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Mitochondria produce the majority of ATP required by cells via oxidative phosphorylation. 
Therefore, regulation of mitochondrial quality and quantity is important for maintaining 
cellular activities. Mitophagy, the selective degradation of mitochondria, is thought to 
contribute to control of mitochondrial quality and quantity. In recent years, the molecular 
mechanism of mitophagy has been extensively studied in yeast and mammalian cells. In 
particular, identification of the mitophagy receptor Atg32 has contributed to substantial 
progress in understanding of mitophagy in yeast. This review summarizes the molecular 
mechanism of mitophagy in yeast and compares it to the mechanism of mitophagy in 
mammals. We also discuss the current understanding of mitophagy in plants.
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INTRODUCTION
Autophagy is a catabolic process that degrades cytoplasmic proteins and organelles. Autophagy 
induction in yeast results in formation of the pre-autophagosomal structure or phagophore assembly 
site (PAS), an initial complex of autophagy-related (Atg) proteins, on the vacuole surface. Then, 
double-membranous structures, termed isolation membranes, emerge from the PAS and extend 
to sequester cytoplasmic constituents as cargos to form an autophagosome. The autophagosome 
is then fused to the vacuole, where the cargos are degraded by hydrolytic enzymes for recycling 
(Nakatogawa et al., 2009). Autophagy was initially thought to be a nonselective degradative process of 
cytoplasmic constituents. However, recent studies have revealed that autophagy selectively degrades 
specific cellular components. These include mitochondria, ER, peroxisome, ribosomes, and the 
cytoplasm-to-vacuole (Cvt) complex [aminopeptidase I (Ape1) and α-mannosidase (Ams1)]. These 
selective autophagic processes are called mitophagy, ER-phagy, pexophagy, ribophagy, and the Cvt 
pathway, respectively (Anding and Baehrecke, 2017).

Mitochondria play a pivotal role in cellular activities, including ATP synthesis, calcium buffering, 
and regulation of apoptosis. During the ATP synthesis process, mitochondria also produce reactive 
oxygen species (ROS) (Murphy, 2009). Thus, mitochondria are susceptible to oxidative damage. 
Regulating mitochondria levels to prevent excess ROS production and removing damaged 
mitochondria to maintain mitochondrial quality are important processes. Mitophagy is thought to 
be one of the important mechanisms for maintaining mitochondrial homeostasis.

In recent years, the molecular mechanism of mitophagy has been extensively studied in yeast 
and mammalian cells. Identification of the mitophagy receptor Atg32 has contributed to substantial 
progress in understanding mitophagy in yeast (Kanki et al., 2009b; Okamoto et al., 2009). However, 
the molecular mechanism of mitophagy in yeast is not well conserved in mammalian cells and a 
clear homologue of Atg32 has not been identified. Moreover, there are two types of mitophagy in 
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mammalian cells. One pathway is ubiquitination-mediated and 
the other is mitophagy receptor-mediated (Pickles et al., 2018).

A review of recent progress in the understanding of mitophagy 
in yeast is presented herein (Figure 1). Differences in mitophagy 
between yeast and mammals are considered. Finally, open questions 
concerning the molecular mechanism of mitophagy in yeast and 
the current understanding of mitophagy in plants are discussed.

ATG11 IS AN ADAPTOR PROTeIN FOR 
SeLeCTIve AUTOPHAGY IN YeAST 
SACCHAROMYCES CEREVISIAE
Many of the proteins encoded by autophagy-related (ATG) 
genes that are essential for bulk autophagy are also necessary for 
selective autophagy (see Table 1). In addition, several proteins 
are specifically required for cargo recognition. One example is 
the selective adaptor protein, Atg11. Atg11 was first identified 
as an essential protein for the Cvt pathway, which delivers 
cytosolic proteins (Ape1 and Ams1) to the vacuole through the 
autophagy-like pathway (Kim et al., 2001). Atg11 is also required 
for pexophagy. Atg19 and Atg34 are the adaptor proteins of the 
Cvt pathway and interact with the Cvt complex (Scott et al., 2001; 
Suzuki et al., 2010). Atg11 specifically interacts with Atg19 and 
Atg34, resulting in recruitment of the Cvt complex to the PAS 
for selective autophagy (Shintani et al., 2002; Suzuki et al., 2010). 
Similarly, Atg30 in Pichia pastoris and Atg36 in Saccharomyces 

