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Many Dendrobium species are both ornamental and medicinal plants in China. Several wild 
species have been exploited to near extinction, and facility cultivation has become an 
important way to meet the great market demand. Most Dendrobium species have evolved 
into crassulacean acid metabolism (CAM) pathways in adapting to harsh epiphytic 
environment, leading to low daily net CO2 absorption. Photosynthetic pathways of many 
facultative CAM plants are regulated by various environmental factors. Light/dark cycle 
plays an important role in regulating the photosynthetic pathway of several CAM species. 
The aims of this study were to investigate whether the photosynthetic pathway of Dendrobium 
species could be regulated between C3 and CAM by changing light/dark cycles and the 
daily net CO2 absorption could be enhanced by shortening light/dark cycle. In this study, 
net CO2 exchange rates of D. officinale and D. primulinum were monitored continuously 
during two different light/dark cycles conversion compared to Kalanchoe daigremontiana 
as an obligate CAM plant. The net CO2 exchange pattern and stomatal behavior of  
D. officinale and D. primulinum were switched from CAM to C3-like by changing the light/
dark cycle from 12/12 h to 4/4 h. However, this switching was not completely reversible. 
Compared to the original 12/12 h light/dark cycle, the dark, light, and daily net CO2 exchange 
amount of D. officinale were significantly increased after the light/dark cycle was changed 
from 4/4 h to 12/12 h, but those in D. primulinum was opposite and those in K. daigremontiana 
was not affected. Daily net CO2 exchange amount of D. officinale increased by 47% after 
the light/dark cycle was changed from 12/12 h to 4/4 h, due to the sharp increase of light 
net CO2 exchange amount. However, the large decrease of dark net CO2 exchange amount 
could not be offset by increased light net CO2 exchange amount, leading to reduced daily 
net CO2 exchange amount of D. primulinum. In conclusion, the 4/4 h light/dark cycle can 
induce the photosynthetic pathway of D. officinale and D. primulinum to C3-like, and improve 
the daily CO2 absorption of D. officinale.

Keywords: C3-like pathway, CAM pathway, Dendrobium officinale, D. primulinum, dark net  
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INTRODUCTION

Dendrobium is the second largest genus of Orchidaceae (Takamiya 
et  al., 2011; Yan et  al., 2015). Many Dendrobium species not 
only have important ornamental values but also possess high 
medicinal values in China (Ng et  al., 2012; Yan et  al., 2015; 
Teixeira Da Silva et al., 2016). Many wild species are endangered 
due to the exploitation, and facility cultivation has become 
an important way to meet the great market demand of 
Dendrobium. However, most Dendrobium species have evolved 
into crassulacean acid metabolism (CAM) pathways in adapting 
to harsh epiphytic environment, and their photosynthetic 
pathways also vary with the environment and species (Gehrig 
et  al., 2001; Su and Zhang, 2003; Yang et  al., 2011; Ren and 
Bai, 2015). For instance, Su and Zhang (2003) measured the 
daily changes of net CO2 exchange rates of D. officinale under 
various weather conditions and found that it had a CAM 
pattern on sunny days, a C3 pattern on rainy days, and a 
pattern between CAM and C3 on cloudy days. Yang reported 
that diurnal net CO2 exchange rates in D. primulinum had 
four distinct phases of 24-h CAM cycle (Yang et  al., 2011). 
More and more Dendrobium plants have been found to have 
CAM pathway to some extent.

