AUTHOR=Jung Ha-il , Kong Myung-Suk , Lee Bok-Rye , Kim Tae-Hwan , Chae Mi-Jin , Lee Eun-Jin , Jung Goo-Bok , Lee Chang-Hoon , Sung Jwa-Kyung , Kim Yoo-Hak TITLE=Exogenous Glutathione Increases Arsenic Translocation Into Shoots and Alleviates Arsenic-Induced Oxidative Stress by Sustaining Ascorbate–Glutathione Homeostasis in Rice Seedlings JOURNAL=Frontiers in Plant Science VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.01089 DOI=10.3389/fpls.2019.01089 ISSN=1664-462X ABSTRACT=

Glutathione (GSH) plays diverse roles in the physiological processes, stress defense, growth, and development of plants. This study investigated the effects of exogenous GSH on the biochemical responses of reactive oxygen species and antioxidant levels in rice (Oryza sativa L. cv. Dasan) seedlings under arsenic (As) stress. As treatment inhibited growth; increased the level of superoxide, hydrogen peroxide, and malondialdehyde; and enhanced the uptake of As by the roots and shoots in hydroponically grown 14-day-old seedlings. Furthermore, it reduced GSH content and GSH redox ratios, which have been correlated with the decrease in ascorbate (AsA) redox state. Whereas the exogenous application of GSH in As-treated seedlings reduced As-induced oxidative stress, improved antioxidant defense systems by maintaining antioxidant and/or redox enzyme homeostasis, and increased the AsA and GSH contents, the GSH application also increased the As translocation from the roots to the shoots. These results indicated that the increase in GSH redox state can be linked to an increase in the AsA redox ratio via the induction of the AsA–GSH cycle. Therefore, the results suggest that exogenous GSH application should be a promising approach to enhance As stress resistance in rice plants.