cerevisiae are receptor proteins that localize on peroxisomes (Farre 
et al., 2008; Motley et al., 2012). After induction of pexophagy, 
Atg11 specifically interacts with Atg30/Atg36 to deliver the 
peroxisome to the PAS for selective pexophagy. Atg11 is also 
required for mitophagy and interacts with the mitophagy receptor 
Atg32. This process is reviewed in the following sections (Kanki 
and Klionsky, 2008; Kanki et al., 2009b; Okamoto et al., 2009).

ATG32 IS A MITOPHAGY ReCePTOR 
IN YeAST
ATG32, the gene that encodes Atg32, was identified by a genome-
wide screen of a mutant yeast that displays defective mitophagy. 
Atg32 is composed of 529 amino acids and has a single 
transmembrane domain. Atg32 localizes to the mitochondrial 
outer membrane and its N- and C-terminus are oriented to the 
cytosol and mitochondrial intermembrane space, respectively. 
Atg32 works as a mitochondrial receptor protein and interacts 
with Atg8 and Atg11 (Kanki et al., 2009b; Okamoto et al., 2009).

Atg8 is conjugated to phosphatidylethanolamine by a ubiquitin-
like conjugation system and localizes on the isolation membrane 
(Ichimura et al., 2000). Most of the adaptor and receptor proteins for 
selective autophagy have a conserved WXXL-like sequence (W/Y-
X-X-L/I/V). This sequence is called the Atg8-family interacting 
motif (AIM) or the LC3-interacting region (LIR) (Noda et al., 2010). 
Atg8 interacts with adaptor or receptor proteins via AIM/LIR to 

FIGURe 1 | Molecular mechanism of mitophagy in yeast. In yeast, the Atg32-mediated mitophagy is regulated at transcriptional and post-translational levels. 
Transcription of ATG32 is suppressed by the Ume6–Sin3–Rpd3 complex, which interacts with the upstream repression sequence (URS) of the ATG32 promoter 
region. Inhibition of TOR releases the Ume6–Sin3–Rpd3 complex and ATG32 can be transcribed. Under normal growing conditions, Ppg1 with the Far complex 
dephosphorylates Atg32 to prevent unrequired mitophagy. Upon mitophagy induction, the function of the Ppg1-Far complex might be suppressed through 
unidentified mechanisms and CK2 phosphorylates Atg32 at Ser114 and Ser119. Then, Atg11 interacts with the phosphorylated Atg32 and recruits mitochondria 
to the PAS. Mitophagy signal also activates the core autophagy machinery, which is recruited to the PAS. At the PAS, Atg32 interacts with Atg8, which anchors on 
the isolation membrane, and the Atg32–Atg8 interaction facilitates the formation of the autophagosome surrounding the mitochondria. Autophagosome carrying 
mitochondria eventually fuse with vacuoles for mitochondrial degradation. CK2, casein kinase 2; PAS, phagophore assembly site or pre-autophagosomal structure; 
TOR, target of rapamycin.
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mediate selective recognition of adaptor- or receptor-localizing 
cargo by the isolation membrane. Atg32 also has an AIM/LIR on its 
N-terminus and interacts with Atg8 (Okamoto et al., 2009; Kondo-
Okamoto et al., 2012). However, Atg32/Atg8 interaction does not 
play much of a role in mitophagy because an Atg32 mutation in 
AIM/LIR only partially suppresses mitophagy  (Kondo-Okamoto 
et  al., 2012). Atg32/Atg8 interaction may work to extend the 
isolation membrane along with the mitochondria surface.

Conversely, Atg32/Atg11 interaction plays a crucial role in 
recognition of mitochondria as cargos. The N-terminus of Atg32 
interacts with Atg11 under mitophagy-inducing conditions (Aoki 
et al., 2011). Atg11 accumulates PAS and tethers the Atg32-
localizing mitochondria to the PAS for selective engulfment by 
the isolation membrane. This Atg32/Atg11 interaction is strictly 
regulated by the phosphorylation of Atg32 (Aoki et al., 2011).

