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Root nodulation results from a symbiotic relationship between a plant host and Rhizobium 
bacteria. Synchronized gene expression patterns over the course of rhizobial infection 
result in activation of pathways that are unique but overlapping with the highly conserved 
pathways that enable mycorrhizal symbiosis. We performed RNA sequencing of 30 
Medicago truncatula root maturation zone samples at five distinct time points. These 
samples included plants inoculated with Sinorhizobium medicae and control plants that 
did not receive any Rhizobium. Following gene expression quantification, we identified 
1,758 differentially expressed genes at various time points. We constructed a gene 
co-expression network (GCN) from the same data and identified link community modules 
(LCMs) that were comprised entirely of differentially expressed genes at specific time 
points post-inoculation. One LCM included genes that were up-regulated at 24 h 
following inoculation, suggesting an activation of allergen family genes and carbohydrate-
binding gene products in response to Rhizobium. We also identified two LCMs that were 
comprised entirely of genes that were down regulated at 24 and 48 h post-inoculation. 
The identity of the genes in these modules suggest that down-regulating specific genes 
at 24 h may result in decreased jasmonic acid production with an increase in cytokinin 
production. At 48 h, coordinated down-regulation of a specific set of genes involved 
in lipid biosynthesis may play a role in nodulation. We show that GCN-LCM analysis 
is an effective method to preliminarily identify polygenic candidate biomarkers of root 
nodulation and develop hypotheses for future discovery.

Keywords: root, nodulation, symbiosis, biomarker, network, bioinformatics, ribonucleic acid sequencing, 
Knowledge Independent Network Construction

INTRODUCTION
Root nodulation is a symbiotic process in which a plant host allows Rhizobium to colonize roots 
in unique plant organs called nodules. The plant provides carbon to the Rhizobium in exchange 
for ammonium that is produced by atmospheric nitrogen fixation (Suzaki and Kawaguchi, 2014). 
Medicago truncatula is a model plant that produces indeterminate nodules that persistently grow 
from a meristem (Gage, 2004). In response to inoculation with Rhizobium such as Sinorhizobium 
medicae, genetic pathways are activated to initiate and maintain nodule development. Nod factor 
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lipoproteins that are released by the Rhizobium interact with 
receptor-like kinases in the plant, resulting in a spike in calcium 
oscillations from the nucleus of the cell that activates signaling 
pathways necessary to produce nodules (Oldroyd, 2013). These 
signaling pathways result in the production of proteins that allow 
the Rhizobium to enter and colonize the host plant (infection 
thread formation), and nodule organogenesis ensues from rapid 
cortical cell division (Long, 2001; Jones et al., 2007).

Many events occur within a few hours of infection in the 
elongation zone of the root, but trigger later morphological 
changes, reviewed in Oldroyd and Downie (2008), that are 
tied to the transcriptomes generated in this work. Root hairs 
in cells that have ceased to elongate do not respond to rhizobia 
(Gage, 2004). Upon attachment of the rhizobia to the root hair 
tips, the root hairs curl tightly and entrap the bacteria in the 
curl. The plant cell forms a new structure, a tubular infection 
thread, through which the bacteria enter the plant through 
cell division. At the same time as infection thread formation, 
a subset of the inner cortical cells next to the xylem poles is 
mitotically activated and these cells will eventually form the 
nodule primordia. We do not know what the signal is that 
reactivates the cell cycle, although ENOD40 is required (Charon 
et al., 1997), but in situ analysis of ACC synthase activity in 
wild type plants and examination of ethylene insensitive 
M. truncatula mutant strongly suggests that this positional 
information is related to ethylene levels in the cortical cells 
between the xylem poles (Heidstra et al., 1997; Penmetsa and 
Cook, 1997; Penmetsa et al., 2008).

As reviewed in Oldroyd and Downie (2008), within the next 
24 h, the infection threads cross the outer cortical cells and begins 
to branch. The outer cortical cells undergo rearrangements 
reminiscent of phragmoplast formation that allow the infection 
threads to pass through the cells. But only a subset of initiated 
infection threads will persist into the inner cortex; the majority 
are arrested in the outer cortex and the mechanism for this is 
unknown (Gage, 2004). Meanwhile the inner cortical cells 
continue to divide, and the concentrations of both cytokinin 
and auxin change in the cortex and endodermis/pericycle area. 
Measurements on whole roots show an increase in cytokinin 
levels (reviewed in Suzaki et al., 2013) and a reduction of auxin 
transport from the shoot to the root (van Noorden et al., 2006), 
but this has not been examined in detail at the level of individual 
cells, except to note that Nod factor affects polar auxin transport 
only when applied to the elongation zone of the root, where the 
nodules will form (Suzaki et al, 2012).

By 48 h after inoculation the nodule primordia have begun 
to organize into a meristematic region and a region with cells 
that have ceased dividing behind it. In M. truncatula, the 
genes encoding CLE12 and CLE13 peptides are expressed in 
the meristematic area (Mortier et al., 2010) and are involved 
in autoregulation, sending a signal to the shoot that nodules 
are developing (Okamoto et al., 2013). Local changes in auxin 
transport in the vascular bundle occur where nodules are forming 
(Mathesius et al. 1998; Huo et al., 2006) similar to what happens 
when lateral roots initiate, and a subset of auxin transporters 
(PIN genes) are required for nodule development as in lateral 
root development (Huo et al., 2006).

