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Soybean is a major source of protein for human consumption and animal feed. Releasing 
new cultivars with high nutritional value is one of the major goals in soybean breeding. 
To achieve this goal, genome-wide association studies of seed amino acid contents 
were conducted based on 249 soybean accessions from China, US, Japan, and South 
Korea. The accessions were evaluated for 15 amino acids and genotyped by sequencing. 
Significant genetic variation was observed for amino acids among the accessions. Among 
the 231 single nucleotide polymorphisms (SNPs) significantly associated with variations in 
amino acid contents, fifteen SNPs localized near 14 candidate genes involving in amino 
acid metabolism. The amino acids were classified into two groups with five in one group 
and seven amino acids in the other. Correlation coefficients among the amino acids within 
each group were high and positive, but the correlation coefficients of amino acids between 
the two groups were negative. Twenty-five SNP markers associated with multiple amino 
acids can be used to simultaneously improve multi-amino acid concentration in soybean. 
Genomic selection analysis of amino acid concentration showed that selection efficiency 
of amino acids based on the markers significantly associated with all 15 amino acids was 
higher than that based on random markers or markers only associated with individual 
amino acid. The identified markers could facilitate selection of soybean varieties with 
improved seed quality.

Keywords: Glycine max, genome-wide association study, genomic selection, genotyping by sequencing, amino 
acid concentration, single nucleotide polymorphism

INTRODUCTION
Soybean [Glycine max (L.) Merr.] is a major source of protein for humans and livestock in the 
world. For the past several decades, soybean meal has been the leading protein feed source for 

Abbreviations: SNP Single nucleotide polymorphism; GWAS Genome-wide association study; AA Amino acids; Ala Alanine; 
Arg Arginine; Asp Aspartic acid; Glu Glutamic acid; Gly Glycine;  His Histidine; Ile Isoleucine; Leu Leucine; Lys Lysine; Phe 
Phenylalanine; Pro Proline;  Ser Serine; Thr Threonine; Tyr Tyrosine; Val Valine; SSR Simple sequence repeat; MAS Marker-
assisted selection.
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the animal and poultry production operations because of its 
high concentration of protein. Poultry and livestock industries 
use about 68 and 77% of the soybean meal consumed in the 
European Union and United States, respectively1,2. A major 
function of proteins in nutrition is to supply adequate amounts 
of required amino acids (Friedman and Brandon, 2001). Thus, 
genetic improvement of amino acid composition and balance 
is an important goal in soybean breeding. Developing new 
molecular markers for marker assisted selection (MAS) and 
genomic selection (GS) of amino acid composition in soybean 
will help to achieve this goal.

Quantitative trait loci (QTL) mapping of amino acids have 
been reported in soybean. Panthee et al. (2006) identified 32 
simple sequence repeat (SSR) markers associated with 16 amino 
acids in soybean seeds based on 101 F6-derived recombinant 
inbred lines (RIL) from a cross of N87-984-16 × TN93-99. Fallen 
et al. (2013) reported ten QTLs associated with 17 amino acids 
and three genomic regions on chromosome 13 (4.89, 21.51, 40.69 
cM) controlled multiple amino acids in 282 F5:9 RILs derived 
from a cross of Essex × Williams 82. As a sole dietary source 
of protein, soybean is deficient in lysine (Lys), threonine (Thr), 
methionine (Met), and cysteine (Cys) for poultry and swine. 
Warrington et al. (2015) conducted QTL analysis for the four 
amino acids in the Benning × Danbaekkong soybean population 
with 98 SSRs and 323 single nucleotide polymorphism (SNP) 
markers, and detected two QTLs on chr 8 and 20 for Lys; three 
on chr 9, 17, and 20 for Thr; four on Chr 6, 9, 10, and 20 for Met; 
and one on chr 10 for Cys (Van Warrington, 2011; Warrington 
et al., 2015). Khandaker et al. (2015) analyzed MD96-5722” × 
“Spencer” RIL population and identified 13 QTLs associated 
with amino acids. However, reports of genetic diversity of amino 
acids and mapping of QTLs controlling amino acid in soybean 
germplasm are limited.

Because SSR, SNPs, and indels are abundant in plants and 
can be assayed with high-throughput technology, the markers 
have been widely used for genetic linkage mapping, association 
studies, diversity analysis, and tagging of genes controlling 
important traits (Liang et al., 2010; Lehne et al., 2011; Li et al., 
2014; Shi et al., 2016; Taranto et al., 2016; Zatybekov et al., 2017; 
Qin et al., 2017a; Qin et al., 2017b; Chang et al., 2018). Genotyping 
by sequencing (GBS) takes advantage of the next-generation 
sequencing platforms and utilizes a highly-multiplexed system to 
assay DNA variants from reduced representation DNA libraries 
of plant materials (Elshire et al., 2011; Sonah et al., 2013). As 
a cost-effective technique, GBS has been successfully used in 
implementing genome wide association study (GWAS), genomic 
diversity study, genetic linkage analysis, molecular marker 
discovery and GS in plant breeding programs (Heslot et al., 2013; 
He et al., 2014; Qin et al., 2016; Shi et al., 2017).

With the decreased genotyping cost and improved statistical 
methods, GWAS and GS offer new approaches for genetic 
improvement of complex traits in crop species (Bernardo and Yu, 
2007; Li et al., 2013; Morris et al., 2013; Yano et al., 2016; Zhang 
et al., 2017). GWAS is one of the powerful tools to overcome 

1http://www.soystats.com, accessed on August 10, 2019
2https://www.fediol.eu, accessed on August 10, 2019

limitations in traditional QTL mapping (Luo et al., 2019). To date, 
it has been used to identify molecular markers for a broad range 
of complex traits in different plant species including Arabidopsis 
(Angelovici et al., 2017), wheat (Peng et  al., 2018), maize (Li 
et  al., 2013; Deng et al., 2017), rice (Huang et al., 2010; Yano 
et al., 2016), soybean (Fang et al., 2017); sorghum (Morris et al., 
2013). In soybean research, GWAS were used in agronomic traits 
(Zatybekov et al., 2017; Chang et al., 2018), seed quality (Zhang 
et al., 2018), seed traits (Xia et al., 2018), phosphorus efficiency 
(Lü et al., 2018), disease resistance (Qin et al., 2017b; Hanson 
et al., 2018) etc. As soybean is globally cultivated primarily for 
its protein and oil, and soybean protein is a complete protein 
as it contains all the essential amino acid that are required for 
human health. Numerous studies have reported on the QTL 
mapping and GWAS for protein (Li et al., 2018; Li et al., 2019). 
GS is to select desired individual within a population based on 
genomic estimated breeding values (GEBVs) (Hayes et al., 2009), 
GS has been shown more efficient than the traditional MAS for 
the improvement of traits controlled by QTL with minor effects 
(Bernardo and Yu, 2007; Heffner et al., 2009; Shikha et al., 2017; 
Zhang et al., 2017). GS has been applied to various agronomic 
traits and disease resistance in maize (Bernardo, 1996; Piepho, 
2009; Albrecht et al., 2011; Technow et al., 2013; Shikha et al., 
2017), rice (Onogi et al., 2015; Spindel et al., 2015; Duhnen et al., 
2017), soybean (Jarquin et al., 2016; Xavier et al., 2016), and 
wheat (Heffner et al., 2011; Rutkoski et al., 2011; Poland et al., 
2012; Battenfield et al., 2016), etc. Previous studies reported the 
efficiency of GS prediction by cross-validation approach (Dawson 
et al., 2013; Michel et al., 2016) and suggested that the size of 
the training population was critical (Xavier et al., 2016). Zhang 
et al. (2018) conducted GWAS for seed composition, including 
protein, oil, fatty acids, and amino acids, using 313 diverse 
soybean germplasm accessions genotyped with a high-density 
SNP array of the Illumina Infinium SoySNP50K BeadChip (Song 
et al., 2013). After filtered, a total of 31,850 SNPs with minor allele 
frequency (MAF) ≥5% were used for GWAS in their analysis and 
87 chromosomal regions were identified to be associated with 
seed composition, explaining 8–89% of genetic variances.

