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Covariation between organ growth and biomass accumulation plays an important role in

plants. Plant to capture optimal fitness in nature, which depend coordinate and interact

for distinct organs such as leaves, stems, and roots. Althoughmany studies have focused

on plant growth or biomass allocation, detailed information on the genetic mechanism

of coordinated variation is lacking. Here, we expand a new mapping model based

on functional mapping to detect covariation quantitative trait loci (QTLs) that govern

development of plant organs and whole biomass, which, via a series of hypothesis

tests, allows quantification of how QTLs regulate covariation between organ growth and

biomass accumulation. The model was implemented to analyze leaf number data and the

whole dry weight of recombinant inbred lines (RILs) of Arabidopsis. Two key QTLs related

to growth and biomass allocation that reside within biologically meaningful genes, CRA1

and HIPP25, are characterized. These two genes may control covariation between two

traits. The new model will enable the elucidation of the genetic architecture underlying

growth and biomass accumulation, which may enhance our understanding of fitness

development in plants.

Keywords: functional mapping, growth equation, covariation, Arabidopsis thaliana, quantitative trait locus (QTL)

INTRODUCTION

A plant includes multiple organs, each of which serves different functions; for example, leaves
photosynthesize organic compounds, and roots take up water and nutrients. Plant to capture
optimal fitness in nature, which depend coordinate and interact for distinct organs (Carbone et al.,
2013). The whole biomass of a plant is the cumulative result of dynamic carbon allocation and
the rate of mass loss for organ growth and development during its life cycle (Poorter et al., 2015).
Several gene-mapping studies have investigated the genetic mechanisms by which plant biomass
and organ growth are controlled (Lisec et al., 2008; Atkinson et al., 2015; Jiang et al., 2015; Song
et al., 2015). In addition, research on biomass allocation has revealed an ecologic relationship
between structure and function (Chen and Reynolds, 1997; Weiner, 2004). For example, the
relationship between leaf area and plant biomass is non-linear and dynamic and depends on
carbon accumulation and partition in Arabidopsis thaliana (Weraduwage et al., 2015). However,
little is known of the genetic mechanisms underlying covariation between organ growth and
whole-plant biomass.
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Genetic mapping enables characterization of QTL that effect
complex traits. The genetic-mapping approaches developed to
date include interval mapping, composite interval mapping,
and multiple interval mapping (Lander and Botstein, 1989;
Zeng, 1994; Kao et al., 1999). The development of high-
throughput sequencing technology has enabled genome-wide
association studies (GWASs) of the associations between single-
nucleotide polymorphisms (SNPs) and phenotype (Kruglyak,
2008; Civelek and Lusis, 2014). However, these methods are
static and do not take into consideration the developmental
pattern of phenotype. Ma et al. proposed a dynamic model
for mapping growth QTLs for a complex trait. This model,
known as functional mapping, which incorporates growth
equations into genetic mapping is capable of addressing
fundamental issues in quantitative genetics and developmental
biology (Ma et al., 2002; Wu and Lin, 2006). However, for
QTL mapping, GWAS or functional mapping cannot map the
covariation between organ growth and whole-plant biomass,
which cannot simultaneously consider dynamic and static
phenotype, respectively.

In this study, we attempt to extend a mapping model-
functional mapping-derived which incorporate the static
feature into the dynamic one to detect covariation QTLs that
govern the development of plant organs and the increase
in whole-plant biomass. Our model capitalizes on QTL
genotype-dependent growth parameters estimated from
functional mapping and enables hypothesis testing for the
genetic effects of covariation QTLs. Here, we show how
the model can be used to map QTLs associated with leaf
growth and whole biomass of the model plant A. thaliana.
To evaluate the performance of our model, we perform a
computer simulation based on the results of data analyses
and compare functional mapping with the traditional method
for dynamic and static data, respectively. The new model
enables mapping of covariation genes and will enhance our
understanding of the effects of these genes on plant growth and
biomass accumulation.

MODEL

Statistical Model
Consider a mapping or natural population that it is composed
of n individuals, each genotyped for a panel of molecular
markers. A growth trait of each individual i, such as plant
height or leaf number, is measured at T time points.
After the end of the life cycle, the whole-plant biomass
of each individual plant was determined. Because high-
throughput sequencing markers cover the entire genome,
we employed the multiplicative model for mapping and for
natural populations.