At 72 h after inoculation, M. truncatula will halt the initiation 
of additional nodule primordia in the elongation zone, presumably 
in response to an autoregulatory signal (Gage, 2004; Kassaw and 
Frugoli 2012; Soyano and Kawaguchi, 2014). Under controlled 
conditions this results in a fixed number of nodules in a small 
area of the root. Bacteria in infection threads that have entered the 
outer cortex stop dividing and the threads degrade, auxin transport 
resumes a normal pattern, and the successful infection threads will 
begin to release bacteria in symbiosomes into the cells that have 
ceased to divide behind the meristem (Gage, 2004). The developing 
nodule is still within the cortex and the vasculature that will feed 
it has not yet organized, but from this point on the development 
of the nodule seems to be controlled by signals from the meristem 
and signals from the bacteria within the symbiosomes.

Temporally coordinated gene expression patterns are necessary 
to initiate and regulate root nodule formation (Ferguson et  al., 
2019). Transcriptome profiling has identified genes that are 
induced upon inoculation with Rhizobium or application of 
Nod factor. The NIN transcription factor is a master regulator of 
nodulation, playing roles in nodule organogenesis in cortical and 
epidermal root cells (Vernie et al., 2015). Other key genes that are 
induced upon rhizobial infection, formerly termed nodulin genes, 
have been identified by expression analysis (El Yahyaoui et al., 
2004; Larrainzar et al., 2015). While differential gene expression 
analysis of root transcriptomes has helped to identify such genes, 
analyzing the whole root tissue is likely diluting the signals from 
genes that are dynamically involved in nodule organogenesis 
which occurs in a defined section of the root. For example, CRE1, a 
cytokinin receptor, is expressed in the root cortex and is associated 
with young nodule primordia (Lohar et al., 2006). For much of 
nodule development after the first few hours, the physical process 
is known from observations via microscopy, but the underlying 
molecular signals are only known at a gross (whole root) level. This 
transcriptome analysis focuses on the later physical events.

We reasoned that analyzing the transcriptome of only the 
portion of the root in which nodules develop could reveal gene 
expression dynamics that were not detectable from whole-root 
tissue and so we focused on the area of the root undergoing 
the morphological changes in response to rhizobia. The root 
maturation zone is above the meristematic and elongation 
zones of the root, where the cells stop elongating rapidly and 
differentiate. It is defined as the part of the root from the first 
cell with an emerging root hair to the cell with a fully emerged 
root hair (Ivanov and Dubrovsky, 2013). In M. truncatula and 
other legumes, this region of the root is also the site of nodule 
initiation, as only immature emerging root hairs can respond 
to rhizobia (Gage, 2004). As the root matures and the root hairs 
mature, the initial region responding initially now becomes 
unresponsive to rhizobia and moves up farther from the root tip, 
but nodule development continues to occur in the original cells 
once initiated (Oldroyd and Downie, 2008; Moreau et al., 2011). 
Because of the spatial-temporal anatomy of a growing root, 
identifying sets of genes that are both spatially and temporally 
regulated during nodulation presents a challenge.

Preliminary experiments in our lab for the proposal that 
funded this work used an aeroponic system in which all plants 
grow at the same time in the same media and receive rhizobial 
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inoculation at the same time (Figure S1, Materials and 
Methods). This allowed us to develop a protocol to consistently 
harvest the inoculated maturation zone over time. We began by 
microscopically examining a subset of roots (guide roots not 
being used for the transcriptomics analysis) at the 0 h time point 
and used a non-destructive marker to mark the top and bottom 
of the maturation zone. In multiple preliminary trials, this root 
segment consistently began approximately 1 cm from the root 
tip and ended 2 cm further up the root. These guide roots were 
then reloaded to continue growing throughout the experiment. 
At each time point, the guide roots could be used at each time 
point for determining the location of the initial zone on the other 
roots, and the 2 cm length of the zone did not change because the 
maturation zone no longer elongates.

Our sampling strategy for time evolved from the experiments 
by Larrainzar et al. (2015) which use the same aeroponic apparatus. 
We adopted their time course, but because we are focused on the 
transcriptomic signature of morphological events, we eliminated 
the 3 and 6 h time points used in their analysis and started with 
the first time point tied to a physical event—a 12 h time point 
at which root hair deformation can be observed. To eliminate 
circadian variation past the initial 12 h time point, we removed 
the 36 h time point and added a 72 h time point. This was based 
on our observation that in this aeroponic system at 72 h, nodules 
began to emerge from the root. Thus except for the 12 h time point, 
we have minimized circadian variation from our analysis. In this 
work we also deliberately did not examine differential expression 
between time points in uninoculated roots. While such an analysis 
would identify genes involved in root development that could 
also influence nodulation, our initial goal was to find genes with 
differential expression only in response to rhizobia.

