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Autophagy is a strictly regulated pathway involving the degradation of cytoplasmic
organelles and proteins. Most autophagy-related genes have been identified in plants
based on sequence similarity to homologues in yeast and mammals. In addition, the
molecular mechanisms underlying plant autophagy have been extensively studied in
the last decade. Plant autophagy plays an important role in various stress responses,
pathogen defense, and developmental processes such as seed germination, pollen
maturation, and leaf senescence. However, the regulatory mechanisms of autophagy in
plants remain poorly understood. Recent studies have identified several plant autophagy
regulators, which modify autophagy activity at transcriptional, post-transcriptional,
and post-translational levels. In this review, we summarize recent advances in
understanding regarding regulatory network of plant autophagy and future directions in
autophagy research.
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INTRODUCTION

Autophagy is a highly conserved cellular process for the degradation of cytoplasmic organelles and
long-lived proteins in eukaryotes. Two types of autophagy, microautophagy, and macroautophagy,
have been identified in plants (Bassham et al., 2006). During microautophagy, cytoplasmic
components are engulfed directly by the invagination of the tonoplast and then degraded by
vacuolar hydrolases. In contrast, during macroautophagy, a double-membrane vesicle, called an
autophagosome, delivers cytoplasmic materials to the vacuole for degradation. Here, we mainly
focus on the macroautophagy (hereafter termed autophagy) in plants.

The autophagy process is mediated by a set of evolutionally conserved Autophagy-related
(ATG) proteins, which was originally identified in yeast (Matsuura et al., 1997). Most ATG
proteins function in autophagosome formation have also been identified in plants (Marshall and
Vierstra, 2018). These proteins could be divided into four core functional groups: the ATG1
kinase complex involved in the initiation of autophagosome formation; the ATG9 complex for
membrane recruitment; the phosphatidylinositol 3-kinase (PI3K) complex for vesicle nucleation;
and ATG8 and ATG12 ubiquitin-like conjugation systems for vesicle expansion and closure
(Liu and Bassham, 2012).

Plants have evolved intricate mechanisms to cope with various environmental stresses because of
their immobility. Emerging evidence has indicated that autophagy is involved in their responses to
biotic and abiotic stresses, such as nutrient deficiency (Doelling et al., 2002), oxidative stress (Xiong
et al., 2007), salt stress (Luo et al., 2017), drought (Liu et al., 2009), hypoxia (Chen et al., 2015),
and pathogen infection (Lai et al., 2011). However, the molecular mechanism of autophagy
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activated by environmental stresses remains largely
unknown. Herein, we review recent advances in the
understanding of the regulatory pathway underlying plant
autophagy at the transcriptional, post-transcriptional, and
post-translational levels.

Transcriptional Regulation
At present, around 40 ATG genes have been isolated and
identified by genetic screening of yeast, and homologs
of many ATG genes have been characterized in plants
(Marshall and Vierstra, 2018). The transcriptional levels of
ATG genes are increased under various stress conditions in
plants, including Arabidopsis, wheat (Triticum aestivum), rice,
and tomato (Xia et al., 2011; Pei et al., 2014; Chen et al., 2015;
Zhou et al., 2015). Transcriptional regulation is essential for the
expression of ATG gene in response to environment stresses.
Recently, some studies have identified a few transcriptional
regulators that directly regulate ATG genes (Table 1).

Heat Shock Protein: HsfA1a
Heat shock proteins (Hsps) are produced in response to stresses
and function by stabilizing or refolding proteins. Heat shock
transcription factors (Hsfs), are the transcription factors that
regulate the expression of stress-responsive genes, including
genes encoding Hsps. Plant Hsfs are classified into three
conserved evolutionary categories (HsfA, B, and C) according
to the protein structure (Guo et al., 2016). HsfA1a is found to
regulate autophagy in plants (Wang et al., 2015). Upon drought
stress, tomato HsfA1a is induced and activated by trimerization.
The activated form of HsfA1a directly binds to the heat-shock
elements in the promoter of ATG10 and ATG18f. In addition,
the number of autophagosomes and transcript levels of ATG10
and ATG18f are improved by HsfA1a overexpression but reduced
by HsfA1a silencing under drought stress (Wang et al., 2015).
Therefore, HsfA1a positively regulates autophagy and confers
drought tolerance in tomato.