However, little GWAS and no GS for amino acid concentrations 
in soybean has been reported so far. The main objectives of this 
study were to (1) evaluate amino acid compositions in soybean 
germplasm from China, Korea, Japan and U.S. (2) identify SNP 
markers associated with amino acid concentrations of soybean 
via GWAS, and (3) explore efficiency of GS for amino acids in 
soybean breeding. The newly identified markers are anticipated 
to facilitate MAS and GS of nutritional traits in soybean, and the 
soybean accessions with high concentrations of amino acids will 
be potential parents for soybean breeding.

MATeRIAlS AND MeThODS

Panel for Genome-Wide Association 
Analysis and Genomic Selection
The panel with a total of 249 soybean accessions was chosen 
for this study (Supplementary Table 1). These accessions were 
collected from China, United States, South Korea, and Japan 

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1445

http://www.soystats.com
https://www.fediol.eu
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


GWAS and GS for Soybean SeedsQin et al.

3

with 169 (67.9% out of 249), 75 (30.1%), 3 (1.2%), and 2 (0.8%) 
accessions, respectively (Supplementary Table 1).

DNA extraction, GBS, and SNP Discovery
Genomic DNA was extracted from freeze-dried fresh leaves of 
soybean plants using the CTAB (hexadecyltrimethyl ammonium 
bromide) method (Kisha et al., 1997). DNA library was prepared 
using the fragment digested by restriction enzyme ApeKI 
following the GBS protocol described by Elshire et al. (2011) and 
DNA sequencing was performed using GBS method (Elshire 
et al., 2011; Sonah et al., 2013). The 90 bp pair-end sequencing 
was obtained from each soybean genotype at the Institute of 
Genetics and Developmental Biology, Chinese Academy of 
Sciences, Beijing, China. The GBS dataset contained 3.26 M 
short-reads or 283.74 Mbp of sequence for each accession. The 
short reads were aligned to soybean whole genome sequence 
(Wm82.a1.v1)3,4 using SOAPaligner/soap2 and SOAPsnp v. 1.05 
was used for SNP calling (Li et al., 2009; Li, 2011).

Approximately a half million SNPs were discovered from the 
249 soybean germplasm accessions. SNPs were eliminated if 
MAF was less than 5%, or missing and ambiguous alleles larger 
than 15%. After filtering, 23,279 SNPs remained for genetic 
diversity and association analyses.

Amino Acid Content Determination and 
Phenotypic Data Analysis
Soybean germplasm was grown at three locations, Shijiazhuang 
(114°83′E, 38°03′N), Cangzhou (116°7′E, 38°03′N), and Handan 
(114°48′E, 36°62′N) in Hebei province in a randomized complete 
block design with three replications in June 2012. Each plot 
consisted of six rows with a row length of three meters and raw 
space of 50 cm in all trials. The density was 225,000 plants per 
ha. The soil at Shijiazhuang was cinnamon. The organic matter, 
available P and available K concentration were 1.74% 29.9 mg/kg, 
94.3 mg/kg, respectively. The soil at Cangzhou was light loamy. 
The organic matter, available P and available K concentration 
were 1.0–1.2%, 15 mg/kg, and 100 mg/kg, respectively. The soil 
at Handan was fluviatile loamy and the organic matter, available 
P and available K concentration were 1.6%, 19.3 mg/kg, 156.2 
mg/kg, respectively. The plots were irrigated once at seed-filling 
stage. Plants were harvested after 95% leaves had fallen off. Ten 
plants were randomly chosen from the middle of a plot for seed 
traits analysis.

A total of 15 amino acids, Ala, Arg, Asp, Glu, Gly, His, Ile, 
Leu, Lys, Phe, Pro, Ser, Thr, Tyr, and Val in soybean seeds were 
measured by Biochrom 30 amino acid analyzer (Biochrom Ltd, 
Cambridge, UK) using the acid hydrolysis method (Davies and 
Thomas, 1973; Tsugita and Scheffler, 1982). Analysis was carried 
out by ion exchange chromatography under the experimental 
conditions recommended for protein hydrolysates. Each sample 
containing 0.1 g soybean seed powder was acid hydrolyzed with 
10 ml of 6 N HCl at 110°C for 22 h in a 15 ml vacuum-sealed glass 
tube. The top hydrolysate in the tube was filtered into another 50 

3https://www.soybase.org/GlycineBlastPages/archives/Gma1.01.20140304.fasta.zip
4https://www.soybase.org/GlycineBlastPages/index.php?db_select=Gma1.01

ml tube, and water was added to the tube. A total of 1 ml liquid 
from the 50 ml tube was transferred to a 1.5 ml tube and dried at 
55°C, re-dissolved with 1 ml loading buffer and measured in the 
analyzer. The amino acid composition was calculated from the 
standard area obtained from the integrator and expressed as a 
percentage of the total weight.

Statistical analyses of the 15 amino acids were performed by 
JMP Genomics 7 (SAS Institute, Cary, NC, USA)5 (Sall et al., 
2012). The mean, range, standard deviation (SD), standard error 
(SE) and coefficient of variation (CV) were estimated for each 
amino acid concentration using ‘Tabulate’; the distributions of 
amino acid concentrations were drawn using ‘Distribution’ in 
JMP Genomics 7.

Population Structure, Genetic Diversity, 
and Association Analysis
STRUCTURE, a program that uses Bayesian method to analyze 
multi-loci data in population genetics (Pritchard et al., 2000)6, 
was used to analyze population structure and to create Q-matrix 
for association analysis. We used the default parameters of 
STRUCTURE 2.0 software: Admixture Model; Allele Frequencies 
Correlated; and Compute Probability of the Data (Kaeuffer et al., 
2007). The number of subpopulation (K) was assumed to be 
between 1 and 12. Thus, each K was run 10 times, the Markov Chain 
Monte Carlo (MCMC) length of the burn-in period was 20,000 and 
the number of MCMC iterations after the burn-in was 20,000. For 
each simulated K, the statistical value delta K was calculated using 
the formula described by Evanno et al. (2005). The optimal K was 
determined using STRUCTURE HARVESTER7 (Earl, 2012). After 
optimal K was determined, a Q-matrix was obtained and used in 
TASSEL 5 (Bradbury et  al., 2007) for association analysis. Each 
soybean accession was then assigned to a cluster (Q) based on the 
probability that the genotype belonged to that cluster. The cut-off 
probability for the assignment to a cluster was 0.5. Based on the 
optimum K, a bar plot with ‘Sort by Q’ was obtained to visualize the 
population structure among the 249 accessions. Genetic diversity 
was also assessed and the phylogenic tree was drawn using MEGA 
6 (Tamura et al., 2013) based on the Maximum Likelihood (ML) 
tree method (Shi et al., 2016) with the following parameters. Test 
of phylogeny: bootstrap method with No. of Bootstrap replications 
500; Model/Method: General Time Reversible model, Rates among 
Sites: Gamma distributed with Invariant sites (G/I), Number of 
Discrete Gamma Categories: 6, Gaps/Missing Data Treatment: 
Use all sites, ML Heuristic Method: Subtree-Pruning-Regrafting-
Ex-tensive (SPR level 5), Initial Tree for ML: Make initial tree 
automatically (Neighbor Joining), and Branch Swap Filter: 
Moderate. The population structure and the cluster information 
were imported to MEGA 6 for combined analysis of genetic 
diversity. For sub-tree of each Q (cluster), the shape of ‘Node/
Subtree Marker’ and the ‘Branch Line’ was drawn using the same 
color scheme of the STRUCTURE analysis.