Gene co-expression network (GCN) analysis is a method that 
can be applied to elucidate complex gene expression patterns over 
the time course of root nodulation. A GCN is a graph in which 
nodes represent genes and edges represent correlations between 
genes (Wolfe et al., 2005). Significant edges can then be extracted 
using techniques such as random matrix theory (RMT) (Luo et al., 
2007; Gibson et al., 2013) or soft thresholding as implemented in 
weighted gene co-expression network analysis (Langfelder and 
Horvath, 2008). Clustering techniques such as link community 
detection can be used to identify highly interconnected GCN 
subnetworks (modules) that are more likely to share common 
biological function or regulatory mechanisms (Ahn et al., 2010). 
Knowledge Independent Network Construction (KINC) is a 
software package that constructs GCNs with tracking of the 
samples used in edge detection. Prior to performing correlation 
analysis on a given gene pair, KINC identifies sample clusters 
using Gaussian mixture models (GMMs) (Ficklin et al., 2017). 
A correlation test (e.g. Spearman) is performed for each cluster 
separately, allowing significant GCN edges to be detected that 
are specific to a subset of the input samples. These edges are 
then annotated for attributes including genotype, phenotype, 
or experimental condition including time points. KINC is 
open source software and has been used successfully to detect 
condition-specific co-expression relationships in human data 
sets (Dunwoodie et al., 2018; Poehlman et al., 2019). In this study, 
we obtained RNA gene expression profiles from nodulating 

M. truncatula roots and combined differential gene expression 
analysis with a KINC GCN to identify sets of candidate 
nodulation genes.

METhODS

Plant Growth Conditions, Inoculation, 
and Tissue Extraction
M. truncatula seeds were scarified for eight minutes using sulfuric 
acid, rinsed with water five times and imbibed in distilled water 
for 2 h. These seeds were cold treated at 4°C for 48 h in the dark 
in a moist environment (petri dish), followed by germination at 
room temperature for 18 h in the dark. The germinated seedlings 
were grown in an aeroponic apparatus and media as described 
previously (Penmetsa and Cook, 1997) following a 16 h/8 h light/
dark cycle. At 3.5 h into the light cycle on the third day after loading 
onto the apparatus, a set of plants was marked with ink 1 cm from 
the root tip (at the distal end of the rhizobia-susceptible root 
maturation zone) to be used for tracking the location of the first 
developing nodules and 2 cm root sections starting 1 cm from the 
root tip were harvested from 10 experimental plants (0 h sample). 
S. medicae ABS7 (150 OD600 units) in caisson medium or bacteria-
free caisson medium (mock inoculation) was then added to the 
apparatus. Tissue sections (2 cm) from the zone of developing 
nodules were harvested from 10 plants each at 12, 24, 48, and 
72 h post-inoculation, using the marked plants to determine the 
location of the developing nodules. Three biological replicates 
of the time course for both inoculated and uninoculated roots 
were collected for use in RNA-Seq. A fourth replicate (repX) was 
performed under the same conditions for qRT-PCR confirmation.

Ribonucleic Acid Extraction
Total RNA was isolated from M. truncatula root samples using 
the Invitrogen RNAqueous™ Total RNA Isolation Kit (Thermo 
Fisher, USA) according to the manufacturer’s instructions. 
The quality of RNA extracted was determined using a 2100 
Bioanalyzer (Agilent, USA). All samples had an RNA Integrity 
Number (RIN) greater than 8.0. RNA samples were quantified 
using a Qubit Fluorometer (Thermo Fisher, USA).

Transcriptome Data Generation
RNA-Seq libraries were made by the Clemson University Genomics 
and Computational Lab from 500 ng of total RNA using the TruSeq 
Stranded mRNA Library Prep Kit (Illumina, Cat. No. RS-122-2103) 
according to the manufacturer’s instructions. Samples included 
ERCC RNA Spike-In Mix 1 (Thermo Fisher, USA). Libraries were 
sequenced to a depth of at least 18,000,000 reads using paired 
end reads with an average read length of 125 bp at the David H. 
Murdock Research Institute (Charlotte, NC) on a HiSeq2500.

Ribonucleic Acid Sequencing Data 
Processing
The PBS-GEM workflow [https://github.com/wpoehlm/PBS-
GEM] was utilized to process RNA sequencing reads on Clemson 
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University’s Palmetto Cluster. Poor quality sequences and 
adapters were removed using Trimmomatic-0.38 (Bolger et al., 
2014). Cleaned reads were mapped to the Mt4.0v1 reference 
genome using hisat2-2.1.0 (Kim et al., 2015) with the following 
parameters: hisat2 –rna-strandedness RF –min-intronlen 20 –
maxintronlen 7000 -p 4 –downstream-transcriptome-assembly. 
SAM alignment files were filtered to retain only unique primary 
alignments (MAPQ 60), sorted, and converted to BAM files 
using samtools-1.8 (Li et al., 2009). Reference gene abundances 
were estimated using stringtie-1.3.4d (Pertea et al., 2015; Pertea 
et al., 2016) with the following options: stringtie –G –e –B –A.

Differential Gene Expression Analysis
Raw gene counts were calculated using the prepDE.py script 
that is provided with the StringTie Package [https://ccb.jhu.edu/
software/stringtie/dl/prepDE.py]. Differential expression analysis 
was performed using the DESeq2 R package (Love et al., 2014), 
which internally normalizes for library size. Genes with total read 
counts of less than 50 were excluded from analysis. Control and 
inoculated samples were compared separately at each time point 
(0, 12, 24, 48, and 72 h) using the DESeqDataSetFromMatrix 
function with the following formula: design = ~ condition. Genes 
with an adjusted p value of less than 0.05 were considered to 
be significant.