Transcription Factors: WRKY Family
WRKYs are a large family of transcription factors that
modulate many plant physiological processes, such as growth,
development, and response to abiotic and biotic stresses
(Rushton et al., 2010). Some WRKY transcription factors induce
expression of ATG genes under biotic and abiotic stresses
(Lai et al., 2011; Zhou et al., 2014; Yan et al., 2017). WRKY33
regulates pathogen-induced and heat-induced autophagy in
plants (Lai et al., 2011; Zhou et al., 2014). In Arabidopsis,
a WRKY33 mutation results in the downregulation of the
expression of ATG18a, an essential factor for autophagosome
formation, and decreasing autophagic activity upon Botrytis
infection (Lai et al., 2011). Moreover, WRKY33 interacts with
ATG18a in the nucleus which indicates that ATG18a may
self-regulate its own expression by acting as a co-factor with
WRKY33 (Lai et al., 2011). These results suggest that WRKY33
plays a critical role in the positive regulation of pathogen-
induced autophagy (Lai et al., 2011). WRKY33 also involves
in regulation of heat-induced autophagy (Zhou et al., 2014).
ATG gene expression and autophagosome accumulation are

induced by heat stress in both tomato and Arabidopsis plants
(Zhou et al., 2013, 2014). Suppression of autophagy leads to
a decrease in the heat tolerance of tomato and Arabidopsis
plants (Zhou et al., 2013, 2014). Silencing of tomato WRKY33a
or WRKY33b decreases the expression of ATG5 and ATG7
and autophagosome formation, and compromises tomato heat
tolerance (Zhou et al., 2014). Although WRKY33 has been
indicated to be involved in autophagy regulation, the exact
molecular mechanisms that underlie this regulation ramian
unknown. WRKY20 is a transcriptional activator of ATG8a and is
essential for disease resistance against bacterial blight in cassava
(Manihot esculenta) (Yan et al., 2017). WRKY20 is upregulated
upon infection of cassava bacterial blight, which is caused by
Xanthomonas axonopodis pv. manihotis (Xam). Then, WRKY20
directly binds to the W-box in the promoter of ATG8a and
activates its expression (Yan et al., 2017). On the other hand,
WRKY20 directly interacts with ATG8 proteins indicating that
WRKY20 is degraded by autophagy to form a feedback loop
(Yan et al., 2017).

Transcriptional Factor in Brassinosteroid Pathway:
BZR1
Brassinosteroids (BRs) play crucial roles in stress responses,
growth, and development of plants (Krishna, 2003; Zhu
et al., 2013). A recent paper reported that BRASSINAZOLE
RESISTANT 1 (BZR1), a vital transcriptional factor in BR signal
transduction, plays a positive role in the autophagy pathway
(Wang et al., 2019). Brassinolide (BL) treatment promotes ATG
gene expression and autophagosome formation. In addition, the
BL-induced ATG gene expression and autophagosome formation
are enhanced in BZR1-overexpressing plants and compromised
in BZR1-silenced plants. Results of ChIP and yeast one-hybrid
assays show that BZR1 directly binds to the promoters of
ATG2 and ATG6 (Wang et al., 2019). These findings suggest
that BZR1-mediated BR signaling positively regulates autophagy.
On the other hand, BZR1is selectively degraded by autophagy
(Zhang Z. et al., 2016). These results suggest that there is
feedback regulation between BZR1-dependent BR signaling and
the autophagy pathway.