It is widely assumed that the very earliest evolution of CAM 
was driven by low ambient atmospheric CO2, then the requirement 
of economic water use for terrestrial CAM plants (Flexas et al., 
2012). CAM is found in about 6% of vascular plants species 
spanning 35 plant families as an adaption to water deficit 
(Silvera et  al., 2010). CAM is an important ecophysiological 
metabolic adaption that permits plants to occupy extremely 
arid environments (e.g., deserts), semi-arid regions with seasonal 
water availability (e.g., Mediterranean climates), or habitats with 
intermittent water supply (e.g., tropical epiphytic habitats) 
(Cushman, 2001). CAM is often described as a continuum, 
with constitute CAM at one end, C3 at the other, and various 
facultative CAM between (Winter et  al., 2015; Winter, 2019). 
Constitutive CAM species undergo a one-way developmental 
progression to CAM and maintain CAM even under well-
watered conditions (Winter et  al., 2008). Facultative CAM 
describes the optional use of CAM photosynthesis in plants 
that otherwise employ C3 or C4 photosynthesis; reversibility 
distinguishes facultative CAM from ontogenetically programmed 
unidirectional C3-to-CAM shifts inherent in constitutive CAM 
plants (Winter and Holtum, 2014).

Photosynthetic pathways of many facultative CAM species 
are influenced by several environmental factors such as soil 
water content and light intensity, as well as photoperiod 
(Brulfert et  al., 1996; Mattos and Lüttge, 2001; Brilhaus et  al., 
2016;). CAM and C3-like pathway of Kalanchoe blossfeldiana 
can be  induced by short light period and short light period 
with interruption of long dark period respectively, and 
phytochrome is involved in these processes (Schmitz, 1951; 
Gregory and Thimann, 1954; Wilkins, 1962; Queiroz and 
Morel, 1974). Studies on the effects of D. ekapol showed that 
short light period increased the net CO2 absorption of phase I 
(dark period), while long light period increased the net CO2 
absorption of phase II (early stage of light period) and phase 

IV (at the end of light period) (Sekizuka et  al., 1995). The 
CAM pathway and CO2 uptake of Doritaenopsis Queen Beer 
“Mantefon” can both be  restrained by short light/dark cycle 
(Kim et al., 2017). Under the normal 12/12 h light/dark cycle, 
CAM and C3 pathways coexist in D. officinale, whereas C3 
pathway can be  upregulated by short light/dark cycle (short 
light period and short dark period), especially extreme treatment 
of 4/4  h light/dark cycle can lead to C3-like light-only CO2 
uptake pattern (Zhang et  al., 2014). However, it was not clear 
whether stomatal movement was involved or whether 
photosynthetic pathway switching was reversible between light/
dark cycles of 12/12  h and 4/4  h.

For a long time, both C3 and CAM stomatal movements 
have been associated with the perception of CO2 concentration; 
intuitively, the response to partial pressure of CO2 in the substomatal 
cavities (Ci) seems to be  the most likely signal to regulate the 
inverse stomatal cycle associated with CAM (Males and Griffiths, 
2017). At the beginning of phase I of CAM, stomatal opening 
was considered to be  caused by the decrease of Ci with the 
increase of phosphoenolpyruvate carboxylase (PEPC) activity at 
dusk (Griffiths et  al., 2007; Caemmerer and Griffiths, 2009). In 
the morning, stored malic acid is decarboxylated in phase II,  
which strengthens stomatal closure. This, coupled with  
respiration, can lead to 100 times atmospheric concentration in 
Ci. The phase IV of reopening stomata is related to the end of 
malic acid decomposition, therefore, internal CO2 limitation 
(Cockburn, 1979). When CO2 uptake and malic acid accumulation 
decreased at night and subsequent Ci regeneration decreased at 
phase III, stomata remained closed, and there was almost no 
transient response to CO2, suggesting that circadian control of 
stomata was still a key factor in controlling CAM cycles of 
Kalanchoe daigremontiana and K. pinnata (Caemmerer and Griffiths, 
2009). Studies on facultative CAM plants show that blue light 
can regulate stomatal conductance opening only in C3 mode 
(Lee and Assmann, 1992; Tallman et  al., 1997).

This study aimed to investigate whether photosynthetic 
pathway of Dendrobium plants could be switched between CAM 
and C3, and the daily net CO2 absorption could be  increased 
by different light/dark cycles conversion. The results of this 
study may help researchers better understand the relationship 
between light/dark cycle, stomatal behavior, and CO2 absorption 
in different CAM plants.