Let yi = (yi(1), . . . , y(T)) and zi denote the vectors of
time-dependent growth trait values and biomass, respectively,
of individual i. We employed the multiplicative model, which
assumes that QTLs are located at the marker positions. We
hypothesized that growth traits and biomass accumulation are
controlled by a set of QTLs throughout the genome, such that the
multiplicative likelihood model for each marker is expressed as:

L(�|Y) =
J

∏

j=1

nj
∏

i=1

fj(Yi|µj,6) (1)

where � = c(µj,6) is the unknown parameter set; Yi = c(yi, zi)
is the vector of individual i including the growth trait y and
biomass index z; J is the number of genotypes for each marker;
nj is the number of individuals with marker genotype j and
fj(Yi|µj,6) is the multivariate normal density function with the
genotype-dependent mean vector:

uj = c(µ
y
j ,µ

z
j ) = c(µ

y
j (1), . . . ,µ

y
j (T),µ

z
j ) (2)

and the covariance matrix:

6 =

(

6y 6yz

6zy σ 2
z

)

(3)

where µ
y
j are the expected means of the growth trait for genotype

j from time 1 to T;µz
j are the expected means of the static trait for

genotype j; 6y and σ 2
z are the covariance matrix and variance for

the growth and static traits, respectively, and 6yz = 6
′

zy being a
(T × 1) covariance matrix between the two traits.

Modeling the Mean Vector
Because we analyzed dynamic and static data, we reconstructed
the mean vector. For a growth trait, the time-dependent
genotypic values for different QTLs can be fitted to a logistical
growth equation, which is expressed as:

g(t) =
a

1+ be−rt
(4)

where g(t) is the trait value at time t; a is the asymptotic value
of g when t tends to be infinite; b describes the initial growth;
and r is the relative growth rate. Functional mapping does not
estimate the expected genotypic means using (Equation 2), but
models these means using (Equation 4). Specifically, the mean
value vector (2) for genotype j is expressed as:

µj = c(µ
y
j ,µ

z
j ) = c(

aj

1+ bje
−rj

, . . . ,
aj

1+ bje
−rjT

,µz
j ) (5)

through a set of parameters (aj, bj, rj,µ
z
j ). Thus, we can

test whether this QTL covariate affects growth and biomass
allocation by comparing differences in the genotype-dependent
parameter sets.

Modeling the Covariance Matrix
In Equation (3), 6y is the covariance matrix for longitudinal
traits. We used a cost-effective method to model the longitudinal
covariance matrix by a particular parameter set. To date, several
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methods, such as autoregressive, antedependence, and non-
parametric methods, have been used to describe this matrix
(Ma et al., 2002; Zhao et al., 2005; Yap et al., 2009). Of
these, auto regression may be the most parsimonious as it
uses fewer parameters to capture the complex structure of a
matrix and exemplifies the statistical power of QTL mapping.
The construction of 6y can be modeled by the most flexible
first-order autoregressive (AR(1)) model in which there are two
parameters; i.e., there is the same residual variance (σy) for the
trait at each time point, and the stationary covariance, which
decreases proportionally (in ρy) with increased interval between
measurements. The covariance matrix Σyz is composed of the
correlation coefficient φ and variance σ 2

z of the static trait. The
parameter ϕ is used to measure the correlation between dynamic
and static data. Thus, the covariance matrix Σ can be explicitly
expressed by (σ 2

y , ρy,ϕ, σ
2
z ). In this study, we employed a simplex

algorithm to estimate all parameters by optimizing (Equation 1).
The genotype and covariance parameters are estimated separately
for each marker.

Hypothesis Tests
The existence of a significant QTL can be tested by the following
hypothesis tests:

H0 :(aj, bj, rj,µ
z
j ) ≡ (a, b, r,µz) for j = 1, . . . , J

H1 :Not all equalities above do not hold (6)

where H0 corresponds to the reduced model in which no QTL
affects growth and biomass accumulation, and H1 corresponds
to the full model in which QTLs exist. We calculated the log-
likelihood ratio (LR) of the reduced to the full model and
comparing it with a critical threshold. The threshold can be
empirically determined from permutation tests by reshuffling the
phenotypic data 1,000 times (Churchill and Doerge, 1994). The
maximum LR value was extracted for each sampling. The top
5% of LR values were used as a critical threshold to indicate a
significance level of 0.05.