Transcriptional Factor in Ethylene Pathway: ERF5
The ethylene pathway is involved in the regulation of autophagy
(Okuda et al., 2011; Shibuya et al., 2013). In one of these
studies, ATGs and ethylene-related genes were induced in
soybean (Glycine max) by sugar and nitrogen starvation, and
1-aminocyclopropane-1-carboxylic acid (ACC, the precursor of
ethylene) enhanced the expression of ATG8i (Okuda et al., 2011).
Ethylene rapidly induced ATG8s expression, while ethylene
inhibitor delayed the induction of ATG8s in petunia petals
(Shibuya et al., 2013). ERF5 (ethylene response factor 5) is
significantly induced by ACC and drought treatment while ERF5
overexpression confers high tolerance to drought in the tomato
plant (Pan et al., 2012). Under drought stress, ERF5 directly
binds to the promoters of ATG8d and ATG18h and activates
gene expression to promote autophagy, which is essential for
ethylene-mediated drought resistance (Zhu et al., 2018).
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TABLE 1 | Transcriptional regulators of autophagy in plants.

Transcriptional regulators Target genes Effects Species References

HsfA1a ATG10, ATG18f Enhanced autophagy Arabidopsis thaliana Wang et al., 2015

WRKY33 Unidentified Enhanced autophagy Arabidopsis thaliana Lai et al., 2011

Unidentified Enhanced autophagy Solanum lycopersicum Zhou et al., 2014

WRKY20 ATG8a Enhanced autophagy Manihot esculenta Yan et al., 2017

BZR1 ATG2, ATG6 Enhanced autophagy Arabidopsis thaliana Wang et al., 2019

ERF5 ATG8d, ATG18h Enhanced autophagy Solanum lycopersicum Zhu et al., 2018

HDA9 ATG9 Suppressed autophagy Arabidopsis thaliana Chen et al., 2016

Histone Deacetylase: HDA9
Histone acetylation participates in transcriptional regulation
of gene expression in eukaryotic cells (Struhl, 1998). Histone
acetylation is usually associated with transcriptional activation.
Conversely, deacetylation represses gene transcription.
Histone acetylation levels are reversibly regulated by histone
acetyltransferases and histone deacetylases (HDAs). HDA9
is shown to play an important role in autophagy-dependent
leaf senescence (Chen et al., 2016). In Arabidopsis, HDA9 is
transported from the cytoplasm into the nucleus by interacting
with POWERDRESS (PWR). Together with WRKY53, HDA9
and PWR bind to W-box of the ATG9 promoter. Furthermore,
HDA9 and PWR mutations lead to the upregulation of the ATG9
transcript by H3K27 hyperacetylation at ATG9 genomic regions
(Chen et al., 2016). These results indicate that PWR recruits
HDA9 and WRKY53 at the W-box motif of the ATG9 promoter
to remove H3 acetylation marks, and then suppresses ATG9 gene
expression to promote leaf senescence.

Post-transcriptional Regulation
Autophagy can be regulated at the post-transcriptional level by
microRNAs (miRNAs) in animals (Feng et al., 2015). However,
miRNA-mediated autophagy regulation has not been found in
plants. Instead, autophagy is regulated at the post-transcriptional
level through inositol-requiring enzyme-1 (IRE1)-dependent
decay of mRNAs (RIDD) in Arabidopsis (Bao et al., 2018). IRE1
functions as both a kinase and a ribonuclease and was first
identified as an ER stress sensor in yeast (Cox and Walter,
1996; Mori et al., 1996). IRE1 regulates ER stress-induced
autophagy by ribonuclease splicing activity through the IRE-
HAC1 (homologous to ATF/CREB 1) signaling pathway in
yeast (Yorimitsu et al., 2006), but by kinase activity through
the IRE1-JNK (c-Jun N-terminal kinase 1) pathway in animals
(Ogata et al., 2006). There are two IRE1 homologs (IRE1a
and IRE1b) responsible for the splicing of bZIP60 mRNA in
Arabidopsis (Koizumi et al., 2001; Nagashima et al., 2011). IRE1b
was identified as a regulator of autophagy during ER stress in
plants (Liu et al., 2012). However, the molecular mechanism
underlying this process was unclear until recently when it was
reported that IRE1b regulated ER stress-triggered autophagy
through its ribonuclease activity (Bao et al., 2018). This IRE1b-
mediated autophagy is independent of its splicing target bZIP60
since autophagosome formation is unaffected in the bzip60
mutant. Therefore, it is the RIDD activity but not the RNA
splicing activity of IRE1b that is responsible for the activation