5https://www.jmp.com/en_us/software/genomics-data-analysis-software.html; 
accessed on August 10, 2019
6https://web.stanford.edu/group/pritchardlab/structure_software/release_
versions/v2.3.4/html/structure.html, accessed on August 10, 2019
7http://taylor0.biology.ucla.edu/structureHarvester/
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Association mapping for the 15 amino acids was conducted 
separately based on the mixed linear model (MLM-Q+K) 
in TASSEL 58 (Bradbury et al., 2007) The SNP markers were 
considered significantly associated with amino acids if logarithm 
of the odds (LOD) value ≥3.0 based on MLM-Q+K models.

linkage Disequilibrium Analysis and 
SNP-Based haplotype Blocks
TASSEL 5.0 (Bradbury et al., 2007) was used to calculate the 
linkage disequilibrium (LD) (r2) for all pairwise loci within a 
window of 1MB of each chromosome. Haplotype blocks (HAP) 
were constructed in Haploview (Barrett et al., 2004) with a cutoff 
of 1% (Contreras-Soto et al., 2017). The LD (r2) for all marker 
pairs was performed using the R script LDit9.

Candidate Gene Selection
Two databases including the annotations for genes at Soybase 
at https://www.soybase.org/dlpages/ 10 and the plant metabolic 
network (PMN) database11, were used for searching candidate 
genes related to amino acids in soybean.

Currently, three Williams 82 genome sequence assemblies 
are available at Soybase (Glyma1.1, and Glyma 2.0)10. However, 
we used Glyma1.1 as the reference because the SNP data were 
provided by Institute of Genetics and Developmental Biology, 
Chinese Academy of Sciences, at the time, Glyma1.1 was the 
best assembly available. We downloaded gene annotation of 
Glyma1.1 from Soybase and the corresponding gene positions 
in the Glyma 2.0 were obtained from https://www.soybase.
org/correspondence/index.php12. For each SNP significantly 
associated with amino acids, we searched candidate genes within 
10 kb of the SNP position. We also downloaded gene annotation 
from PMN for candidate gene discovery, because the metabolic 
pathway in PMN is updated with newer version of the genome 
(Phytozome v12: Gmax_275_Wm82.a2.v1.protein.fa).

Genomic Selection
Method 1: Ridge Regression Best Linear 
Unbiased Prediction
Ridge regression best linear unbiased prediction (RR-BLUP) was 
used to predict genomic estimated breeding value (GEBV) in GS 
and performed in the rrBLUP package (Endelman, 2011) with 
the R software Version 3.5.0 (Thuiller et al., 2009). The rr-BLUP 
is an effective and accurate prediction method as demonstrated 
in a wide range of traits and crops (Heslot et al., 2012; Jarquín 
et al., 2014; Lipka et al., 2014; Zhang et al., 2016).

We used 4:1 size ratio of training set and validation set 
randomly selected from the 249 accessions, which is a four-
fold cross-validation, and repeated 100 times. Each training 
population subset consisting of 199 accessions was randomly 
selected from the association panel, and the remaining 50 

8http://www.maizegenetics.net/tassel
9https://github.com/rossibarra/r_buffet/blob/master/LDit.r, verified on May 10, 2018
10https://www.soybase.org/dlpages/; accessed on August 10, 2019
11https://www.plantcyc.org/; accessed on August 10, 2019
12https://www.soybase.org/correspondence/index.php12, accessed on August 10, 2019

accessions as the validation set (Resende et al., 2012; Shikha 
et al., 2017).

Two sets of SNPs were used to predict GEBV for each amino 
acid concentration in each accession: (1) all 23,279 high quality 
SNPs from GBS, and (2) all 231 SNP markers associated with 
15 amino acid concentrations with LOD ≥3.0 from GWAS. In 
addition, we predicted GEBV for each amino acid concentration 
based on the SNP markers associated with the amino acid.

The prediction accuracy was estimated using the average 
Pearson’s correlation coefficient (r) between the GEBVs and 
observed values for each amino acid concentration in the validation 
set (Zhang et al., 2010; Resende et al., 2012; Shikha et al., 2017). 
The training and validation sets were randomly created 100 times 
and the r value was estimated each time. The average r value was 
calculated for each amino acid. The r value indicates the prediction 
accuracy and the selection efficiency of GS.

Method 2: Genomic Best Linear Unbiased Prediction
GS was also performed with the genomic best linear unbiased 
prediction (gBLUP) and the method was extended to compressed 
best linear unbiased prediction (cBLUP) by using the Compressed 
Mixed Linear Model (CMLM) approach in GAPIT (Lipka et al., 
2012; Tang et al., 2016; http://www.zzlab.net/GAPIT/gapit_help_
document.pdf). In order to conduct a four-fold cross-validation 
for estimating prediction efficiency, we randomly selected 199 
accessions as the training set and the remaining 50 accessions as 
the validation set to predict GEBV for each accession. GEBV was 
calculated using the cBLUP in GAPIT using the SNP markers 
which were associated with the 15 amino acid concentrations with 
LOD  ≥3.0 from GWAS. The Pearson’s correlation coefficient (r) 
between GEBV and observed value of the amino acid concentrations 
in both training and validation sets were calculated based on the 249 
accessions. A total of 100 replications were used to calculate the r 
values and the average r value for each amino acid was used as the 
indicator of prediction accuracy.

ReSUlTS

Phenotypic Variation and Association of 
Amino Acids in Soybean Seeds
The concentration of 15 amino acids, Ala, Arg, Asp, Glu, Gly, His, 
Ile, Leu, Lys, Phe, Pro, Ser, Thr, Tyr, and Val varied widely among 
the 249 accessions (Supplementary Table 2). Concentration 
distribution of all amino acids except for Val, Ile and Gly in 
the accessions was near normal, indicating the amino acids are 
complex traits (Supplementary Figure 1). Glu and Asp were the 
main components of soybean seeds, which consisted of 20.1% and 
13.3% of the total 15 amino acids, respectively. Glu had the highest 
concentration (74.42 ppm) among the 15 amino acids, followed 
by Asp (49.15 ppm). Two to five times of difference were observed 
between the accessions with the lowest and the highest concentration 
of Arg, Gly, Ile, Leu, Pro, Thr, and Val (Supplementary Table 2). 
The large variations of the amino acids were also indicated by the 
high CV values (Supplementary Table 2).

Most of the correlation coefficients among the 15 amino acids 
were greater than the threshold of 0.124 at P = 0.05 significant level 
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(Table 1). Significant and negative coefficients were also observed 
between Asp and Ile, Asp and Val, Ile and Gly, Ile and Ser, etc. 
(Table 1). Based on the correlation coefficient values, the 15 amino 
acids except for Arg, His, and Pro could be divided into two groups 
(Table 1). Group one consisted of five amino acids: Ala, Asp, Glu, 
Gly and Ser, their pairwise correlation coefficients were greater than 
0.75 except for the pair between Glu and Gly (r = 0.6) (Table 1). 
Group two contained seven amino acids: Ile, Leu, Lys, Phe, Thr, Tye, 
and Val with r values greater than 0.48 for all pairs. However, most 
correlation coefficients of amino acids between the two groups 
were negative (Table 1). Since the content of amino acids within 
each group were all significantly and highly correlated, they could 
have practical application in breeding program, e.g. breeders don’t 
need to improve amino acid individually, they can simultaneously 
improve multiple amino acids within the same group.