ReGULATION OF MITOPHAGY BY 
eXPReSSION AND PHOSPHORYLATION 
OF ATG32
Mitophagy is efficiently induced when yeast cells are pre-cultured 
in a non-fermentable medium, then shifted to nitrogen starvation 
medium containing a fermentable carbon source (Kissova et al., 
2004). Atg32 expression is inhibited when cultured in fermentable 
medium, but is increased in non-fermentable medium or by nitrogen 
starvation. The conditions that induce Atg32 expression are the 
same as mitophagy-inducing conditions, suggesting that mitophagy 
is regulated in part by expression level of Atg32. Atg32 expression is 
suppressed by the protein kinase TOR and the downstream Ume6–
Sin3–Rpd3 complex at the transcription level. Under mitophagy-
inducing conditions, such as nitrogen starvation, TOR is suppressed. 
The Ume6–Sin3–Rpd3 complex then releases its Atg32 transcription 
repression, resulting in Atg32 expression (Aihara et al., 2014).

Ser-114 and Ser-119 on Atg32 are phosphorylated under 
mitophagy-inducing conditions. This phosphorylation, especially that 
of Ser-114 on Atg32, is essential for mitophagy. A Ser to Ala mutation 
on this residue completely abolishes Atg32/Atg11 interaction and 
mitophagy. Thus, phosphorylation of Ser-114 on Atg32 is an initial 
trigger for mitochondrial degradation (Aoki et al., 2011).

An experiment that screened for protein kinase mutants 
identified casein kinase 2 (CK2) as the kinase that phosphorylates 
Atg32. Inhibiting CK2 activity using CK2 temperature-sensitive 
mutants at a non-permissible temperature or using a CK2 inhibitor 
suppresses Atg32 phosphorylation, Atg32/Atg11 interaction, and 
mitophagy. Although CK2 is a ubiquitous and constitutively 
active kinase, Atg32 is not phosphorylated under mitophagy 
non-inducing conditions (Kanki et al., 2013). This suggests that 
there is a mechanism that suppresses phosphorylation of Atg32 
to prevent unintended loss of mitochondria.

The protein phosphatase 2A (PP2A)-like protein phosphatase 
Ppg1 was recently identified as a negative regulator of Atg32 
phosphorylation (Furukawa et al., 2018). In cells with ppg1 
deletion, Atg32 is constitutively phosphorylated even under 
mitophagy non-inducing conditions, suggesting that Ppg1 is 
involved in dephosphorylation of Atg32. Mitophagy is accelerated 
in ppg1Δ cells under specific mitophagy-inducing conditions, 
further suggesting that Ppg1 contributes to mitophagy inhibition 
via Atg32 dephosphorylation. Generally, the catalytic subunit of 
PP2A interacts with structural and regulatory subunits. Although 
Ppg1 is a PP2A family protein, the structural and regulatory 
subunits of Ppg1 are not well understood. Proteomic analysis 
showed that Ppg1 co-immunoprecipitates with Far8, one of the 
Far complex proteins (Far3, Far7, Far8, Far9, Far10, and Far11). 
Interestingly, cells lacking any of the Far complex components 
(except Far10) show the same phenotypes as ppg1Δ cells, such 
as Atg32 phosphorylation and accelerated mitophagy. These 
results suggest that Ppg1 and the Far complex cooperatively 
dephosphorylate Atg32 and inhibit mitophagy.

Atg32 phosphorylation is presumably regulated by the balance 
of protein kinase CK2 and protein phosphatase Ppg1. Under 
mitophagy non-inducing conditions, the Ppg1/Far complex 
dephosphorylates Atg32 more efficiently than phosphorylation 

TABLe 1 | Requirement of ATG genes for macroautophagy and mitophagy in 
S. cerevisiae.