Gene Expression Matrix Preparation
Gene-level FPKM (fragments per kilobase of gene per million 
read pairs) were extracted from the gene abundance output 
files produced by StringTie and merged into a gene expression 
matrix (GEM) using a PBS-GEM Perl script. The matrix was 
log2 transformed and preprocessed using the preprocessCore R 
library (Tsygankov, 2018) to detect outliers and reduce technical 
noise. Pairwise Kolmogorov-Smirnov (KS) tests were performed 
to test for outlier samples (KS Dval > 0.15). No outlier samples 
were detected. The matrix was quantile normalized using the 
normalize.quantiles function. This normalized GEM was used 
to construct a GCN. Heatmaps and expression plots were 
generated using the clustermap and tsplot functions from the 
Seaborn Python package [https://seaborn.pydata.org/] which 
uses average-linked hierarchical clustering.

Gene Co-Expression Network and 
Functional Enrichment Analysis
The OSG-KINC [https://github.com/feltus/OSG-KINC] 
(Poehlman et al., 2017) workflow was utilized to execute 
10,000 KINC similarity jobs on the Open Science Grid with 
the following parameters: kinc similarity–method pc –clustering 
mixmod –criterion ICL –min_obs 20. Output was transferred 
to Clemson University’s Palmetto Cluster and decompressed. 
KINC threshold was executed with the following parameters: 
kinc threshold –min_csize 20 –clustering mixmod –method 
pc –th_method pc –max_modes 5. A significance threshold of 
0.946100 was identified, and the GCN was extracted using the 
following KINC extract parameters: kinc extract –clustering 
mixmod –method pc –th_method pc –th 0.946100 –max_modes 5. 

Link community modules (LCM) were identified with the 
linkcomm R package (Kalinka and Tomancak, 2011), using the 
“single” hcmethod and a minimum cluster size of 3. Functional 
enrichment of LCMs was performed using the FUNC-E [https://
github.com/SystemsGenetics/FUNC-E] script which performs a 
Fisher’s exact test similar to the DAVID method of enrichment 
analysis (Huang et al., 2007). Gene model annotations for the 
Mt4.0v1 genome were obtained from phytozome (Goodstein 
et al., 2012) and parsed for input into this script.

Real Time Quantitative Polymerase 
Chain Reaction
For rep3 samples, RNA prepared for RNA-Seq from the third 
biological replicate was used. For repX samples, RNA was 
purified from an independent replicate of 2 cm root sections 
(as described above in RNA extraction) using the E.Z.N.A. 
Plant RNA Kit (Omega Bio-Tek; Norcross, GA). cDNA was 
synthesized from 300 ng RNA from each sample with the iScript 
cDNA Synthesis Kit (Bio-Rad; Hercules, CA) in a 20 µl reaction, 
subsequently diluted to 60 µl. Real Time qPCR was performed 
in 12.5 µl reactions in an iQ5 instrument (Bio-Rad, Hercules, 
CA) using iTaq™ Universal SYBR® Green Supermix (Bio-Rad, 
Hercules, CA), 0.35 µM of each primer (Table S1), and 2.5 µl 
of cDNA. Reactions were performed in three technical replicates 
and the average Ct calculated. Efficiencies (E) of each primer 
pair were determined from a dilution series of template and 
used to calculate relative expression. All primer pairs exhibited 
amplification efficiencies of greater than 1.9. Expression values 
for the genes of interest were calculated relative to expression 
of the housekeeping reference gene MtPI4K (Medtr3g091400) 
using the equation Eref^Ctref/Egoi^Ctgoi.

RESUlTS

Network Creation
The aim of this study was to use KINC to identify multiple 
genes that demonstrate time point-specific expression patterns. 
To achieve this aim, we performed RNA-Seq on 30 maturation 
zone samples at 5 distinct time points: 0 h, 12 h, 24 h, 48 h, and 
72 h post-inoculation or mock inoculation. At each time point, 
we analyzed three biological replicates of control samples (mock 
inoculation) and three biological replicates of samples that were 
inoculated by Rhizobium. We identified differentially expressed 
genes between control and inoculated samples at each time point 
and constructed a GCN from these samples. We identified LCM 
modules from this GCN and overlaid differentially expressed 
genes in order to identify modules that were differentially 
expressed at specific time points. An overview of the experimental 
workflow is presented in Figure 1.

We identified genes that were differentially expressed between 
control and inoculated samples at each time point, resulting in 
a total of 1,758 differentially expressed genes (DEGs) at various 
time points (Table S2). An UpSet (Lex et al., 2014) plot in Figure 
2 shows that the majority of significant DEGs were specific to 
a single time point. However, we detected a core of 36 genes 
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FIGURE 1 | Experimental overview. (A) Differentially expressed genes between control and inoculated samples were identified at each time point. Elongated 
triangles represent roots; colored portions are the areas harvested (see Methods) for each comparison in the bracket at the bottom. (B) A gene co-expression 
network was constructed from all 30 samples (see Methods) and (C) link community modules were identified by Knowledge Independent Network Construction. 
Differentially expressed link community modules (LCMs) were then identified by overlaying differentially expressed genes (yellow dots in modules) from each time 
point onto the LCMs. 