Based on 15 amino acid concentrations, we identified three 
accessions with the highest concentrations in each of the 15 amino 
acid concentrations. In addition, we ordered the 249 soybean 
accessions based on the concentration of each amino acid, and chosen 
20 soybean accessions with at least one amino acid concentration 
topping three among the 249 soybean accessions. These 20 soybean 
accessions, Zhonghuang 10, Zhongzuo 983, 8588, Jian 31, Jidou 
12, Zhengzhou 135, Wandou 15, Nanguanxiaopiqing, Lu 93748-1, 
Dabaipi, Bendidahuangdou, Jidou 12-3l, Lvrouheipidou, Xinliuqing, 
PI 547850, Zhongdou 33, Zheng 8516, Yudou 12, Huaheihu, and Lv 
96150 would be good amino acid resources for improving amino 
acids concentration in soybean breeding programs (Supplementary 
Table 2 and Figure 1).

Association Mapping and SNP Marker 
Identification
The population structure of the 249 soybean accessions was 
initially inferred using STRUCTURE 2.3.4 (Pritchard et al., 2000) 
and the peak of delta K was observed at K = 6, indicating the 
presence of six sub-populations (clusters, Q1-Q6) (Figure 2A). 

In total, 51 of the 249 accessions were assigned to Q1 sub-
population with 50 accessions from China; 65 assigned to Q2 with 
42 from U.S., 21 from China and two from Korea; 55 assigned 
to Q3 with 54 cultivars from China; 42 assigned to Q4 with 27 
cultivars from China and 12 accessions from U.S.; 21 assigned 
to Q5 with 16 from U.S.; and 15 to Q6 with all 15 from China 
(Figure 2B, and Supplementary Table 1). Phylogenetic analysis 
of the 249 soybean accessions using MEGA 6 also showed that 
the clustering of accessions was consistent with that inferred by 
STRUCTURE (Figure 2C).

A total of 318 SNP markers consisted of 231 SNPs were 
associated with the 15 individual amino acid at LOD ≥3 
(Supplementary Table 3 and Supplementary Figure 2). 
Because some SNPs were associated with two or more amino 
acids as pleiotropic association, the number of SNPs was only 
231 (Table  2). Of the 318 SNPs, 11 were associated with Ala, 
29 with Arg, 9 with Asp, 34 with Glu, 29 with Gly, 19 with His, 
51 with Ile (Figure 3), 20 with Leu, 14 with Lys, 9 with Phe, 24 
with Pro, 11 with Ser, 21 with Thr, 13 with Tyr, and 24 with Val 
(Supplementary Table 3 and Supplementary Figure 3).

The total number of haplotype blocks was 3,458 based on 
23,279 SNPs, the 231 SNPs were positioned in 85 of these 
haplotype blocks (Supplementary Table 3). Many haplotype 
blocks contained more than two SNP markers. For example, 
Gm12_4525341 and Gm12_4525326 were in the same 
haplotype block and associated with Arg; Gm06_289575, 
Gm06_399885, and Gm06_582930 were in the same haplotype 
block on Chr 6 and were associated with Gly (Supplementary 
Table 3).

The number of the haplotype blocks varied among 
chromosomes, e.g. 12 of the 85 haplotype blocks were on Chr 16; 
11 haplotype blocks on Chr 18; 1 on Chrs 6 and 9. Twenty of the 
85 haplotype blocks had significant association with more than 
one amino acids, e.g. Gm20_42531505 on the Chr. 20_Block 2 
was significantly associated with Thr, Gly, Ile, Tyr, Leu, Phe; Two 
SNP markers, Gm04_43207248 and Gm04_43207187 in the Chr. 

TABle 1 | Correlation coefficients among 15 amino acid concentrations in soybean seeds.

Group 1 Group 2
Arg his Pro

Ala Asp Glu Gly Ser Ile leu lys Phe Thr Tyr Val

Group 1 Ala 1
Asp 0.849* 1
Glu 0.752* 0.763 1
Gly 0.785 0.846 0.600 1
Ser 0.797 0.927 0.786 0.759 1

Group 2 Ile -0.392 -0.627 -0.262 -0.713 -0.627 1
Leu 0.015 -0.236 0.114 -0.350 -0.194 0.776 1
Lys 0.117 -0.020 0.219 -0.229 -0.018 0.651 0.682 1
Phe 0.072 -0.093 0.190 -0.336 -0.099 0.754 0.795 0.891 1
Thr -0.102 -0.233 0.146 -0.531 -0.213 0.790 0.702 0.762 0.827 1
Tyr 0.268 0.086 0.324 -0.154 0.117 0.573 0.806 0.795 0.830 0.701 1
Val -0.274 -0.491 -0.191 -0.557 -0.496 0.850 0.626 0.628 0.724 0.615 0.481 1
Arg 0.406 0.371 0.445 0.157 0.274 0.272 0.422 0.617 0.678 0.446 0.535 0.325 1
His 0.604 0.556 0.547 0.477 0.458 0.080 0.313 0.619 0.546 0.266 0.529 0.217 0.793 1
Pro 0.337 0.203 0.398 0.004 0.160 0.304 0.389 0.542 0.563 0.581 0.529 0.182 0.517 0.438 1

*The significance threshold based on 249 samples: r = 0.124 at P = 0.05; r = 0.162 at P = 0.01; and r = 0.206 at P = 0.001. P < 0.00001 for those r values bolded.
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4_Block 3, were significantly associated with Ile, Phe, Gly and 
Thr; and two markers, Gm15_42452169 and Gm15_42452285 
in the Chr. 15_Block 2 associated with Val, Phe and Lys 
(Supplementary Table 4).

Based on phenotypic patterns of the amino acid concentration 
among accessions, the 15 amino acids could be divided into two 
groups which were showed in phenotypic variance section. SNP 
markers associated with amino acids in each group were also 
found. Twenty-five SNP markers were associated with five amino 

acids, Ala, Asp, Glu, Gly, and Ser in group one (Table 3), and 28 
SNP markers with seven amino acids, Ile, Leu, Lys, Phe, Thr, Tyr, 
and Val in group two (Table 4). The SNP markers in each group 
can be used to simultaneously select multiple amino acids within 
the group. Such as Gm10_48103776 was associated with five 
amino acids, Ala, Asp, Glu, Gly, and Ser in group one with LOD 
values of 2.93, 3.15, 3.51, 2.35, and 3.60, respectively (Table 3) and 
it can be used to simultaneously select soybean lines with higher 
contents of the five amino acids in soybean breeding progress. 

FIGURe 1 | The maximum likelihood tree of the 20 soybean germplasm accessions that ranked in the top three for at least one amino acid concentration among 
the 249 soybean accessions.
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For group two, such as Gm20_42531505 was associated with 
seven amino acids, Ile, Leu, Lys, Phe, Thr, Tye, and Val with LOD 
values of 3.53, 4.55, 2.89, 4.79, 5.04, 3.87, and 2.10, respectively 
(Table 4), indicating that it can be used to simultaneously select 
the soybean lines with higher contents of seven amino acids. 
Meanwhile, both phenotypic and genetic data supported there 
were two groups of amino acids existed in soybean.

