 

evolutionary novel and challenging environment requires the 
modification of more than five hundred genes, while microgravity 
only requires half of this number.

An alternative explanation to the low-g effects that cannot be 
completely excluded could be put in connection with simulated 
microgravity experiments. Secondary effects of microgravity 
simulation facilities (shear or inertial forces) and even small 
variations in the environmental conditions of experimental 
and control samples may lead to gene expression variations in 
a similar set of genes as those observed in the low-g subgroup 
in this work. Similarly, it is important to take into account 
the existence of hardware effects when growing plants in real 
microgravity (Kiss, 2015), including lack of convection, reduced 
CO2 levels, improper temperature, elevated ethylene, spacecraft 
vibrations, increased radiation exposure, among others.

However, the tropism conflict interpretation introduced early 
on this section seems to have a greater contribution than the 
artifacts of centrifugation in the low-g effects. A hardware side-
effect explanation is less conceivable since the present study was 
conducted utilizing the European Modular Cultivation System, 
which contains an air scrubbing/filtration system designed for 
removing excess ethylene from the seedlings during the growth 
phase (Kiss et al., 2014; Kiss, 2015). Thus, even with proper 
ventilation, a reduction in gene expression of  photosynthetic 

FIGURe 3 | Whole-genome transcriptional status variations along g-levels into the SG1/SG2 experiments (comparisons versus 1g). A 5x9 clustering analysis of 
the differentially expressed genes (in at least one of the partial g levels, using normal p values (first row, n = 5,571 genes) or adjusted q-values (second row, n = 
861 genes) on the transcriptome have been done with the average of each gene expression level within a similarly expressed cluster across the samples. Values 
are shown according to the log2 ratio scales at the border of the figure (from highly overrepresented in red to highly down-represented in blue). The mean value of 
−0.3 or −0.7 indicates an overall repression in gene expression under microgravity. The gene density maps are shown in the middle of the figure for each analysis. 
Calculated g-levels have been obtained by considering replicates the more similar samples across the nominal µg, 0.1g, 0.3g, 0.5g, 0.8g and 1g (precisely, µg (4 
replicates), 0.09 ± 0.02g (3 replicates), Moon level (0.18 ± 0.04g, 3 replicates), Mars-level (0.36 ± 0.02g, 3 replicates), 0.57 ± 0.05g (4 replicates) and control 1g 
(0.99 ± 0.06g, 3 replicates).
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genes was observed in the microgravity samples (Vandenbrink 
et al., 2019). In the case of the samples exposed to centrifugation, 
the ventilation effect should be less important, but the 
centrifugation by itself could lead to additional stress in the 
samples. However, this centrifugation factor is also present in the 
1g control sample, exposed to even higher angular speeds.

Spaceflight experimentation is required to verify that 
simulation strategies on Earth analogues are reliable and worthy. 
The continuous validation of the best simulation strategies will 
optimize and increase our chances of success in future spaceflight 
experiments (Herranz et al., 2013). Additional research in 
simulated low-g conditions on Earth or even in the Moon surface 
will help to extend and validate this research work.

Moon and Mars-g effects and the 
consequences for Manned  
Spaceflight Missions
Cultivating plants as part of life support systems in nearby objects 
of our planet will require us to expose the plants to the partial-g 

interval within the two values we examined here, namely, Moon 
g-level (0.18 ± 0.04g) and Mars gravity (0.36 ± 0.02g). Although 
some of the genes and GO terms observed affected at lower 
g-levels also appeared in these conditions, the existence of the 
gravitropic response, in combination with blue light illumination, 
seems to be enough to restore a nearly normal transcriptional 
state, particularly at the Mars g-level. These results are consistent 
with previous data coming from partial gravity simulation 
paradigms that validated that Arabidopsis developmental plan is 
still affected at the Moon g-level (even more intensely affected 
than in similar simulated microgravity samples) but that the 
“normal” developmental plan is almost completely restored at 
Mars g-levels (Kamal et al., 2018; Manzano et al., 2018).

