AUTHOR=de Moraes Moacir Tuzzin , Debiasi Henrique , Franchini Julio Cezar , Bonetti João de Andrade , Levien Renato , Schnepf Andrea , Leitner Daniel TITLE=Mechanical and Hydric Stress Effects on Maize Root System Development at Different Soil Compaction Levels JOURNAL=Frontiers in Plant Science VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.01358 DOI=10.3389/fpls.2019.01358 ISSN=1664-462X ABSTRACT=
Soil mechanical resistance, aeration, and water availability directly affect plant root growth. The objective of this work was to identify the contribution of mechanical and hydric stresses on maize root elongation, by modeling root growth while taking the dynamics of these stresses in an Oxisol into consideration. The maize crop was cultivated under four compaction levels (soil chiseling, no-tillage system, areas trafficked by a tractor, and trafficked by a harvester), and we present a new model, which allows to distinguish between mechanical and hydric stresses. Root length density profiles, soil bulk density, and soil water retention curves were determined for four compaction levels up to 50 cm in depth. Furthermore, grain yield and shoot biomass of maize were quantified. The new model described the mechanical and hydric stresses during maize growth with field data for the first time in maize crop. Simulations of root length density in 1D and 2D showed adequate agreement with the values measured under field conditions. Simulation makes it possible to identify the interaction between the soil physical conditions and maize root growth. Compared to the no-tillage system, grain yield was reduced due to compaction caused by harvester traffic and by soil chiseling. The root growth was reduced by the occurrence of mechanical and hydric stresses during the crop cycle, the principal stresses were mechanical in origin for areas with agricultural traffic, and water based in areas with soil chiseling. Including mechanical and hydric stresses in root growth models can help to predict future scenarios, and coupling soil biophysical models with weather, soil, and crop responses will help to improve agricultural management.