FIGURE 2 | UpSet plot of differentially expressed genes. (A) Graph of total number of differentially expressed genes (DEGs) (X axis) at each time point (Y axis). 
(B) Intersection of sets of genes at multiple time points. Each column corresponds to a time point (first four columns) or set of time points (dots connected by lines 
below the X axis) containing the same DEGs. The number of genes in each set appears above the column, while the time points shared are indicated in the graphic 
below the column, with the time points on the left.
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(arrow in Figure 2) that were differentially expressed from 12 h 
through 72 h (Table S3). We detected eight DEGs between the 
three samples used for 0 h inoculated and the three used for 0 h 
control, and five of these DEGS were unique to this time point. 
We detected 149 unique DEGs at 12 h, 652 unique DEGs at 
24 h, 321 unique DEGs at 48 h, and 317 unique DEGs at 72 h 
(Table S2), unique meaning the gene is a DEG only at one time 
point. A heatmap of these clusters genes based on expression 
differences between control and inoculated samples (Figure 3). 
The dendogram on the X axis shows all control samples clustered 

together, mostly by time point, while the inoculated sample 
clusters tended to group by time point, with occasional blending 
of individual replicates at adjacent time points.

A normalized GEM constructed from all genes in these thirty 
samples was used to construct a GCN with KINC. The resulting 
GCN contains 4,067 nodes and 7,854 edges and showed scale-
free topology (R2 = 0.799). Figure 4 shows a representative 
GCN edge from two genes that are down regulated in inoculated 
samples at the 24 h time point. We observe that while the 24 h 
time point expression was used to select the genes, as expected, 

FIGURE 3 | Clustered heatmap of differentially expressed genes. Expression is reported as Log2 of the fragments per kilobase of gene per million read pairs. 
Samples were clustered and visualized using the Seaborn clustermap function, which uses Euclidian distance metrics to generate a linkage matrix used for 
hierarchical clustering. X-axis across the top is the is dendrogram of samples at individual time points and conditions, indicated by the color key, while the genes are 
represented by individual lines on the Y axis as sorted by the clustermap function.
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the overall pattern of expression in the time course is conserved 
among all genes in the module (Figure 4). We detected 161 
LCMs that contained at least three genes, with the largest LCM 
containing 128 genes (Table S4).

Functional Enrichment Analysis
We detected 53 unique DEGs that were present in LCMs. Nine 
of the LCMs detected were comprised entirely of genes that 
were differentially expressed at specific time points. We detected 

FIGURE 4 | A representative gene co-expression network edge and link community module. (A) In this example, the Log2 fragments per kilobase of gene per million 
read pairs (FPKMs) of two genes selected from the module are plotted on the X and Y axis respectively. They show a high correlation value across all samples, both 
inoculated and control. (B) Relationships of the genes in the module. Edge length has no meaning beyond connection. (C–G) Expression plots (Log2 FPKMs versus 
time) for the individual genes in the module reveal that all genes have differential expression at the 24 h time point, but additionally share expression patterns at the 
other time points. Shading indicates 68% confidence interval of three independent replicates, and the point where genes are differentially expressed is marked-in 
this case where the shading does not overlap.
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modules that were up-regulated at 24 h: M0004 and M0006. The 
genes in these modules are listed in Table 1 and a heatmap of 
their expression patterns appears in Figure S2A. M0004 and 
M0006 are both enriched for Pfam (protein families database) 
terms PF01190 (“pollen proteins Ole e I like”) and PF09478 
(“carbohydrate binding domain CBM4”) (Table S5). Conversely, 
we detected modules that were down regulated at 24 h: M0021, 
M0055, M0064, and M0072. The genes in these modules are 
listed in Table 2 and a heatmap of their expression patterns 
appears in Figure S2B. M0021 is enriched for KEGG K13416 
[“BAK1; brassinosteroid insensitive 1-associated receptor kinase 
1 (EC:2.7.10.1 2.7.11.1)”]. M0055 is enriched for Pfam PF06351 

(“allene oxide cyclase”). M0064 is enriched for GO:0008299 
(“isoprenoid biosynthetic process”), GO:0004452 (“isopentenyl-
diphosphate delta-isomerase activity”), K01823 [“idi, IDI; 
isopentenyl-diphosphate delta-isomerase (EC:5.3.3.2)”], 
K01597 [“MVD, mvaD; diphosphomevalonate decarboxylase 
(EC:4.1.1.33)”], K00787 [“FDPS; farnesyl diphosphate synthase 
(EC:2.5.1.1 2.5.1.10)”], PF00348 (“polyprenyl synthetase”), and 
PF00288 (“GHMP kinases N terminal domain”) (Table S5). We 
also detected modules that were down regulated at 48 h: M0032, 
M0118, and M0132. The genes in these modules are listed in 
Table 3 and a heatmap of their expression patterns appears in 
Figure S2C. M0032 and M0132 are both enriched for K15401 

TABlE 1 | Genes assigned to modules consisting of entirely of up regulated genes at 24 h post-inoculation (24U). If a gene appeared in multiple modules, only the last 
digit of the module number is listed for the additional modules. LogFC is the log2 fold change in expression between the two conditions for each gene and Padj is the 
Benjamin-Hochberg adjusted p value as reported by DESeq2.