ATG Genes Macroautophagy Mitophagy

ATG1 ++ ++
ATG2 ++ ++
ATG3 ++ ++
ATG4 ++ ++
ATG5 ++ ++
ATG6 ++ ++
ATG7 ++ ++
ATG8 ++ ++
ATG9 ++ ++
ATG10 ++ ++
ATG11 – ++
ATG12 ++ ++
ATG13 ++ +
ATG14 ++ ++
ATG15 (++) (++)
ATG16 ++ ++
ATG17 ++ +
ATG18 ++ ++
ATG19 − −
ATG20 − +
ATG21 − +/−
ATG22 − −
ATG23 − +
ATG24 − +
ATG26 − −
ATG27 + +
ATG29 ++ +/−
ATG31 ++ +/−
ATG32 − ++
ATG33 − +
ATG34 − NA
ATG36 − −
ATG38 ++ −
ATG39 − −
ATG40 − −
ATG41 + NA
ATG42 + NA

Phenotypes of indicated gene knockout strain: ++, severe defect; +, partial 
defect; −, no defect. ATG15 encodes a lipase; the cargo can be delivered into 
the vacuole, but cannot be degraded. ATG19 and ATG34 encode receptors for 
the Cvt pathway. ATG36 encodes a receptor for pexophagy. ATG39 and ATG40 
encode receptors for ER-phagy. ATG25, ATG28, ATG30, and ATG37 are genes 
related with pexophagy in Pichia pastoris.
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activity of CK2. Conversely, under mitophagy-inducing 
conditions, CK2 more efficiently phosphorylates Atg32 than 
dephosphorylation activity of Ppg1.

ATG32/ATG11 INTeRACTION AND 
AUTOPHAGOSOMe FORMATION ARe 
MINIMUM eveNTS TO COMPLeTe 
MITOPHAGY
Atg32/Atg11 interaction is a crucial step in mitophagy. Furukawa 
et al. (2018) found that an Atg32 mutant lacking the 151–200 
amino acid region (Atg32Δ151–200) constitutively interacted with 
Atg11 without any mitophagy-inducing stimuli. Similarly, in cells 
with ppg1 deletion, Atg32 was constitutively phosphorylated and 
interacted with Atg11 without any mitophagy-inducing stimuli. 
However, the Atg32Δ151–200 expressing cells or ppg1Δ cells did 
not induce mitophagy without mitophagy-inducing stimuli, such as 
nitrogen starvation. Interestingly, mitophagy was induced without 
any stimuli when the constitutively active form of Atg13 (Atg13-
8SA), which activates the autophagy core machinery, was introduced 
(Kamada et al., 2000; Furukawa et al., 2018). These findings suggest 
that Atg32/Atg11 interactions and activation of the autophagy core 
machinery are necessary and sufficient events for mitophagy.

ReGULATORY MeCHANISM OF 
MITOPHAGY IN YeAST
The molecular mechanism of mitophagy in yeast is summarized in 
Figure 1. TOR is inhibited under mitophagy-inducing conditions, 
such as nitrogen starvation. Downstream of TOR inhibition, the 
Ume6–Sin3–Rpd3 complex releases transcription suppression 
of Atg32, resulting in increased Atg32 expression. Atg32 
phosphorylation is regulated by the balance of CK2 and Ppg1/Far 
complex. The Ppg1/Far complex counteracts CK2 and suppresses 
Atg32 phosphorylation under mitophagy non-inducing conditions, 
whereas suppression is released and CK2 phosphorylates Atg32 
under mitophagy-inducing conditions. It is still unclear how CK2 
and Ppg1/Far complex functions are regulated in response to 
nutrient conditions. Atg11 then interacts with the phosphorylated 
Atg32 and recruits Atg32 with mitochondria to the PAS. At the 
PAS, the autophagy core machinery is activated, and the isolation 
membrane is formed downstream of TOR inhibition. Atg32 
interacts with the portion of the isolation membrane where Atg8 
is localized. This allows the isolation membrane to extend with 
the mitochondria surface. Eventually, an autophagosome that 
completely envelopes the mitochondria is formed.