MATERIALS AND METHODS

Experimental Materials and  
Cultivation Methods
Dendrobium officinale collected from Jinhua city (Zhejiang, 
China) and D. primulinum collected from Puer city (Yunnan, 
China) were cultivated and acclimatized in a walk-in phytotron 
at China Agricultural University (Beijing, China) for 2  years. 
K. daigremontiana, an obligate CAM plant, used as a reference, 
was grown from leaf-borne ramets in the same walk-in phytotron. 
The two Dendrobium species and K. daigremontiana were planted 
in 0.4  L plastic pots, three plants per pot. The cultivation 
substrate was moss for these two Dendrobium species, and a 
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mixture of vermiculite and perlite (volume ratio was 3:1) for 
K. daigremontiana. All pots were irrigated with 70  ml tap 
water every 2  days, and irrigated with the same amount of 
nutrient solution every 7  days for 2  years. Nutrient solution 
formula was as follows: Ca(NO3)2•4H2O 205 mg L−1, MgSO4•7H2O 
60 mg L−1, KH2PO4 136 mg L−1, NH4NO3 80 mg L−1, MnSO4•H2O 
3.6  mg  L−1, H3BO3 2.7  mg  L−1, FeSO4•7H2O 13.4  mg  L−1, 
CuSO4•5H2O 0.1  mg  L−1, ZnSO4•7H2O 0.4  mg  L−1, and 
(NH4)6Mo7O24•4H2O 0.1  mg  L−1. EC and pH of the nutrient 
solution were controlled at 0.6–0.7  ms  cm−1 and 6.0–6.5, 
respectively. The environmental parameters of the phytotron 
for 2  years of long-term cultivation were as follows: artificial 
light source was T5 tricolor fluorescent lamp (28  W, Beijing 
Lighting Valley Co., Ltd., Beijing, China); the photosynthetic 
photon flux density (PPFD) at the plant canopy was 
150  μmol  m−2  s−1; light/dark cycle was 12/12  h (light period, 
0800–2000 hours; dark period, 2000–0800 hours); temperature 
during the light and dark periods was 26°C ± 1 and 22°C ± 1°C, 
respectively; relative humidity was 65% ± 5%; CO2 concentration 
was 500  ±  50  μmol  mol−1.

Light/Dark Cycle Treatment
Different light/dark cycle treatments began after acclimatization 
in the environment of phytotron for 3  months, when both  
D. officinale and D. primulinum plants had 8–10 expanded leaves, 
and K. daigremontiana plants had 16 expanded leaves. All the 
plants used in this experiment were in a vegetative stage when 
they were subjected to different light/dark cycle treatments. 
Twelve similar-sized healthy plants were selected from each 
species treating with a light/dark cycle of 12/12  h (light period, 
0800–2000 hours; dark period, 2000–0800 hours) for five cycles 
(5  days). At the end of the fifth dark period, the light/dark 
cycle was changed to 4/4  h for 15  cycles (5  days). After the 
15th dark period (the end of the fifth day), the light/dark cycle 
was changed back to 12/12  h for another five cycles (5  days) 
as mentioned above. The light intensity, temperature, relative 
humidity, and CO2 concentration during the light/dark cycle 
treatment were maintained at the same levels as mentioned above.

Measurement of Net CO2 Exchange  
Rates, Dark, Light, and Daily Net CO2 
Exchange Amount, and Dark Net CO2 
Exchange Percentage
The photosynthetic continuous measurement system (Zhang 
et  al., 2014) used in this study consists of four cuvettes 
(25  cm  ×  15  cm  ×  6  cm), a host computer, and an IRGA 
CO2 analyzer (LI-7000, LICOR, Lincoln, USA). One shoot 
of D. officinale and one shoot of D. primulinum, each with 
8–10 leaves, as well as two fully expanded mature leaves 
from two different K. daigremontiana plants were selected 
for this measurement. Each of the four different samples was 
enclosed into each of the different cuvettes. All leaves were 
held flat by several horizontal nylon wires. All plants were 
kept intact and irrigated with 70  ml tap water once a day 
during the measurement. The measurement was repeated for 
three times. The temperature and relative humidity of the 