Gene ID Gene description lCM module logFC Padj

Medtr8g042900 Pectinesterase/pectinesterase inhibitor M0004 3.23 4.17E−07
Medtr7g102770 Pollen Ole e I family allergens M0004,6 2.82 1.23E−04
Medtr3g071470 Pollen Ole e I family allergens M0004, 6 2.76 7.86E−04
Medtr4g074960 Endo-1,4-beta-glucanase M0004 2.62 5.99E−03
Medtr2g035120 Disease-resistance response protein M0004 1.73 8.41E−03
Medtr4g074960 Endo-1,4-beta-glucanase M0006 2.62 5.99E−03
Medtr4g109880 Adenine nucleotide alpha hydrolase 

superfamily protein
M0006 1.98 1.33E−02

TABlE 2 | Genes assigned to modules consisting entirely of down-regulated genes at 24 h post-inoculation (24D). If a gene appeared in multiple modules, only the last 
digits of the number are listed for the additional modules. LogFC is X, Padj is Y.

Gene ID Gene description lCM modules logFC Padj

Medtr3g070860 Leucoanthocyanidin dioxygenase-like protein M0021,55,72 −4.36 6.33E−05
Medtr2g008380 Somatic embryogenesis receptor-like kinase M0021 −2.70 8.74E−05
Medtr3g013890 3-Oxo-delta(4,5)-steroid 5-beta-reductase-like protein M0021,55 −2.28 4.85E−04
Medtr3g102730 3-Oxo-delta(4,5)-steroid 5-beta-reductase-like protein M0021,55 −2.00 1.60E−03
Medtr8g018570 Seed linoleate 9S-lipoxygenase M0055,72 −4.82 3.12E−08
Medtr7g417750 Allene oxide cyclase M0055 −2.63 1.97E−02
Medtr1g112230 Mevalonate diphosphate decarboxylase M0064 −2.49 4.97E−11
Medtr2g027300 Geranylgeranyl pyrophosphate synthase M0064 −1.71 2.50E−20
Medtr7g080060 Isopentenyl-diphosphate delta-isomerase M0064 −1.70 9.35E−04
Medtr7g085120 Nod factor-binding lectin-nucleotide phosphohydrolase M0072 −3.82 1.37E−06
Medtr7g417750 Allene oxide cyclase M0072 −2.63 1.97E−02

TABlE 3 | Genes assigned to modules consisting entirely of down-regulated genes at 48 h post-inoculation (48D). If a gene appeared in multiple modules, only the last 
digits of the number are listed for the additional modules. LogFC is X, Padj is Y.

Gene ID Gene description lCM module logFC Padj

Medtr5g014100 Anionic peroxidase swpb3 protein M0032 −3.28 3.71E−05
Medtr2g062600 Lipid transfer protein M0032, 132 −3.24 1.54E−06
Medtr8g089300 CASP POPTRDRAFT-like protein M0032, 132 −2.88 4.25E−03
Medtr5g070010 Cytochrome P450 family-dependent fatty acid hydroxylase M0032, 132 −2.87 1.72E−05
Medtr5g064530 Leguminosin group485 secreted peptide M0118, 132 −3.13 1.75E−06
Medtr0097s0070 CASP POPTRDRAFT-like protein M0118, 132 −3.04 4.96E−06
Medtr4g415290 Glycerol-3-phosphate acyltransferase M0118, 132 −2.80 1.20E−05
Medtr1g071720 Lipid transfer protein M0118 −2.46 4.90E−03
Medtr2g009450 Leguminosin group485 secreted peptide M0132 −3.10 1.22E−05
Medtr8g079050 GDSL-like lipase/acylhydrolase M0132 −3.00 2.61E−08
Medtr3g463060 Cytochrome P450 family-dependent fatty acid hydroxylase M0132 −2.68 2.61E−06

Frontiers in Plant Science | www.frontiersin.org October 2019 | Volume 10 | Article 1409

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Nodulation Gene Co-Expression Network AnalysisPoehlman et al.

9

[“CYP86A1; fatty acid omega-hydroxylase (EC:1.14.-.-)”]. 
M0132 is also enriched for PF04535 [“domain of unknown 
function (DUF588)”] (Table S5).

To determine if our LCM analysis could be extrapolated to 
other experiments, we first validated the expression of two 
genes selected from each of the collections of modules; the 24 h 
up-regulated modules in Table 1 (24U), the 24 h downregulated 
modules in Table 2 (24D), and the 48 h downregulated modules 
in Table 3 (48D). Tested genes were chosen to cover as many 
modules as possible within an LCM. Using RNA from one of 
the three biological replicates used for RNA-Seq as the template 
for real time qRT-PCR (termed rep3), the expression pattern for 
all tested genes for the three modules was confirmed to be the 
same whether tested by RNASeq or real time qRT-PCR (Figure 
5). We then tested the predictive power of the analysis by testing 
expression on RNA from an independent fourth biological 
replicate of the experiment (termed rep X) at the same time 
point by real time qRT-PCR (see Methods). Both genes from 
the 24U modules showed the expression pattern predicted from 
the modules (Figure 5C). The two tested genes from the 24D 
modules had the same expression pattern as each other, but the 
pattern at this one point in time differed from that identified in 
the initial experiment. (Figure 5F). Results from the two tested 
genes in the 48D modules were also inconclusive (Figure 5I) and 
we discuss this below.