After a QTL was significant, we tested its effect on organ
growth. We formulated the following null hypotheses:

H0 :(aj, bj, rj) ≡ (a, b, r) for j = 1, . . . , J (7)

We also tested whether the QTLs affect biomass accumulation by
formulating the following null hypotheses:

H0 :µ
z
j ≡ µz for j = 1, . . . , J (8)

The above three tests are used to determine whether a QTL is a
covariation QTL.

APPLICATION

Mapping Population
We obtained a mapping population composed of 116
recombinant inbred lines (RILs) derived from A. thaliana
Landsbergerecta (Ler) and Shakdara (Sha). These RILs were

genotyped by resequencing technology, producing 417,495
good-quality polymorphic SNPs (Jiang et al., 2018). Each RIL
was grown in a square plate filled with a 1:1:1 mixture of
vermiculite + turfy soil + limestone. All seeds germinated
normally into 5,220 seedlings at 25◦C, humidity 70%, and 8 h
of light at 25 Wm−2 in a climate chamber. Starting 1 week
after seed sowing, the number of leaves of a set of 10 plants
from each RIL was measured weekly until lifecycle completion.
Whole plants (including roots) were collected after the last
phenotypic measurement and transferred to an electrothermal
constant-temperature dry box at 105◦C for 48 h. Finally, the dry
weight of each individual plant was measured.

QTL Mapping
To evaluate the applicability of growth equations to
characterizing the development pattern of a trait, a least-
squares approach was used to fit leaf number over time with the
logistical curve of each individual. The dynamic change in leaf
number was well fitted by the logistical curve (Equation 4) for
each RIL (R2 > 0.96; Figure S1). In addition, the different growth
trends of the RILs implies genetic control of the growth in the
number of leaves. The statistical model based on the logistical
growth curve was used to map the QTLs responsible for changes
in leaf number.

We fitted themean growth curve of leaf number andmean dry
weight for all A. thaliana individuals based on the new model.
Figure 1A shows the mean growth curve fitted by Equation (4),
from which we identified the growth in leaf number over time.
The rate of increase in leaf number at the early stage was faster
than that subsequently, and leaf number exhibited asymptotic
growth during whole growth period (Figure 1A). The fitted
mean value for dry weight, a static trait measured until lifecycle
completion, was 5.05, which reflects biomass accumulation in
A. thaliana (Figure 1B). By estimating ϕ, we quantified the
correlation between dry weight and leaf number. There was a
significant correlation between the growth in leaf number and in
biomass in A. thaliana (P < 0.01; ϕ = 0.65).

In the climate chamber, Ler exhibited a greater increase in
leaf number than Sha but the dry weight showed a different
trend. In addition, the growth curves of leaf number and biomass
allocation varied markedly among the RILs, suggesting the
existence of QTLs. By incorporating Equation (5) into Equation
(1), the new model identified some QTLs that control the overall
growth trajectory of leaf number at 1–9 weeks, the whole-plant
dry weight, or both (Figure 2). The threshold value for the
existence of QTLs obtained by 100 permutation tests was 47 at
P= 0.05. Over two-thirds of the QTLs were within or adjacent to
candidate genes with functional annotations (Table S1). Notably,
most QTLs were located on chromosome1 (Figure 2) and some
existed in the same candidate gene.

We selected the 10 most significant QTLs, all of which were
annotated (Table 1). The SNPs chr1/24264668, chr1/24264657,
and chr1/24264642 were located in a region of CBSX6 related to
vacuole function. The SNP chr1/24405170 was in AS2 (related to
leaf shape), which plays an important role in early development
of leaf in Arabidopsis. The SNP chr1/23726087 was in the region
of AtMYB103, which encodes an R2R3-type MYB transcription
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FIGURE 1 | Leaf number change trajectories in an RIL of Arabidopsis, fitted by

a logistic equation. Magenta line represents the overall growth curve fitted to

leaf number of all RILs (Gray line). Magenta triangle represents the mean fitted

to dry weight of all RILs (Gray triangle).