Candidate Gene Selection
The linkage disequilibrium (LD) of soybean genome was analyzed, 
the average distance of markers at half of the maximum LD decay 
rate was about 200kb. Considering the LD decay value may vary 
from genomic region to region, we used the 10kb windows as 
previously reported (Xie et al., 2018). We identified 704 genes with 
all or partial sequence within the 10 kb windows that flanked each of 
the 217 out of 231 unique SNPs associated with one or more amino 
acids (Supplementary Table 5) and the other 14 SNPs did not have 
any candidate genes at the 10 kb windows on the chromosomes.

Based on gene annotations of the soybean whole genome 
assembly Gmax_275_Wm82.a2.v1 from Soybase and PMN 
(Phytozome v12: Gmax_275_Wm82.a2.v1.protein.fa), we found 
that 15 SNPs were in 14 genes related to amino acid metabolism 

in gene ontology annotation terms (Supplementary Table 6), 
e.g. in the region flanking the SNP Gm03_36417795, there was a 
candidate gene “Glyma03g28476 (Glyma 1.1)/Glyma.03g129100 
(Glyma 2.0)” encoding for pyrroline-5-carboxylate reductase 
(Delauney and Verma, 1990)13 (Supplementary Table 6). This 
enzyme catalyzes the last step of L-proline biosynthesis through 
the L-glutamate degradation pathway. In the region flanking 
the SNP Gm03_36465287, there was a gene Glyma03g28530 
(Glyma 1.1)/Glyma.03g129700 (Glyma 2.0) encoding β 
L-selenocystathionase, a key enzyme catalyzing L-homocysteine 
and L-cysteine interconversion. L-homocysteine and L-cysteine 
interconversion is an intermediate step for conversion 
between methionine and cysteine (McCluskey et al., 1986)14 
(Supplementary Table 6).

Genomic Selection for Amino Acid 
Concentration Based on RR-BlUP in 
rrBlUP
Based on RR-BLUP in rrBLUP, the GEBV of each amino acid was 
estimated using three different sets of SNPs, i.e. 23,279 SNPs, 231 

13https://link.springer.com/article/10.1007/BF00259392, accessed on August 10, 2019
14https://doi.org/10.1016/0031-9422(86)80067-X, accessed on August 10, 2019

FIGURe 2 | Structure analysis: (A) Delta K values for different numbers of populations (K) from the STRUCTURE analysis, x-axes shows different numbers 
of populations (K), y-axes shows Delta K values for different numbers of populations (K). (B) Classification of 249 accessions into six sub-populations using 
STRUCTURE version 2.3.4, where the x-axis shows accessions, and the y-axis shows the probability (from 0 to 1) of each accession belong to sub-population (Q = 
K) membership. The membership of each accessions belonging to sub-populations is indicated by different colors (Q1, red; Q2, green; Q3, blue; Q4, yellow; Q5, 
pink; and Q6: cyan). (C) Maximum Likelihood (ML) tree of the 249 accessions drawn in MEGA 6. The color code for each subpopulation is the same as that in the 
(B and C).
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TABle 2 | List of SNP markers associated with each amino acid concentrations at LOD ≥ 3.0, respectively.

SNP ID (chr_pos) Trait SNP ID (chr_pos) Trait SNP ID (chr_pos) SNP ID (chr_pos) Trait

Gm01_33262451 Ile Gm07_4574178 Ser Gm13_39628016 Ile Gm16_6737312 Thr
Gm01_45320366 Ile Gm07_5923593 Arg Gm13_39628019 Ile Gm16_780258 Ile, Val
Gm01_53597652 Gly Gm08_14156183 Ala, Glu Gm13_39628049 Ile Gm17_14444779 Pro
Gm01_571041 His Gm08_1969577 Glu Gm13_39628054 Ile Gm17_23967094 Tyr
Gm01_571048 His Gm08_3446621 Lys Gm13_40242572 Pro Gm17_2459036 Pro
Gm02_15368490 Val Gm08_43340095 Lys Gm13_40242573 Pro Gm17_2475262 Pro
Gm02_45763574 His Gm08_45648867 Asp Gm13_40242709 Pro Gm17_2674908 Pro
Gm02_47034495 Ile, Thr, Val Gm08_8091680 Glu Gm13_41203949 His, Lys, Pro Gm17_37708047 His, Pro
Gm02_48215047 Pro Gm08_8480396 Gly Gm13_7762318 Arg Gm17_37708072 His, Pro
Gm02_49856130 Ile, Val Gm08_8538031 Gly Gm14_28719225 Gly Gm17_37708077 His, Pro
Gm02_50224425 Arg Gm09_43473530 Ala Gm14_42728555 Glu Gm17_37708117 His, Pro
Gm02_50269310 Arg Gm09_43488824 Ala, Asp Gm14_42900467 Glu Gm17_37712338 Arg, Pro
Gm02_5190606 Ile Gm10_12029489 Ala Gm14_43163207 Glu Gm18_1231280 Ile
Gm02_6671113 Gly Gm10_35214322 Val Gm14_43163233 Glu Gm18_12797087 Thr
Gm02_6721375 Asp, Gly, Ile, Ser Gm10_44070578 Ile Gm14_43163234 Glu Gm18_1449038 Glu, Ser
Gm03_36272238 Thr Gm10_45237186 Ile Gm14_43163255 Glu Gm18_14877256 Phe
Gm03_36417795 Thr Gm10_46037693 Glu Gm14_43163263 Glu Gm18_1564092 Glu
Gm03_36465287 Thr Gm10_46037954 Ala, Glu Gm14_43163268 Glu Gm18_2026494 Thr
Gm03_36530224 Pro Gm10_46045322 Glu Gm14_43163302 Glu Gm18_23446982 Ile
Gm03_40600088 Pro Gm10_47770916 Arg Gm14_43163309 Glu Gm18_23680823 Ile
Gm03_40600203 Pro Gm10_48103776 Asp, Glu, His, Ser Gm14_43163317 Glu Gm18_45637951 Ile
Gm03_6537448 Arg, His Gm10_48367427 Ser Gm14_670550 Arg Gm18_54941806 Leu
Gm04_29795804 Gly, Ile, Thr Gm10_4877563 Arg Gm14_670770 Arg Gm18_54941806 Tyr
Gm04_3722529 Pro Gm10_4877661 Arg Gm15_42452169 Lys, Phe, Val, 

Lys, Phe, Val
Gm18_55570016 Arg

Gm04_43205897 Gly Gm10_50892012 Glu Gm15_46888773 His Gm18_57994827 Arg
Gm04_43205900 Gly Gm10_50945017 Glu Gm15_6364620 Gly Gm18_57994865 Arg
Gm04_43207187 Gly, Ile, Thr, Phe Gm10_50945124 Glu Gm15_6364624 Gly Gm18_58356668 Gly
Gm04_43207248 Gly, Ile, Phe, Thr Gm10_6088950 Arg Gm15_6364658 Gly Gm18_61819070 Leu
Gm04_43247307 Gly Gm10_6127825 Arg Gm15_6364660 Gly Gm18_61846089 Leu
Gm04_43247365 Gly Gm10_6158335 Arg Gm15_6364671 Gly Gm18_61846097 Leu
Gm04_45172948 Ile Gm11_17324386 Leu Gm16_19302037 Ile Gm18_61846199 Leu
Gm05_1131617 Thr, Tyr, Leu Gm11_36252840 Lys, Phe, Tyr Gm16_19309923 Ile, Val Gm18_61846240 Leu
Gm05_1364762 Gly Gm11_36391557 Pro Gm16_19310296 Ile, Val Gm18_61846255 Leu
Gm05_1956615 Glu, Ser Gm11_38372080 Ile Gm16_19474288 Ile Gm18_61846357 Leu
Gm05_21977894 Ile, Val Gm12_1283279 Ile Gm16_26668643 Pro Gm18_829983 Leu
Gm05_36368612 Tyr Gm12_1966701 Leu, Val Gm16_26668804 Pro Gm18_849773 Leu
Gm06_14669414 Lys Gm12_2246393 Ile, Leu, Phe, Thr, 