cuvettes was the same level as that of the phytotron as 
mentioned above. PPFD at the top of the cuvettes was 
150  μmol  m−2  s−1. The air flow rate of each cuvette was 
1.0  L  min−1. The difference of CO2 concentration between 
reference and sample gas of each cuvette recorded every 
10  min throughout the treatment period. The measurements 
for these three species were carried out concurrently. Leaf 
area of each cuvette was determined according to Yang et  al. 
(2002) after 15  days. Then net CO2 exchange rate of each 
cuvette was calculated according to Zhang et  al. (2014). Dark 
net CO2 exchange amount, light net CO2 exchange amount, 
and daily net CO2 exchange amount were integrated based 
on dark, light, and daily net CO2 exchange rates everyday 
(24  h). The dark net CO2 exchange percentage was defined 
as dark net CO2 exchange amount divided by daily net CO2 
exchange amount times 100%. Dark, light, and daily net CO2 
exchange amount, as well as dark net CO2 exchange percentage 
measurement data for these three species were collected at 
the last 2  days of each light/dark cycle (days 4 and 5, days 
9 and 10, days 14 and 15). Three replicates were conducted 
in this measurement for each species.

Measurement of Stomatal Conductance
A leaf porometer (SC-1, Decagon, Washington, USA) was used 
to measure the stomatal conductance of abaxial surface of  
the leaves of other plants outside the cuvettes for D. officinale, 
D. primulinum, and K. daigremontiana. Daily desiccant 
replacement and the leaf porometer calibration were done 
before the measurement. Automatic mode was used to obtain 
each value in 30  s. Measurements were conducted at 0700, 
0900, 1,300, 1,600, 1900, 2100, and 2300 hours on day 5 (0700, 
2100, and 2300 hours were in dark period), and at 0200, 
0600, 1000, 1400, 1800, and 2,200 hours on day 9 (0600, 1400, 
and 2200 hours were in dark period). Four plants per species 
were measured at each time. The stomatal conductance were 
measured for the third leaf from top of each plant (n  =  4).

Statistical Analysis
Statistics analysis was performed using the IBM SPSS Statistics 
21 (IBM, Inc., Armonk, NY, USA). The average dark, light, 
and daily net CO2 exchange amount, as well as dark net CO2 
exchange percentage for each species (D. officinale, D. primulinum, 
and K. daigremontiana) were compared respectively between 
different light/dark cycles by Duncan’s multiple range test at 
p  <  0.05. The average stomatal conductances at each time of 
day 5 and day 9 were compared for each species by the same 
method as mentioned above, respectively.

RESULTS

Net CO2 Exchange Rates
The net CO2 exchange exhibited obvious trailing phenomenon 
during the conversion between the light and dark period. Thus 
its influence had been considered in the subsequent results 
analysis. When light/dark cycle was 12/12 h, net CO2 exchange 
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rates of D. officinale, D. primulinum, and K. daigremontiana 
exhibited multiple periodic variations. The net CO2 exchange 
rates of D. officinale, D. primulinum, and K. daigremontiana 
increased successively after onset of the dark period. When 
switched to light period, the net CO2 exchange rate of  
K. daigremontiana first rose to the peak and then fell to near 
zero at 0900 hours; that of D. officinale and D. primulinum 
first increased and then decreased until 1600 hours before 
falling to near zero. The net CO2 exchange rates of D. officinale 
exhibited the shortest time of fluctuation around zero, followed 
by D. primulinum, that of K. daigremontiana exhibited the 
longest duration near zero. The net CO2 exchange rates of 
all these three species would rise at the end of the light 
period (Figure  1A). After light/dark cycle was changed to 
4/4  h for 3  days (on day 9), net CO2 exchange of D. officinale 
and D. primulinum showed C3-like pattern, with net CO2 
uptake in light period and net CO2 release in dark period, 
whereas net CO2 uptake in dark period maintained in  
K. daigremontiana. Net CO2 exchange rate of K. daigremontiana 
at 0200 hours was higher than that at 1000 and 1800 hours 