DISCUSSION
We identified DEGs between control and inoculated samples at 
five distinct time points. With six biological replicates of the 0 
time point, the identification of six DEGs from over 55,000 genes 
shows little biological variation in our method. As shown in 
Figure 2, the majority of these genes were unique to one specific 
time point, although those at two or more time points are of 
increased interest. Importantly, the set of 36 genes differentially 
expressed at all time points (Table S3) contain a large number 
of genes that have been identified by forward genetics as being 
important in the nodulation process (Ferguson et al., 2019). 
Finding new useful biological signals from hundreds of genes at 
each time point became a challenge, one we addressed by using 
the GCN to identify genes that display similar expression over 
the time series and comparing them to the DEG list at individual 
time points. Figure 4 shows how two genes with a high correlation 
value in KINC did indeed have similar expression patterns over 
time, even though the genes were differentially expressed at 
the 24 h time point. We then identified LCMs from this GCN 
to find clusters of genes that all had similar expression patterns. 
Figure 4 shows the relationships between the genes in LCM 
M055. Although it is comprised entirely of genes that are down 
regulated in inoculated samples at the 24 h time point, expression 
of these genes drops at the 12 h time point and then is restored 

FIGURE 5 | Investigation of module gene expression prediction. (A, D, G) List of genes contained in modules grouped in the text as composed completely of genes 
differentially expressed at one time point. Genes in red were used for further analysis here because they are not described in the text and they had similar expression 
levels aiding analysis. (B, E, h) Graph of the expression (fragments per kilobase of gene per million read pairs) of the genes in red in replicate 3 of the RNA-Seq. 
(C, F, I) Results of real time qRT-PCR analysis of expression of these genes in replicate 3 and an additional identical replicate x at the time point in question, 
displayed as relative expression to aid comparison. See Methods for primers and normalization calculation.
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at the 24 h time point in control samples, while the expression 
in the inoculated samples slowly rises for all genes (Figures 4). 
We detected 161 LCMs that displayed coordinated expression 
patterns and overlaid DEGs at each time point to these LCMs. 
We were able to detect nine LCMs that were composed entirely 
of genes that were either up or down regulated at a specific 
time point.

The two modules (M0004 and M0006) that are composed 
of up-regulated genes at 24 h are enriched for Pfam term 
PF01190 (“pollen proteins Ole e I like”). Pollen allergen genes 
have undergone a high degree of duplication and purifying 
selection, suggesting that they are maintained because of 
unique biological functions (Chen et al., 2016). Some of these 
functions include defense response to bacterium and cell 
redox homeostasis, two processes that are involved in root 
nodulation, suggesting there may be additional functions 
for these genes in M. truncatula. The genes in Table 1 are 
also enriched for PF09478 (“carbohydrate binding domain 
CBM49”), a group of cellulases often associated with cell wall 
hydrolysis (Urbanowicz et al., 2007). Notably, Table 1 contains 
a pectinesterase gene (Medtr8g042900) and a disease response 
gene (Medtr2g035120). Thus, the up-regulated genes in Table 1 
could be involved in pathogen response or cell wall remodeling, 
important aspects of infection thread penetration, and nodule 
development. Aspects of a pathogen response, such as ROS 
production, occurs upon rhizobial inflection and then are 
quickly tamped down during infection, and the timing of this is 
consistent with that process (Plett and Martin, 2017). The two 
genes tested on a fourth biological replicate are independent 
from genes described above and in this additional replicate 
they showed the same pattern of regulation as the other 
three replicates, suggesting the pattern is consistent, but firm 
conclusions cannot be drawn without further testing.

Table 2 contains GCN modules that are down regulated in 
inoculated samples at 24 h. M0072 and M0055 both contain a 
gene related to jasmonic acid (JA) synthesis: Medtr7g417750 
(allene oxide cyclase). Suppression of this gene has been shown 
to reduce JA levels in hairy roots of M. truncatula, lowering 
the plant’s ability to achieve mycorrhization (Isayenkov et al., 
2005). While JA seems to play a positive role in mycorrhization, 
it has been demonstrated to negatively impact root nodulation 
by inhibiting nod-factor induced calcium oscillations in the 
nucleus of the cells (Sun et al., 2006). Interestingly, JA and 
cytokinin were found to have antagonistic roles in Arabidopsis 
xylems (Jang et al., 2017). We speculate that down-regulation 
of genes in Table 2 results in a decrease in JA production 
and an increase in cytokinin biosynthesis, contributing to 
root nodulation by shutting down alternate pathways that 
would otherwise enable mycorrhizal symbiosis. We found 
Medtr7g085120, a Nod factor-binding lectin-nucleotide 
phosphohydrolase, to be down-regulated in inoculated samples 
at this time point. This protein is necessary for rhizobial and 
mycorrhizal symbiosis in Lotus japonicus, a determinate 
nodulating plant (Roberts et al., 2013). Previous studies that 
analyzed RNA expression levels of whole-root tissue found this 
gene to be up-regulated early in the course of Sinorhizobium 
meliloti response in M. truncatula. We speculate that the cellular 

composition of the tissue used in our study demonstrates 
differential expression of this gene compared to the whole-
root samples previously analyzed (Larrainzar et al., 2015). The 
two genes tested on a fourth biological replicate X are not any 
of the genes described above. In replicate X, both genes from 
this module showed the same pattern of regulation as each 
other, but they both appeared to be slightly upregulated in this 
single biological replicate. Because this is a single replicate, no 
conclusion can be drawn, but if there is a difference it suggests 
there may be another environmental factor beyond nodulation 
that leads to their co-regulation (one gene appears in multiple 
modules) and that factor is different in replicate X. More likely, 
since expression of the two genes tested is flat in response to 
rhizobia 24 h in the RNASeq but up by 72 h (Figure S2B) it 
is possible that the degree of downregulation and the overall 
trend are important to prediction from the modules.