The identity of some of the GO terms significantly affected 
at the Moon g-level suggest some structural stress at the 
level of the cell wall and membrane systems. This result is 
consistent with other results in spaceflight experiments (Kwon 
et al., 2015; Johnson et al., 2017; Zupanska et al., 2017). This 
effect is progressively weaker from Moon-g (almost similar to 
microgravity) to Mars-g, which shows a less intense response, but 

FIGURe 4 | Fifteen up-regulated genes in reduced gravity conditions can be connected in a gravity-response putative pathway. Large circles shown the genes 
detected in the first row clusters from the previous GEDI analysis (Figure 3) and small circles are candidates to be members of a shared pathway (as detected 
by Genemania App in Cytoscape v3.6.1). While most of the genes have unknown function, color have been used to highlight shared features among their GO 
properties. Solid lines shown related features as detected by Genemania app, dotted lines have been added by manual datamining comparisons. Note that four 
genes expressing F-box/RMI-like proteins (in red) out of 156 genes (related examples are auxin polar transport genes as TIR-1, cell wall remodeling and even 
cyclins) in the genome may be key in the definition of a microgravity specific pathway characterized by the highly interconnected nodes in this graph.
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it is still visible at g-levels as high as 0.57g, when utilizing the less 
stringent analysis (Figure 2A). At these g-levels, gravitropism 
response may be acting and suppressing the recently described 
blue-light root phototropism, (already at the Moon g-level, see 
Figure 1C).

Therefore, we suggest that this transcriptional response 
could be related with the graviresistance signal that the cells 
without professional gravisensing organelles (as the statolith in 
the columella cells of the root) may use to detect g-force (Soga, 
2013). Particularly at the Moon g-level, the very weak gravitropic 
signal may be still in conflict with a graviresistance tension in 
the cell wall and membrane systems (also weak), inducing and 
additional stress that is progressively removed when Mars g-level 
is reached. In that regard, we have found that some of the genes 
changing throughout the series of reduced gravity levels can 
be connected in a pathway in which certain genes may have a 
central position (Figure 4). The most connected nodes in the 
pathway would be the genes involved in the cross-talk between 
the cell-membrane-localized (AT3G44430 and AT2G34840) and 
the F-box/RMI-like/FDB-like domain proteins (AT5G56370 
and AT5G56380) candidate genes. An important caveat to our 

results is that RNA was obtained from whole seedlings, despite 
our assumption that the root is the organ that can discriminate 
better the weak phototropism and gravitropism signals that are 
proposed here to be responsible of the transcriptional variations 
we have shown here.

cONcLUSIONS
The results of this study take advantage of the induction of subtle 
blue-light phototropism in roots in spaceflight to discern the 
transcriptional responses to different tropisms in orbit. Removal 
of the influence of gravity on blue-light-illuminated seedlings 
showed a reduction in gene expression in multiple pathways 
associated with photosynthesis, suggesting shared molecular 
pathways between the two tropistic responses, or a functional 
compensation among them.

It is important to emphasize that the effects shown at 
microgravity here are gradually removed by increasing g-load. 
While the phototropic effect is noted at the microgravity level, 
a general stress response is detected at <0.1g, probably due to 

FIGURe 5 | Biological processes affected by reduced gravity (Panther Enrichment in biological process GO). Total number of up-regulated and down-regulated 
DEG (p < 0.05) are shown for the five reduced gravity conditions vs. 1g control. The ten most significant gene ontology (Panther biological process GO Enrichment) 
categories for the three upregulated and the three downregulated DEGs are shown for the microgravity, low gravity (circa 0.1g) and Moon gravity (0.18g) vs. 1g 
(*** FDR q < 0.001, **FDR q < 0.01, *FDR q > 0.05).
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conflicting stimuli, just at the detection threshold of photo- and 
gravi-sensing mechanisms. Membrane-related gene ontologies 
became the more significant at the Moon g-level, and they 
become progressively weaker at higher g-levels, allowing us 
to discriminate the differential contribution of the classical 
statolith-based gravitropism from other responses based on cell 
tensegrity that may require a higher g-threshold to be fully active 
(Hoson et al., 2005; Hoson and Wakabayashi, 2015). Therefore, 
our results are starting to isolate, at the whole transcriptional 
level, the global effects that are produced by the gravitropism, 
phototropism and graviresistance mechanisms, working at 
different g-level thresholds. Future use of mutant lines will help us 
to confirm and extend these findings, which suggests an intricate 
connection between gravity and light perception in A. thaliana. 
In the long term, these results on the interaction among tropisms 
will be important for the use of plants in bioregenerative support 
systems needed for the human exploration of the Solar System.
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