(Figure 1B). After the light/dark cycle was changed back to 
12/12  h for 1  day, net CO2 exchange of these three species 
also switched back to the similar pattern of earlier light/dark 
cycle of 12/12  h (Figure 1C).

Dark, Light, and Daily Net CO2  
Exchange Amount
For D. officinale, daily net CO2 exchange amount increased 
significantly from 47 to 69  mmol  m−2 day−1 and then further 
increased significantly to 85  mmol  m−2 day−1 when the light/
dark cycle was changed from 12/12  h to 4/4  h and then back 
to 12/12 h (Figure 2A). After the light/dark cycle was changed 
from 12/12  h to 4/4  h, the increase of daily net CO2 exchange 
amount mainly resulted from the increase of light net CO2 
exchange amount. Compared to 4/4  h light/dark cycle, daily 
net CO2 exchange amount significantly increased after light/
dark cycle was changed to 12/12  h, due to the increase of 
dark net CO2 exchange amount was more than the decrease 
of light net CO2 exchange amount. Compared to the previous 

A

B

C

FIGURE 1 | Effect of light/dark cycle on net CO2 exchange rates of D. officinale, D. primulinum, and K. daigremontiana. Light/dark cycle was 12/12 h from  
day 1 to day 5 (A), 4/4 h from day 6 to day 10 (B), and 12/12 h from day 11 to day 15 (C). The thin black line on the horizontal axis indicates light period, and the 
thick black line indicates dark period.
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12/12  h light/dark cycle, daily net CO2 exchange amount 
significantly increased after light/dark cycle was changed back 
to 12/12 h, due to both the increase of light net CO2 exchange 
amount and dark net CO2 exchange amount.

For D. primulinum, daily net CO2 exchange amount decreased 
significantly from 76 to 40 mmol m−2 day−1 and then remained 
no significantly changed when the light/dark cycle was changed 
from 12/12  h to 4/4  h then back to 12/12  h (Figure 2B). 

A

B

C

FIGURE 2 | Effect of light/dark cycle on dark net CO2 exchange amount, light net CO2 exchange amount, and daily net CO2 exchange amount of D. officinale  
(A), D. primulinum (B), and K. daigremontiana (C). Daily net CO2 exchange amount is the sum of dark net CO2 exchange amount and light net CO2 exchange amount. 
Each point is the mean of three measurements of three different plants. Vertical bars indicate the standard deviations. Different letters indicate statistically significant 
differences by Duncan’s multiple range test (p < 0.05). The data of the last 2 days of each light/dark cycle of three repeated experiments were taken to average. The 
letters underlined by dotted line and solid line represent differences in the light net CO2 exchange amount and dark net CO2 exchange amount respectively.
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After the light/dark cycle was changed from 12/12  h to 4/4  h, 
the decrease in daily net CO2 exchange amount mainly resulted 
from the large decrease of dark net CO2 exchange amount, 
which offset against the increase of light net CO2 exchange 
amount. Compared to 4/4  h light/dark cycle, there was no 
significant change in daily net CO2 exchange amount after the 
light/dark cycle was changed to 12/12  h. During this light/
dark cycle switch, the increase of dark net CO2 exchange 
amount was offset by the decrease of light net CO2 exchange 
amount. Compared to the previous 12/12  h light/dark cycle, 
daily net CO2 exchange amount significantly decreased after 
light/dark cycle was changed back to 12/12  h, due to the 
decrease of both light net CO2 exchange amount and dark 
net CO2 exchange amount.