Val
Gm16_26760058 Pro Gm18_8944865 Lys, Thr

Gm06_1655912 Arg, Tyr Gm12_2246402 Thr Gm16_27656811 Ile, Leu Gm19_14283927 Ile, Val
Gm06_20941559 Glu Gm12_2246405 Thr Gm16_27675722 Ile, Leu Gm19_34599708 Ala
Gm06_289575 Gly Gm12_2246408 Thr Gm16_28109123 Ile Gm19_35491961 Ile, Val
Gm06_399885 Ala, Asp, Gly Gm12_2246409 Thr Gm16_30033799 Val Gm19_35491974 Ile, Val
Gm06_46691924 Gly Gm12_37250318 Ile, Leu Gm16_31565242 Lys, Val Gm19_35491994 Ile, Val
Gm06_48160139 His Gm12_37253606 Ile Gm16_31565425 Lys, Val Gm19_35491998 Ile, Val
Gm06_48405502 Gly Gm12_37699937 Pro Gm16_32344691 Arg Gm19_35492018 Ile, Val
Gm06_49021688 Gly Gm12_37700016 Pro Gm16_32636611 Arg Gm19_35492028 Ile, Val
Gm06_582930 Gly Gm12_4525326 Arg Gm16_32891444 Arg Gm19_35492061 Ile, Val
Gm07_16345870 Phe Gm12_4525341 Arg Gm16_33487136 Arg, His Gm19_35492063 Ile, Lys, Val
Gm07_3374472 Gly Gm12_9802063 Ile Gm16_33595082 Arg, His Gm19_36853376 Ala, Ser
Gm07_3374492 Gly Gm13_17646967 Asp, Ile, Ser Gm16_33670373 Asp Gm19_36856526 Ala, Glu, 

Ser
Gm07_36388230 Asp Gm13_21744787 Asp, Glu, Ser Gm16_33761779 Arg, His Gm19_38354186 Tyr
Gm07_36390103 Glu Gm13_21758530 Ala, Asp Gm16_33853366 Arg, HIs Gm19_41048945 Glu
Gm07_36524487 Glu Gm13_22508206 Arg Gm16_35244130 His Gm20_31240721 Leu, Tyr
Gm07_36542987 Glu Gm13_38830655 Lys Gm16_35747794 Ser Gm20_31240801 Tyr
Gm07_36543902 Glu Gm13_39627980 Ile Gm16_36927834 Tyr Gm20_31387086 His
Gm07_36633143 Glu Gm13_39627983 Ile Gm16_36927871 Tyr Gm20_35630363 Leu
Gm07_36633260 Glu Gm13_39627986 Ile Gm16_6737154 His, Lys, Thr Gm20_42531505 Gly, Ile, 

Leu, Tyr, 
Phe, Thr

Gm07_3811476 Arg Gm13_39628010 Ile Gm16_6737218 Thr Gm20_42569717 Lys, Tyr
Gm07_39077446 Ala Gm13_39628014 Ile Gm16_6737289 Thr
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SNP markers associated with 15 amino acid, and SNP markers 
associated with an individual amino acid.

The correlation coefficients between GEBV and observed 
value varied among amino acids based on all 23,279 SNPs 
(column-2 in Table 5), the r value was 0.61 for Arg; 0.50 for Phe; 
between 0.35 and 0.50 for His, Lys, Thr and Tyr; between 0.25 
and 0.35 for Ala, Glu, Ile, Leu, Pro, and Val; and less than 0.25 
for Asp, Gly, and Ser. The r values for most amino acids were 
less than 0.5, suggesting GS prediction accuracy for most amino 
acids was low based on genome-wide random SNPs.

The correlation coefficients between GEBV and observed 
value of the 15 amino acids were equal or higher from 231 SNPs 
than those from the 23,279 SNPs (column-3 vs column-2 in 
Table 5). The r value was larger than 0.6 for Arg, Ile, Lys, Phe, and 
Thr, and between 0.5 and 0.6 for Asp, Gly, His, Leu, Tyr, and Val, 
indicating that associated markers were more efficient to predict 
amino acids for soybean lines than all the SNPs (Figure 4 and 
column-3 in Table 5).

Of the 231 SNPs, a total of 171, 42, 12, 4, 1 and 1 SNPs were 
associated with only one, two, three, four, five, and six amino acids, 
respectively. A total of 11, 29, 9, 34, 29, 19, 51, 20, 14, 9, 24, 11, 21, 
13, and 24 SNP markers were associated with Ala, Arg, Asp, Glu, 
Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Tyr, and Val, respectively 
(Supplementary Table 3). We used the SNP markers only associated 
with individual amino acid to predict the GEBV for each amino 
acid, the r values for the 14 amino acids were higher than those from 
the 23,279 SNPs except for Phe, but equal or lower than those from 
the 231 SNP markers except for Val (Table 5).

T-test was conducted to compare the r values from the 231 
SNPs and from the all 23,279 SNPs and found that the r value from 

FIGURe 3 | The QQ plot between the expected LOD (-log(P-value)) value and the estimated LOD (log(P-value)) value of amino acid Ile based on 23,279 SNPs as an 
example (all 15 QQ-plot for the 15 amino acids showed in Supplementary Figure 3).

TABle 3 | Twenty-five SNP markers associated with five amino acids of group 
one, simultaneously.

SNP ID Chr Position (bp) Ala Asp Glu Gly Ser

Gm02_6671113 2 6671113 2.19* 2.83 0.68 3.46 2.48
Gm02_6721375 2 6721375 2.85 5.41 0.83 3.36 4.63
Gm06_399885 6 399885 3.14 2.58 1.86 4.15 2.35
Gm07_36388230 7 36388230 2.38 3.06 2.13 2.29 2.95
Gm07_36542987 7 36542987 1.18 2.36 3.68 2.20 2.01
Gm07_36633143 7 36633143 2.06 2.13 3.26 0.83 2.15
Gm07_36633260 7 36633260 2.06 2.13 3.26 0.83 2.15
Gm10_46037693 10 46037693 2.88 2.10 3.84 2.10 2.35
Gm10_46037954 10 46037954 3.07 2.38 3.86 2.70 2.44
Gm10_48103776 10 48103776 2.93 3.15 3.51 2.35 3.60
Gm13_21744787 13 21744787 2.31 3.05 3.03 2.66 3.27
Gm13_21758530 13 21758530 3.12 3.18 2.92 2.04 2.97
Gm14_43163207 14 43163207 2.10 2.46 3.83 0.90 2.17
Gm14_43163233 14 43163233 2.10 2.46 3.83 0.90 2.17
Gm14_43163234 14 43163234 2.58 2.54 4.37 1.33 2.57
Gm14_43163255 14 43163255 2.58 2.54 4.37 1.33 2.57
Gm14_43163263 14 43163263 2.10 2.46 3.83 0.90 2.17
Gm14_43163268 14 43163268 2.58 2.54 4.37 1.33 2.57
Gm14_43163302 14 43163302 2.10 2.46 3.83 0.90 2.17
Gm14_43163309 14 43163309 2.10 2.46 3.83 0.90 2.17
Gm14_43163317 14 43163317 2.58 2.54 4.37 1.33 2.57
Gm16_35747794 16 35747794 2.78 2.22 1.46 2.40 3.02
Gm18_1449038 18 1449038 2.34 2.93 3.22 2.74 3.39
Gm19_36853376 19 36853376 3.07 2.37 2.51 1.17 3.52
Gm19_36856526 19 36856526 3.04 2.42 3.64 1.97 3.54

*LOD (-log(P-value)) from MLM of Tassel.
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the 231 SNPs in column-3 for each amino acids was significantly 
higher than that in column-2 from all SNPs with P = 0.01 level 
in Table 5, indicating that using the associated SNPs had better 
prediction for GS than using all randomly SNPs (Table 5).