FIGURE 2 | Manhattan plots of significance tests for single nucleotide

polymorphisms (SNPs) across five Arabidopsis chromosomes by new model

for growth curve of leaf number and dry weight of whole plant in the

recombinant inbred lines (RILs). Dotted horizontal lines is the critical thresholds

at the 5% significance level obtained after permutation test.

factor that regulates normal anther and pollen development in
Arabidopsis. The SNPs chr1/7856114 and chr1/8513050 were
annotated as hypothetical proteins, and their biological function
is unknown.

For each significant QTL, we estimated genotype-dependent
growth and biomass accumulation parameters to assess the
dynamic pattern of the genetic effects of growth phenotype and
the distribution of genetic effects of static trait exerted by each
locus (Figure 3). We also estimated the correlation coefficients
for the growth of leaf number and dry weight. The magnitudes
of the genetic effects on leaf number varied over time; five
and three QTLs displayed ascending and decreasing trends,
respectively (Figure 3A). The temporal variation in heritability
explained by leaf number was observed for 10 SNPs (Figure 3B);
chr1/7856114 and chr1/24264668 increased monotonously
over time; chr2/12308953, chr1/24264642, chr1/23726087, and
chr1/8451057 increased rapidly and subsequently decreased

gradually, with a peak at weeks 2–4; chr1/24405170 decreased
consistently over time. The magnitudes of the genetic effects of
the 10 QTLs on dry weight are shown in Figure 3C.

Test of Covariation QTLs
The advantage of our model lies in its capacity to test whether
a significant QTL affects the genetic covariation between the
dynamic change in a phenotype and biomass accumulation
(Equations 7 and 8). We further tested whether the QTLs control
two traits or only one of them using the 10most significant QTLs.
Most of the QTLs affected the dynamic change in leaf number but
only two impacted dry weight; chr1/8513050 and chr1/8451057
affected both phenotypes. chr2/12308953 and chr4/16690778
did not influence either phenotype, but they controlled the
covariation growth for two traits and so are covQTLs. Therefore,
the expression of a covQTL is sensitive to the correlation between
dynamic and static traits and may vary depending on the type
of trait.

Computer Simulation
We conducted a computer simulation to validate the statistical
properties of our model based on the working example used in
this study. Data were simulated by assuming that dynamic and
static traits are either correlated or uncorrelated. The phenotype
was determined by a set of QTLs among 1,000 simulatedmarkers,
plus a residual error following amultivariate normal distribution.
In the correlated simulation scenario (Scenario 1, φ = 0.65;
Scenario 2, φ = 0.4; Scenario 3, φ = 0.2), the phenotype of a
growth trait over time was simulated by time-varying genotypic
values (Equation 5) plus a covariance matrix (Equation 3),
whereas phenotypic data in the uncorrelated simulation scenario
(Scenario 4) were generated by neglecting ϕ . Scenarios 1, 2, and
3 indicate strong, moderate, and weak correlation, respectively,
between the static and dynamic data. We adjusted the innovation
variance to obtain curve heritability levels of 0.05 and 0.10. The
simulation considers three sample sizes: 500, 200, and 100.

Data were analyzed reciprocally using analysis of variance
(ANOVA), univariate functional mapping, and our new model.
ANOVA was used to detect associations between molecular
markers and static traits. Univariate functional mapping was
used to identify specific QTLs that govern processes and
patterns of development over time. As expected, traditional
mapping (ANOVA and univariate functional mapping) detected
significant QTLs from the uncorrelated data at a moderate
sample size and heritability; however, its power for QTL detection
among strongly and moderately correlated data was substantially
lower (0.93–0.72; Table 2). Similarly, our new model showed
reasonably good power to detect QTLs hidden within the
correlated data, although its performance was dramatically
slower for analyzing uncorrelated data at small and moderate
sample sizes. The power of the new model was better than that
of traditional approaches when correlation coefficient φ = 0.2
at large sample sizes. The performance of the new model was
very similar to those of traditional methods for uncorrelated data
at large sample sizes, with the same trends reflected in weakly
correlated data at small and moderate sample sizes (Table 2). The
results of the simulation studies suggest that the new model is
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TABLE 1 | Physical positions, heritability, and function annotation of 10 significant single nucleotide polymorphisms (SNPs), detected by the new model that affect leaf

number growth and the whole weight in Arabidopsis.