OTHeR FACTORS AFFeCTING MITOPHAGY
ER-mitochondria contact plays an important role in mitophagy. The 
ER-mitochondria encounter structure complex (ERMES complex) 
is a factor that mediates the ER-mitochondria contact site (Lang 
et al., 2015). Loss of ERMES subunits severely suppresses mitophagy 
in yeast (Bockler and Westermann, 2014). Loss of ERMES 
subunits does not affect Atg32/Atg8 interactions, but does affect 

extension of the isolation membrane. These findings suggest that 
ER-mitochondria contact is important for lipid supply to promote 
autophagosome formation during mitophagy. Ubiquitination of 
ERMES subunits may be a regulatory mechanism of mitophagy, 
because ubiquitination of the ERMES subunits, Mdm34 and 
Mdm12, affects mitophagy efficiency (Belgareh-Touze et al., 2017).

Mitochondrial morphology also affects mitophagy efficiency. 
Mitochondria change their size and morphology by mitochondrial 
fission and fusion. Because the size of mitochondria under normal 
culture conditions is typically larger than the autophagosome 
(~500 nm diameter), it has been speculated that mitochondrial 
fission occurs during mitophagy to make mitochondria small 
fragments which can fit into the autophagosome. Several reports 
have suggested that mitochondrial fission factors play an important 
role in mitophagy (Kanki et al., 2009a; Abeliovich et al., 2013; Mao 
et al., 2013). Mao et al. (2013) reported that Atg11 interacts with 
mitochondrial fission factor Dnm1 to induce mitochondrial fission 
for efficient mitophagy. Although mitophagy decreases in cells 
with deletion of mitochondrial fission factors, such as dnm1Δ cells, 
it is still present at substantial levels (Yamashita et al., 2016). Mendl 
et al. (2011) reported that mitochondrial fission factors are not 
required for rapamycin-induced mitophagy. Thus, mitochondrial 
morphology affects the efficiency of mitophagy, but mitochondrial 
fission factors are not absolutely essential for mitophagy.

Treatment with the antioxidant N-acetylcysteine (NAC) 
suppresses mitophagy in yeast cells (Deffieu et al., 2009; Okamoto 
et al., 2009). In part, this is due to reduced Atg32 expression after 
NAC treatment. This suggests that oxidative stress is a factor 
contributing to mitophagy induction.

MITOPHAGY IN MAMMALIAN CeLLS
The molecular mechanism of mitophagy in mammalian cells 
is more complicated than in yeast. There are two independent 
pathways (Pickles et al., 2018). One pathway is ubiquitination-
mediated and the other is mitophagy-receptor-mediated. The 
ubiquitination-mediated pathway may be related to Parkinson's 
disease. PTEN-induced putative kinase 1 (PINK1) and Parkin 
are causative genes of familial Parkinson's disease. Narendra et al. 
(Narendra et al., 2008) first identified that Parkin, an E3 ubiquitin 
ligase, accumulates on depolarized mitochondria and induces 
mitophagy. Subsequent studies revealed that PINK1 is involved in 
this process (Narendra et al., 2010). PINK1 has a mitochondrial 
targeting signal (MTS) on its N-terminus. Following PINK1 
translation, the N-terminus is constitutively transported into 
the mitochondrial inner membrane. In the mitochondrial inner 
membrane, MTS is cleaved and the cleaved PINK1 is released 
into the cytosol and degraded by the proteasome (Jin et al., 
2010; Matsuda et al., 2010; Yamano and Youle, 2013). When 
mitochondria are damaged and depolarized, the N-terminus of 
PINK1 cannot translocate to the mitochondrial inner membrane 
and PINK1 accumulates on the mitochondrial outer membrane. 
The accumulated PINK1 recruits Parkin from the cytoplasm to 
the mitochondria, and the Parkin ubiquitinates the mitochondrial 
outer membrane proteins. Autophagy adaptor proteins such as 
optineurin (OPTN), neighbor of BRCA1 gene 1 (NBR1), TAX1 
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binding protein 1 (TAX1BP1), and p62 have a ubiquitin-binding 
domain and LIR. Thus, these autophagy adaptor proteins connect 
ubiquitinated mitochondrial proteins and isolation membrane 
localizing LC3 for selective engulfment of ubiquitinated 
mitochondria by the autophagosome (Lazarou et al., 2015).