Genomic Selection for Amino Acid 
Concentration Based on CMlM in GAPIT
Based on cBLUP method using CMLM in GAPIT, the average 
r was estimated (Table 5 and Figure 5). The average correlation 
coefficient in the training set was greater than 0.7 and was higher 
than those in validation set. The average values in validation set 
were greater than 0.5 for amino acids except for Pro.

Two comparisons were tested to validate the stability 
of GS using different estimate methods and approaches: 
(1) RR-BLUP in rrBLUP vs cBLUP in Gapit, and (2) self-
validation (training set by itself ) vs cross-validation (training 
set). For the first comparison, the 15 r values in column-3 
(“231 SNPs in 249 accessions”) was compared to those in 
column-6 (“231 SNPs in validation set”) in Table 5 and we 
found a strong association between the average r values from 
RR-BLUP in rrBLUP and from cBLUP in Gapit (r = 0.85) 
based on the 231 associated SNPs. For the second comparison, 
the 15 r values in column-5 (“231 SNPs in training set”) was 
compared to those in column-6 (“231 SNPs in validation 
set”) in Table 5 and we found a strong association between 
the average r values from cBLUP in Gapit (r = 0.84) based on 
the 231 associated SNPs. The strong association with high r 
value >0.8 between different methods and approach showed 

that we can use the 231 SNPs to select high amino acid content 
in soybean through GS.

DISCUSSION

Application of Marker-Assisted Selection 
to Genetic Improvement of Soybean
Previous studies using bi-parental segregating populations 
have identified QTLs controlling 15 amino acids in soybean 
seeds (Panthee et al., 2006; Fallen et al., 2013; Khandaker et al., 
2015; Warrington et al., 2015). The QTL were associated with 
84 molecular markers on 14 chromosomes (Supplementary 
Table 7). In this study, we identified 231 unique SNP markers 
significantly associated with 15 amino acids (Supplementary 
Table 3). Eight SNPs were in the same regions of SSR markers 
that were associated with amino acid concentrations reported 
by Panthee et al. (2006), e.g. the SNP marker, Gm07_4574178 
(located at 4.5 Mb on chr 7) associated with Ser was near 
the SSR marker, Satt 567 (located at 63,663 bp on chr 7), 
Gm19_41048945 at 41 Mb on chr 19 for Glu was near Satt076 
at 374,148 bp of chr 19; Gm02_15368490 at 15,368,490 bp on 
chr 2 for Val near Satt537; Gm01_45320366 at 45,320,366 bp 
on chr 1 for Ile near Satt203; Gm19_35491961 at 35,491,961 
bp on chr 19 for Ile near Satt313; Gm02_50269310 at 
50,269,310 bp on chr 2 for Arg also near Satt274 and 
Satt196; and Gm09_43488824 at 43,488,824 bp on chr 9 for 
Asp near Satt196 (Panthee et al., 2006). Two SNP markers, 

TABle 4 | Twenty-eight SNP markers associated with seven amino acids of group two, simultaneously.

SNP ID Chr. Position (bp) Ile leu lys Phe Thr Tyr Val

Gm03_36417795 3 36417795 1.95* 1.34 2.06 2.91 3.38 2.44 2.44
Gm03_36465287 3 36465287 2.98 1.95 2.46 2.85 3.68 2.68 2.34
Gm04_43207187 4 43207187 3.39 1.95 2.52 3.57 3.17 2.46 2.39
Gm04_43207248 4 43207248 3.39 1.95 2.52 3.57 3.17 2.46 2.39
Gm04_45172948 4 45172948 3.11 2.29 2.11 2.15 2.06 1.42 1.95
Gm05_1131617 5 1131617 2.74 3.69 2.54 2.51 3.32 3.24 1.15
Gm05_1364762 5 1364762 2.70 1.78 2.52 2.13 2.78 2.46 1.72
Gm05_21977894 5 21977894 3.59 1.72 2.67 2.18 2.64 2.60 3.28
Gm08_3446621 8 3446621 2.39 0.90 3.99 2.73 2.05 1.30 2.66
Gm11_36252840 11 36252840 1.13 2.48 3.94 3.48 2.62 4.30 1.26
Gm12_1966701 12 1966701 2.95 3.24 1.70 2.20 1.51 2.38 3.13
Gm12_2246393 12 2246393 3.40 3.02 2.36 3.27 4.13 2.64 3.39
Gm12_9802063 12 9802063 3.32 2.04 1.81 2.38 2.64 1.38 2.12
Gm15_42452169 15 42452169 2.19 1.55 3.80 3.35 2.06 1.87 3.79
Gm16_6737218 16 6737218 2.58 1.11 2.89 2.24 3.59 1.90 2.19
Gm16_27675722 16 27675722 3.03 3.63 1.62 2.39 2.30 2.12 1.35
Gm18_1231280 18 1231280 3.17 0.91 2.15 2.81 2.35 1.54 2.34
Gm18_14877256 18 14877256 2.86 2.18 2.67 3.09 2.27 1.92 1.60
Gm18_54941806 18 54941806 2.45 3.91 2.47 2.54 2.27 3.60 1.52
Gm19_35491974 19 35491974 4.20 0.59 2.48 2.38 2.90 0.95 4.17
Gm19_35491994 19 35491994 4.03 0.64 2.51 2.26 2.61 0.93 3.99
Gm19_35491998 19 35491998 4.19 0.62 2.51 2.35 2.82 0.88 4.04
Gm19_35492018 19 35492018 4.19 0.62 2.51 2.35 2.82 0.88 4.04
Gm19_35492028 19 35492028 4.19 0.62 2.51 2.35 2.82 0.88 4.04
Gm19_35492061 19 35492061 4.30 0.64 2.71 2.50 2.94 0.97 4.23
Gm19_35492063 19 35492063 4.15 0.68 3.22 2.81 2.98 1.32 3.35
Gm20_42531505 20 42531505 3.53 4.55 2.89 4.79 5.04 3.87 2.10
Gm20_42569717 20 4256971 1.64 2.09 3.43 2.92 2.47 3.00 1.42

*LOD (-LOG(P-value)).

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1445

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


GWAS and GS for Soybean SeedsQin et al.

11

Gm09_43488824 at 43,488,824 bp on chr 9 for Asp and 
Gm10_48103776 at 48,103,776 bp on chr 10 for His were close 
to the regions controlling the two amino acids reported by 
Fallen et al. (2013) (Supplementary Table  7). In addition, 
Gm09_43488824 at 43,488,824 bp on chr 9 associated with 
Asp was in the regions reported by Panthee et al. (2006) and 
Fallen et al. (2013).