For K. daigremontiana, there were no significant changes 
in daily net CO2 exchange amount during the conversion 
of different light/dark cycles (Figure 2C). Compared to 
12/12  h light/dark cycle, the daily net CO2 exchange amount 
did not change significantly after the light/dark cycle was 
changed from 12h/12  h to 4/4  h. During this light/dark 
cycle switch, the increase of light net CO2 exchange amount 
was almost equivalent to the decrease of dark net CO2 
exchange amount. Compared to the previous 12/12  h light/
dark cycle there was no significant change in daily net CO2 
exchange amount when light/dark cycle was changed back 
to 12/12  h, due to no significant change in light and dark 
net CO2 exchange amount.

Dark Net CO2 Exchange Percentage
The dark net CO2 exchange percentage of D. officinale,  
D. primulinum, and K. daigremontiana showed an increasing 
trend during 12/12  h light/dark cycle (Table 1). When the 
light/dark cycle was changed from 12/12  h to 4/4  h and 
then back to 12/12  h, the dark net CO2 exchange percentage 
of D. officinale and D. primulinum changed from a positive 
value to a negative value and then back to a positive value. 
Compared to that of the original 12/12  h light/dark cycle, 
the positive value was significantly decreased for these two 
Dendrobium species after the light/dark cycle was changed 
back to 12/12  h light/dark cycle from 4/4  h. The dark net 
CO2 exchange percentage of K. daigremontiana always remained 
positive and showed a trend of decreasing first and then 
increasing during the different light/dark cycles conversion. 
For K. daigremontiana, there was no significant difference in 

the dark net CO2 percentage of 12/12 h light/dark cycle before 
(85.5%) and after (91.3%) 4/4  h light/dark cycle.

Stomatal Conductance
Statistically, there was a significant decline in stomatal conductance 
of D. officinale (Figure 3A), D. primulinum (Figure  3B), and 
K. daigremontiana (Figure 3C) from 0700 (dark period) to 
1300 hours (light period); however, stomatal conductance of 
all these three species increased significantly from 1300 to 
1600  hours during the light period of the 12/12  h light/dark 
cycle. After light/dark cycle was changed to 4/4  h for 3  days 
(day 9), the stomatal conductance of D. officinale decreased in 
the dark period and increased in the light period significantly. 
Although the stomatal behavior of D. primulinum exhibited 
the similar pattern as those of D. officinale, the amplitude was 
much smaller. For K. daigremontiana, it showed a gradual 
decrease in the stomatal conductance from 0200 (light period) 
to 2200 hours (dark period) 3  days after changing the light/
dark cycle from 12/12  h to 4/4  h. Compared to the previous 
12/12  h light/dark cycle. After light/dark cycle was changed 
from 12/12  h to 4/4  h, for D. officinale and D. primulinum, 
stomatal conductance of the light period significantly increased, 
whereas it was not affected for K. daigremontiana.

DISCUSSION

Effect of Light/Dark Cycle on Net CO2 
Exchange Pattern and Stomatal Behaviors
Based on the percentage of daily carbon gained by dark fixation, 
different extent of CAM plants could be  easily distinguished 
(Winter and Holtum, 2002; Zhang et  al., 2014; Winter, 2019). 
Therefore, D. officinale was identified as a C3-CAM plant, 
whereas D. primulinum was a CAM plant between the C3-CAM 
and full CAM. After the light/dark cycle was changed from 
12/12  h to 4/4  h for 3  days, net CO2 exchange pattern of  
D. officinale and D. primulinum switched from CAM defined 
by Osmond (1978) to C3-like (net CO2 uptake in the light 
and net CO2 release in the dark, Figure 1). Stomatal behavior 
of these two Dendrobium species also switched from the CAM 
pattern to the C3-like pattern (increasing in light period and 
decreasing in dark period, Figure 3). Tallman (2004) suggested 
that in phase III of CAM, the photosynthesis of guard cells 
can obtain a large amount of CO2 from the mesophyll and 
build a strong sink for NADPH, thereby inhibiting the 
degradation of endogenous ABA in guard cells and promoting 
stomatal closure (Lind et  al., 2015). Therefore, it can 
be  speculated that when the dark CO2 absorption decreases 
to a certain extent, the mesophyll cells will not have enough 
CO2 supply to the guard cells in the light period, so as not 
to inhibit the opening of the stomata. Some studies related 
to facultative CAM plants have concluded that light regulates 
stomatal conductance of these plants only when they are in 
C3 pattern (Lee and Assmann, 1992; Tallman et  al., 1997). 
Our results were consistent with these previous studies. Net 
CO2 uptake in dark period generally existed in K. daigremontiana 