SNP.ID Gene.ID Chr Position Allele Heritability Annotation

Leaf number Weight

1 AT1G22250 1 7856114 A/G 10.620 0.720 Hypothetical protein

2 AT1G65320 1 24264668 A/G 9.358 1.697 CBSX6

3 AT1G24060 1 8513050 C/T 1.029 0.867 Hypothetical protein

4 AT2G28680 2 12308953 C/T 0.267 2.027 CRA1

5 AT1G65620 1 24405170 C/G 0.205 0.243 AS2

6 AT1G65320 1 24264642 A/G 1.441 0.034 CBSX6

7 AT1G63910 1 23726087 G/T 0.378 0.002 AtMYB103

8 AT4G35060 4 16690778 A/T 1.978 1.151 HIPP25

9 AT1G23920 1 8451057 A/C 1.610 0.438 –

10 AT1G65320 1 24264657 A/C 0.527 0.085 CBSX6

FIGURE 3 | Temporal pattern of genetic effects for leaf number and dry weight and heritability for leaf number in an RIL of Arabidopsis. (A) Dynamic change of genetic

effects of ten QTLs for leaf number. (B) Heritability explained by each of these chosen QTLs for leaf number. (C) Genetic effects of ten QTLs for the whole dry weight

of Arabidopsis, detail information of SNP.ID is listed Table 1.

suitable for related and unrelated cases at large sample sizes. The
new model is also suitable for correlation coefficients ≥ 0.2 at
small and moderate sample sizes.

We plotted estimated growth curves and static values from
the simulated data; the true curves were within the confidence
interval of the estimated curves (Figure 4). The above results
suggest that our new model not only enables precise mapping
of any QTL that affects genetic covariation in phenotypic traits
but also that it is statistically robust for the identification of
significant QTLs for a single phenotypic trait.

DISCUSSION

The growth and survival of any organism require maintenance
of functional associations via the coordinated development
of various organs. During the plant lifecycle, the covariant
relationship between the growth and development of organs
and biomass accumulation, such as leaf growth and dry weight,
plays a pivotal role in photosynthesis and nutrition or water
absorption and so on. Research to date has focused on the
relationship between organ growth and biomass at the ecological
scale, while the underlying genetic mechanisms have been
neglected (Poorter and Nagel, 2000; Shipley and Meziane,
2002). GWASs enable elucidation of the genetic architecture

of complex traits by identifying the genes that control
phenotypic variation (Visscher et al., 2012). Because traits are
dynamic, functional genome-wide association studies (fGWASs)
use developmental processes to generate genotype-phenotype
maps. Their use of mathematical equations for trait formation
renders fGWASs statistically powerful and biologically relevant
(Wang et al., 2018).

We performed an fGWAS to identify QTLs involved in plant
organ growth and biomass allocation. Our model assesses not
only the effects of genes on the variation in traits associated with
organ or tissue growth and biomass accumulation but also the
relationships of growth and biomass with pleiotropic genes or
different genes in a strong linkage. Logistic equations are useful
for biological research at the cell, organ, tissue, organism, and
population levels. Combining logistic equations with the new
model, we can better describe the forms of growth curve. By
analyzing the GWAS data of recombinant inbred Arabidopsis
lines, we identified 10 QTLs related to the change in leaf number
or whole-plant biomass. The biological functions of some of these
QTLs have been validated.

As shown in Equation (6), we assessed the genetic control
of the QTLs. CBSX6 (chr1/24264668, chr1/24264642, and
chr1/24264657) encodes a cystathionine β-synthase family
protein that affects thioredoxin activation, controls cellular H2O2

levels, and modulates plant development and growth (Ok et al.,
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TABLE 2 | Power of QTL detection by traditional method (ANOVA and Functional mapping) and new model from the data simulated under four scenarios, respectively,

under different heritabilities, 0.05 and 0.10, for sample size 500, 200, and 100.