As GWAS for amino acid concentrations in soybean, 
Zhang et al. (2018) reported that 54 SNPs, as 92 markers were 
associated with 18 amino acids; 38 of the 54 SNPs associated 
with only one amino acid; and 11 SNPs associated with 2 
to 12 amino acids. The SNP markers for each amino acid 
were located at one chromosome such as Pro or Ser, nine 
chromosomes such as Arg or Asp, up to 11 chromosomes 
such as Try (Supplementary Table 7). Comparisons with the 
SNP markers associated with amino acids reported by Zhang 
et al. (2018), most of SNP markers were located at different 

regions of soybean chromosomes. However, there were four 
regions similar to our results: (1) 3.71–3.82 Mb of chr 7 for 
Arg; (2) 33.85–35.73 Mb of chr 16 for Arg; (3) 16.28–17.65 Mb 
of chr13 for Asp; and (4) 8.27–9.33 Mb of Chr 8 for Gly. From 
our study, the SNP marker Gm07_3811476 was associated 
with Arg at 3,811,476 bp on chr 7, which was near with 
around 98 kb to the SNP markers ss715597475 at 3,713,267 bp 
on chr7 for Arg reported by Zhang et al. (2018). Another SNP, 
Gm16_33853366 close to ss715624781 with 1.87 M distance 
on chr 16 was also associated with Arg; Gm16_33853366 was 
at 33,853,366 bp and ss715624781 at 35,721,993 bp on chr 16. 
For Asp, the Gm13_17646967 at 17,646,967 bp was close to 
ss715616790 at 16,286,313 bp with a distance 1,360,654 bp on 
chr 13. The SNP markers, Gm08_8480396 and Gm08_8538031 
associated with Gly from this study were close to the two SNP 
markers, ss715602750 and ss715602851 with Gly (Zhang et al., 
2018) and the four markers are located at a region with one 

FIGURe 4 | The correlation coefficient (r) among 15 amino acids between the observed values (each amino acid concentration) and the GEBVs predicted from the 
231 SNP markers using RR-BLUP in rrBLUP software.

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1445

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


GWAS and GS for Soybean SeedsQin et al.

12

Mb distance on chr 8. Thus, the four regions were validated 
to be associated with one of the amino acid, Arg, Asp, or Gly.

These SNPs identified for 15 amino acids in this study can be 
used as molecular markers to select lines with high amino acids 
content through marker-assisted selection (MAS). PCR-based 
KASP SNP genotyping can be used in soybean breeding program 
to select high amino acids through MAS. Targeted region 
sequencing such as tGBS (targeted genotyping-by-sequencing) 
(Simko et al., 2018) can also be used for MAS and GS based on 
the sequences flanking these SNPs (Ott et al., 2017).

From this study, 14 candidate genes were found to be related to 
amino acid metabolism based on gene annotations from Soybase 
and PMN with gene ontology annotation terms using the DNA 

sequences in the 15 regions with the 15 SNPs in column-B of 
Supplementary Table 7 significantly associated with amino acids 
(Supplementary Table 6). Our further research will develop the 
molecular markers such as PCR-based assays or targeted region 
sequencing to validate these candidate genes in our association 
panel and others. Gene-silence through CRISPR/Cas9 may be used 
as an approach to validate these candidate genes.

Genomic Selection
Prediction accuracy is the main parameter to measure the 
performance of GS (Jarquin et al., 2016; Zhang et al., 2016; 
Duhnen et al., 2017). Prediction accuracy is affected by several 
factors including GS models, marker density, level of LD, QTL 
number, the population size specially the training population 
size, relationship between training population and validation 
population, and trait heritability (Jarquin et al., 2016).

Zhang et al. (2016) estimated prediction accuracy (r value) of 
seed size based on 309 soybean accessions and reported r = 0.85 
when 2000 SNPs or 31,045 SNPs were included, r = 0.8 when 1000 
SNPs or 500 SNPs were used. They also identified 48 SNPs on 12 
chromosomes associated with seed size based on GWAS. The r 
value ranged from 0.64 to 0.74 when 5, 10, and 15 of the 48 SNP 
markers were used, which were 25% higher than those calculated 
from the same number of randomly selected SNPs. Our results 
showed that the highest r value (0.56) was obtained based on 
the model including 231 SNPs significantly associated with one 
or multiple amino acids, followed by the model including SNPs 
significantly associated with individual amino acid (r = 0.45), 
and the least was the model including all SNPs (r = 0.34). A t-test 
showed r values were significantly different among the sets.

We also estimated the GEBV and r values using the cBLUP in 
GAPIT. Based on the set of 231 SNPs, the correlation coefficient was 
greater than 0.7 in the training population and greater than 0.5 in 

TABle 5 | The averaged correlation coefficient (r) among 15 amino acids between the observed values (each amino acid content) and the GEBVs predicted from (1) all 
23,279 SNPs, (2) the 231 SNP markers, and (3) only the associated SNP markers with the specific amino acid content using RR-BLUP in rrBLUP software, and from (4) 
the 231 SNP markers in reference set (training set) and inference set (validation set) using CBLUPin Gapit.

RR-BlUP in rrBlUP CBlUP in Gapit

23279 SNPs in 249 
accessions

231 SNPs associated with 
amino acids

Associated SNPs* 231 SNPs in training set 231 SNPs in 
validation set

Ala 0.30 0.45 0.33 0.76 0.52
Arg 0.61 0.68 0.61 0.80 0.59
Asp 0.22 0.53 0.41 0.77 0.57
Glu 0.31 0.48 0.48 0.74 0.52
Gly 0.23 0.56 0.35 0.79 0.60
His 0.46 0.57 0.46 0.76 0.55
Ile 0.25 0.61 0.53 0.80 0.61
Leu 0.30 0.53 0.49 0.77 0.53
Lys 0.42 0.61 0.54 0.82 0.59
Phe 0.50 0.68 0.35 0.84 0.68
Pro 0.26 0.49 0.34 0.76 0.46
Ser 0.18 0.47 0.42 0.73 0.51
Thr 0.39 0.63 0.50 0.85 0.63
Tyr 0.36 0.54 0.44 0.81 0.57
Val 0.25 0.52 0.53 0.75 0.54
Average 0.34 0.56 0.45 0.78 0.56

*Associated SNPs signifies that the average correlation coefficient (r) for each amino acid in column-4 was calculated with the SNP markers only associated with the 
individual amino acid to predict the GEBV for each amino acid, such as for r = 0.33 for Ala, which was calculated from 11 associated SNPs.

FIGURe 5 | The average correlation coefficient (r) among 15 amino acids 
between the observed values (each amino acid concentration) and the 
GEBVs predicted in both training set and validation set from the 231 SNP 
markers using cBLUP method in GAPIT.
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validation population. The high correlation between the reference 
and inference (0.84) based on 15 amino acids, further confirmed 
the reliability of the GS. A high correlation (0.85) of the prediction 
accuracy between rrBLUP and GAPIT based on 231 SNPs, indicated 
that both RR-BLUP in rrBLUP or cBLUP in GAPIT were consistent.

CONClUSION
In this study, soybean accessions with high concentrations of 
amino acids in seeds, and molecular markers associated with 
individual and groups of amino acids were identified. These 
soybean accessions with high amino acid concentrations could be 
used as parents in soybean breeding programs. The SNP markers 
strongly associated with the concentrations of the amino acids 
could be used to improve the nutritional quality of soybean through 
marker-assisted selection. In addition, fourteen candidate genes that 
were related to amino acid metabolism were also identified. These 
candidate genes will lead to a better understanding of the molecular 
mechanisms that control amino acids metabolism in soybean seeds. 
Genomic selection analysis of amino acid concentration showed 
that the selection efficiency of amino acids based on the markers 
significantly associated with 15 amino acids was higher than that 
based on genome-wide random markers or markers only associated 
with an individual amino acid. These results suggest that including 
a set of markers significantly associated with multiple amino acids 
in genomic selection is likely to help breeders to efficiently select 
soybean varieties with improved amino acid content.
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