TABLE 1 | Effect of light/dark cycle on dark net CO2 exchange percentage of  
D. officinale, D. primulinum, and K. daigremontiana.

Light/dark cycle
Dark net CO2 exchange percentage (%)

D. officinale D. primulinum K. daigremontiana

12/12 h 34.0 ± 3.1 d 56.7 ± 0.3 b 85.5 ± 5.9 a
12/12 h → 4/4 h −16.8 ±2.9 g −10.5 ± 2.9 f 21.8 ± 6.0 e
4/4 h → 12/12 h 25.8 ±2.4 e 46.7 ± 1.1 c 91.3 ± 1.9 a

Values were means ± standard deviation. Different letters indicate significant 
differences by Duncan’s multiple range test (p < 0.05; n = 3).
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regardless of light/dark cycle (Figure 2C). However, there were 
no significant changes in the stomatal conductance during 
both dark and light periods from 0600 to 2200 hours after 
changing the light/dark cycle from 12/12 h to 4/4 h (Figure 3). 
Dark CO2 fixation was almost exclusively catalyzed by PEPC 
in CAM species. The allosteric performance of PEPC was 
regulated posttranslationally by a circadian clock controlled 
protein kinase called phosphoenolpyruvate carboxylase kinase 
(PPCK) (Nimmo et al., 1984, 1986, 1987; Hartwell et al., 1999; 
Owen and Griffiths, 2013; Boxall et al., 2017; Ohara and Satake, 
2017). The activity of PPCK of Bryophyllum fedtschenkoi reach 
appeared several hours after the onset of darkness (Carter 
et  al., 1991). It was possible that when the dark period was 

too short, the activities of PPCK might not be  high enough, 
which might inhibit the dark net CO2 fixation in D. officinale, 
D. primulinum, and K. daigremontiana to different extents 
(Figure 2). However, this study did not measure the activity 
of PPCK of these three species during the conversion of 
different light/dark cycles, which needs to be  studied further 
in the future.

After the light/dark cycle was changed back to 12/12  h light/
dark cycle, dark net CO2 exchange percentage of two Dendrobium 
species decreased significantly compared to the original 12/12  h 
light/dark cycle, but that of K. daigremontiana did not (Table 1). 
However, it did not imply that the 4/4 h light/dark cycle induction 
suppressed the CAM activity of D. officinale. Compared to the 

A

B

C

FIGURE 3 | Effect of light/dark cycle on stomatal conductance of D. officinale (A), D. primulinum (B), and K. daigremontiana (C). Data were randomly collected 
from four plants on day 3 and day 9, respectively (mean ± SD, n = 4 for each of these 2 days). The thin black line and thick black line on top indicate light period and 
dark period of 12/12 h light/dark cycle, respectively. The thin black line and thick black line on the bottom horizontal axis indicate light period and dark period of 
4/4 h light/dark cycle respectively. Different letters indicate statistically significant differences by Duncan’s multiple range test ( p < 0.05). The underlined letters 
represent differences in 4/4 h light/dark cycle.
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original 12/12  h light/dark cycle, dark net CO2 exchange amount 
increased significantly for D. officinale after the light/dark cycle 
was changed back to 12/12  h (Figure 2A).