Simulation

Scenario 1 Scenario 2

N = 100 N = 200 N = 500 N = 100 N = 200 N = 500

Method H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

New model 60% 86% 76% 94% 92% 96% 58 % 81% 72% 91% 89% 95%

Traditional 33% 63% 40% 72% 48% 77% 47 % 73% 60% 78% 62% 84%

Scenario 3 Scenario 4

N = 100 N = 200 N = 500 N = 100 N = 200 N = 500

Method H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

H2

= 0.05

H2

= 0.1

New model 53% 80% 69% 86% 87% 95% 52 % 77% 65% 84% 84% 93%

Traditional 53% 78% 71% 85% 76% 89% 59 % 84% 81% 93% 86% 95%

FIGURE 4 | Simulation results by mimicking one significant QTL detected from the real example in terms of sample size (A represents N = 200 and B represents N =

100) and heritability (0.05 and 0.10). Estimated mean value and the true value are denoted by red and green lines, respectively.

2012). The association of AS2 (chr1/23726087), which encodes a
member of a family of proteins characterized by cysteine repeats
and a leucine zipper, is involved in knotted1-like homeobox
(KNOX) gene regulation (Hay and Tsiantis, 2010; Vial-Pradel
et al., 2018). KNOX proteins are homeodomain transcription
factors that maintain an important pluripotent cell population
called the shoot apical meristem, which generates the entire
aboveground body in vascular plants (Hay and Tsiantis, 2010).
The transcription factor AtMYB103 was previously identified
as a member of the transcriptional network that regulates
secondary wall biosynthesis in xylem tissues of Arabidopsis, and
has been hypothesized to be involved in cellulose biosynthesis
(Öhman et al., 2013).

Any QTL that controlled the two traits simultaneously was
considered a covQTL. We detected two covQTLs by Equations
(7) and (8),CRA1 (chr2/12308953) andHIPP25 (chr4/16690778),
involved in plant structure, growth, and development. CRA1 was
expressed during flowering, petal differentiation, and expansion
(Li et al., 2008; Sekhon et al., 2012), and in collective leaf
structure, flower, petal, pollen, and sepal (Shapiguzov et al., 2016;
Robinson et al., 2018). HIPP25 was expressed in LP.04 at the
four-leaves-visible stage and in LP.06 at the six-leaves-visible,
flowering, petal differentiation, and petal expansion stages (Jiang
et al., 2012; Ogawa et al., 2015; Xiao et al., 2018) and in the carpel,
leaf apex, petal, plant embryo, pollen, root, sepal, stamen, stem,
and leaf vasculature (Chauvin et al., 2013; Shapiguzov et al., 2016;
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Luo et al., 2018). These two covQTLs are major contributors to
leaf growth and biomass accumulation in Arabidopsis. Therefore,
our new method enables elucidation of the genetic mechanisms
that control growth and biomass accumulation in plants.

The results of our computer simulation studies show that
our model has favorable statistical properties and is expected to
produce reasonably accurate results, even when two traits are
weakly correlated. At modest sample sizes, the power of the
new model is lower than those of traditional methods due to
rare variance between two datasets, mainly because covariance
parameter estimates are not precise. However, the new method is
expected to solve this issue at large sample sizes. The simulation
results of our model will certainly improve experimental design
aimed at exploring the genetic mechanisms involved in growth
and biomass accumulation in plants.

Our method can be modified to increase its realism. Because
it was based on a dynamic phenotype and a static trait, the ability
of our method to make statistical inferences about the genetic
basis of multiple growth traits and biomass allocation may be
limited (Alimi et al., 2013; El-Soda et al., 2014). By simultaneously
analyzing multiple traits, this issue can be resolved from
framework of function mapping, such as proposing system
mapping based on functional mapping (Wu et al., 2011). In
addition, our new method was associated with single SNP, but
the main-effects model is likely too simple to be used for
characterizing genetic variants in quantitative traits (Pang et al.,
2012; Mackay, 2014). We plan to integrate high-order QTL–
QTL interactions into our newmethod. Amultiple-QTL epistatic
model will enhance our understanding of the contribution of

epistatic effects to organ growth and biomass allocation. Since
nearby loci can share similar covariance for the same set of
traits, it is more efficient to perform hypothesis testing using
a joint estimation of nearby loci. In future research, we will
attempt to extend the new model to analyze, simultaneously,
nearby markers.
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