Mitophagy receptor-mediated pathways have some similarities 
between mammals and yeast. Although an obvious homologue 
of yeast Atg32 has not been identified, functional counterparts of 
Atg32 that work as mitophagy receptors have been reported. These 
include FUN14 domain-containing protein 1 (FUNDC1), BCL2/
adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), BNIP3L/
Nix, Bcl2-like 13 (Bcl2L13), and FK506 binding protein 8 (FKBP8) 
(Schweers et al., 2007; Sandoval et al., 2008; Novak et al., 2010; Liu 
et al., 2012; Murakawa et al., 2015; Bhujabal et al., 2017). All of these 
receptors are integrated into the mitochondrial outer membrane 
and have an LIR. The interaction of these receptors and LC3 is 
the mechanism whereby the isolation membrane identifies the 
mitochondria as cargos. However, these receptors were identified 
by different methods. Thus, the importance and distinction of these 
receptors in several situations and tissues has not been well validated.

DISCUSSION
This review summarizes the molecular mechanism of mitophagy in 
yeast (Figure 1). The key molecule of mitophagy is the mitophagy 
receptor protein Atg32. Atg32 phosphorylation is the molecular 
switch that induces mitophagy. Phosphorylated Atg32 specifically 
interacts with the adaptor protein Atg11, which recruits Atg32-
anchoring mitochondria to the PAS. Atg32 phosphorylation is 
mediated by CK2 and is suppressed by the Ppg1/Far complex. 
Future studies should focus on the mechanism that regulates Atg32 
phosphorylation. CK2 is a ubiquitous and constitutively active 
kinase. Thus, there are at least two possibilities for how the Ppg1/
Far complex suppresses Atg32 phosphorylation. One possibility is 
that Ppg1 dephosphorylates Atg32 in opposition to CK2. In this 
case, Ppg1 activity should be inhibited under mitophagy-inducing 
conditions. The second possibility is that the Ppg1/Far complex 
physically interacts with Atg32 to block CK2's access to Atg32. In 
this case, the Ppg1/Far complex should interact with Atg32 under 
mitophagy non-inducing conditions and detach from Atg32 under 
mitophagy-inducing conditions. To date, there is no experimental 
evidence for direct dephosphorylation of Atg32 by Ppg1 or the 
interaction of Atg32 and the Ppg1/Far complex. These points need 
to be investigated by future research.

Another major question remains. In mammalian cells, 
ubiquitination-mediated mitophagy clearly targets and degrades 
damaged mitochondria. However, it is not clear whether 
mitophagy selectively degrades damaged or dysfunctional 
mitochondria in yeast. It is important to understand whether 
mitophagy in yeast contributes to mitochondrial quantity control 
only, or to quality and quantity control. Because mitophagy is 
completely inhibited in cells with ATG32 deletion, mitochondria 
in which phosphorylated Atg32 accumulates should be selected 
as a cargo. Thus, further understanding of the mechanism of 
Atg32 phosphorylation and accumulation on specific parts of 
mitochondrion is necessary to answer this question.

It has been shown that mitophagy also occurs in plants and 
plays roles in development, stress response, senescence, and 
programmed cell death (Broda et al., 2018). The link between 
mitophagy and senescence is best described, but its mechanistic 
insight is poorly understood. Although core ATG proteins are 
conserved well in plants and they are required for the senescence-
induced breakdown of mitochondria-resident proteins and 
mitochondrial vesicles (Li et al., 2014; Li and Vierstra, 2014), 
functional counterparts of mitophagy receptors and PINK1/
Parkin mentioned in this review have not been identified in 
plants. A bioinformatic analysis revealed that Arabidopsis has 
a number of mitochondrial membrane proteins containing 
ATG8-interacting motifs (Xie et al., 2016), which might act as 
mitophagy receptors (Broda et al., 2018). To identify mitophagy 
receptors and reveal regulatory mechanisms of mitophagy in 
plants, development of research tools such as mitophagy-specific 
reporters is needed and the lessons from mitophagy/autophagy 
studies in yeast provide useful insights to those in plants.
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