Table 3 contains two modules, M0032 and M0132, that are 
enriched for KEGG orthology term K15401 (“fatty acid omega-
hydroxylase”). All three modules (M0032, M0132, and M0118) 
contain genes that are annotated as “lipid transfer protein”. 
Lipids play diverse roles in plant physiology, such as signaling 
pathways involved in plant defense (Pinot and Beisson, 
2011; Waschburger et al., 2018). Notably, Medtr4g415290—a 
glycerol-3-phosphate acyltransferase (GPAT) gene, is 
down-regulated in both M0132 and M0118. GPAT enzymes 
catalyze the first step of membrane phospholipid biosynthesis 
(Takeuchi and Reue, 2009; Waschburger et al., 2018). Another 
GPAT gene in M. truncatula, RAM2, is necessary for fungal 
mycorrhization through its involvement in cutin biosynthesis 
(Wang et al., 2012). Other genes involved in lipid biosynthesis 
are present in Table 3: Medtr5g070010 (“cytochrome P450 
family-dependent fatty acid hydroxylase”), Medtr8g079050 
(“GDSL-like lipase/acylhydrolase”), and Medtr3g463060 
(“cytochrome P450 family-dependent fatty acid hydroxylase”). 
We hypothesize that down-regulation of genes in Table 3 
results in inhibition of synthesis of specific fatty acids that 
would otherwise play a negative role in root nodulation. 
M0032 also contains a peroxidase protein, Medtr5g014100. 
Given that peroxidases are often involved in stimulating 
plant defense against pathogens (Almagro et al., 2009), we 
hypothesize that down-regulation of this gene helps to enable 
rhizobial infection. In the additional biological replicate X, 
the two genes tested, which we not in the group discussed 
above, did not exhibit strong down regulation in the single 
replicate but rather the relative expression differences 
between the two genes were close. Again, because this is a 
single biological replicate no firm conclusion can be drawn, 
but since this is also a downregulated module in which all the 
genes are upregulated at 72 h (Figure S2C), it could be seen 
as further confirmation that the degree of downregulation 
and the overall trend are important to prediction from the 
modules. Especially because both genes tested appear in more 
than one module, we also cannot eliminate that there may be 
another environmental factor beyond nodulation that leads to 
the co-regulation and that factor is different in replicate x.

Many of the genes in Tables 1–3 are involved in pathogen 
response. Given that the genes in Table 1 are up-regulated in 
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inoculated samples, these genes might play a role in normal 
pathogen response, while the down-regulated genes in Tables 
2 and 3 could play important roles in damping response during 
nodulation. To support this, we compared the genes in these 
tables to genes that have been found to be dysregulated in nad1 
mutants. NAD1 (nodules with activated defense 1) is a gene 
necessary for maintaining rhizobial symbiosis in M. truncatula 
roots (Wang et al., 2016; Domonkos et al., 2017; Yu et al., 2018). 
In nad1 mutants, brown pigmentation accumulates in the 
nodules following the release of Rhizobium from the infection 
thread, resulting in nodule necrosis. Wang et al. performed 
transcriptome profiling of nad1 mutants to compare with 
control plants at 21 days post-inoculation (Wang et al., 2016). 
Out of the six total genes we identified in Table 1, three were 
upregulated in nad1 mutants (Medtr3g071470, Medtr4g109880, 
Medtr7g102770). Out of the 10 genes identified in Table 2, 5 were 
up-regulated in nad1 mutants (Medtr8g018570, Medtr3g070860, 
Medtr7g417750, Medtr3g102730, Medtr3g013890), while 1 
gene (Medtr7g085120) was down-regulated in the mutants. 
Six of the 11 genes in Table 3 were up-regulated in the 
mutants (Medtr0097s0070, Medtr3g463060, Medtr5g070010, 
Medtr8g079050, Medtr4g415290, Medtr5g064530), while one 
gene was down-regulated (Medtr5g014100). Given that NAD1 
plays a key role in regulating immune response to Rhizobium, 
genes that are dysregulated in NAD1 mutants may play key 
roles in nodulation (Wang et al., 2016). Thus, we speculate 
that the down regulation of genes in Tables 2 and 3 helps to 
suppress innate immune responses that would otherwise 
prevent rhizobial colonization in nodules.

The differentially expressed LCMs we identified provide 
information about coordinated regulation, with the caveat that 
additional biological testing should be used to confirm LCM 
members with downregulation. The tested co-regulated genes 
identified as downregulated suggest the downregulation prediction 
may not be robust for extrapolation with this software. Further 
research is needed to determine if the expression patterns of these 
genes are causative biomarkers, or if they are simply an effect of root 
nodulation or pathogen defense pathways, but their identification 
suggests hypotheses for testing. Regardless, these LCMs revealed 
biochemical differences between control and inoculated samples 
over the course of root infection. This study also provides a list of 
DEGs from the maturation zone of M. truncatula roots for further 
analysis. While this investigation focused on the LCMs that 

were composed only of genes that were differentially expressed, 
other LCMs in which a subset of the genes were differentially 
expressed are the subject of continued investigation in our lab. 
Our work describes a framework for creating networks that will be 
investigated in future wet and dry lab experiments.
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