CO2 Absorption and Stomatal Behaviors
After the light/dark cycle was changed from 12/12  h to 4/4  h, 
daily net CO2 exchange amount increased by 47% for  
D. officinale (Figure 2A). It might be  due to the fact that sharp 
increased stomatal conductance (Figure 3) were favorable to 
the diffusion of CO2 into the leaf, eventually promoting the 
CO2 absorption during the light period of 4/4  h light/dark 
cycle. After the light/dark cycle was changed from 4/4  h back 
to 12/12  h, daily net CO2 exchange amount of D. officinale 
reached a higher value compared to 4/4  h light/dark cycle 
(Figure 2A) due to a little down regulation of C3 activity 
(represented by light net CO2 exchange amount) and large up 
regulation of CAM activity (represented by dark net CO2 exchange 
amount). However, for D. primulinum, the daily net CO2 exchange 
amount decreased by 38% after the light/dark cycle was changed 
from 12/12  h to 4/4  h (Figure 2B), it was possibly due to the 
fact that its stomatal conductance increased much less than 
that of D. officinale limited the diffusion of CO2 into the leaf 
(Evans and Loreto, 2000), eventually inhibiting the substantial 
increase of CO2 absorption during the light period of 4/4  h 
light/dark cycle. The contrary responses of daily net CO2 exchange 
amount of D. officinale and D. primulinum on 4/4  h light/dark 
cycle may also be related to their different mesophyll conductance 
(gm). A strong correlation has been found between gm and 
photosynthetic capacity in two species of Orchidaceae, and gm 
was mainly determined by surface area of mesophyll cells, 
chloroplasts exposed to intercellular airspace per unit of leaf 
area and cell wall thickness (Yang et al., 2018). Reduced intercellular 
air space (IAS) and reduced surface of mesophyll exposed to 
IAS (Lmes/area) were positively related to CAM function, and 
negatively related to C3 function (Nelson and Sage, 2008). 
Structure features of leaf may affect CO2 concentration in 
chloroplast stroma (Terashima et al., 2011). It was reported that 
increased O2/CO2 eventually increased photorespiration. 
Photorespiration had an especially high demand for energy 
(Osmond and Grace, 1995; Heber et  al., 2001; Heber, 2002). 
After the light/dark cycle changed from 12/12  h to 4/4  h, the 
daily net CO2 exchange amount of D. primulinum decreased 
significantly, which suggested that D. primulinum might subject 
to severe photorespiration during the light period of 4/4 h light/
dark cycle. Therefore, the changes of daily net CO2 exchange 
amount of D. officinale and D. primulinum were reversed after 
the photosynthetic pathway was switched from CAM to C3. 

This may be  related to stomatal conductivity, gm, cell wall 
conductance, cytosol conductance, stromal conductance, etc., 
which require further study to clarify the relationship between 
leaf functional structure and photosynthesis of Dendrobium plants.

CONCLUSIONS

The responses of gas exchange and stomatal movement of two 
Dendrobium species to different light/dark cycles conversion 
were evaluated in this study. The net CO2 exchange pattern 
and stomatal behavior of D. officinale and D. primulinum could 
be  switched from CAM to C3-like by changing the light/dark 
cycle from 12/12  h to 4/4  h. However, this switching was not 
completely reversible as the dark, light, and daily net CO2 
exchange amount of D. officinale were significantly increased 
after the light/dark cycle was changed from 4/4  h to 12/12  h 
compared to the original 12/12 h light/dark cycle. The responses 
of D. primulinum to different light/dark cycle conversion were 
opposite from those of D. officinale. The net CO2 uptake during 
the dark period was always present in K. daigremontiana 
regardless of light/dark cycle.

Daily net CO2 exchange amount of D. officinale was enhanced 
by changing the light/dark cycle from 12/12  h to 4/4  h, but 
that of D. primulinum was inhibited. The daily net CO2 exchange 
amount of K. daigremontiana was not affected by different 
light/dark cycles conversion.
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