of autophagy upon ER stress. 12 RIDD target genes were
identified by transcriptomic analysis and three of their encoded
proteins, BGLU21 (β-glucosidase 21), ROSY1/ML (interactor
of synaptotagmin 1/MD2-related lipid recognition protein) and
PR-14 (pathogenesis-related protein 14), are negative regulators
of autophagy. In conclusion, IRE1b stimulates ER stress-
triggered autophagy by degrading the mRNAs of several negative
regulators of autophagy through RIDD (Bao et al., 2018). The
regulatory mechanisms of autophagy by BGLU21, ROSY1/ML,
and PR-14 are still unknown and remain to be elucidated in
future research.

Post-translational Regulation
Post-translational modifications are important in regulating
protein activity by chemical modifying protein with functional
groups, such as phosphate, methyl groups, and acetate (Deribe
et al., 2010). Autophagy regulation at post-translational level
is indispensable for plants to adapt to various environmental
stresses. In this section, we focus on the phosphorylation,
ubiquitination, and lipidation of ATG proteins which regulate the
activity and duration of autophagy.

Phosphorylation
Protein phosphorylation is the most common post-translational
modification in eukaryotes. Phosphorylation regulates autophagy
activity through conformational changes in ATG protein
structure, which causes protein activation or deactivation,
thereby regulating their function (Jung et al., 2010; Noda
and Fujioka, 2015). The phosphorylation level of ATG1 is
important for autophagy initiation. In mammalian cells, AMP-
activated protein kinase (AMPK) promotes autophagy by
directly phosphorylating ULK1 (ATG1 homologue in animals) at
Ser317 and Ser777 under glucose starvation (Kim et al., 2011).
Conversely, the target of rapamycin (TOR) phosphorylates ULK1
at Ser757 to deactivate ULK1 under nutrient-rich conditions
(Kim et al., 2011). Autophagy activity is also regulated by
the phosphorylation level of other ATG proteins. For instance,
AMPK phosphorylates BECN1 (ATG6 homologue in animals)
at Thr388 to induce autophagy (Zhang D. et al., 2016). In
addition, TOR negatively regulates autophagy through direct
hyperphosphorylation of ATG13 in yeast (Kamada et al., 2010).

Target of rapamycin is a conserved Ser/Thr kinase that
controls cell growth in all eukaryotes. TOR associates with the
regulatory-associated protein of TOR (RAPTOR) and lethal with
sec13 8 (LST8) to form a conserved TOR complex 1 (TORC1)
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in plants. Previous studies have indicated that TOR is a negative
regulator of autophagy in plants (Liu and Bassham, 2010; Pu
et al., 2017). Under nutrient-rich conditions, TOR is activated
and, in turn, represses autophagy (Pu et al., 2017). ATG13
is also phosphorylated under such conditions (Suttangkakul
et al., 2011). However, it was unknown whether TOR directly
phosphorylates ATG13 in plant for a long time. Recently, results
from large-scale phosphoproteomics showed that ATG13 is
phosphorylated by TOR at S248, S397, S404, S406, S407, and
S558 in Arabidopsis (Van Leene et al., 2019). Moreover, ATG13
interacts with RAPTOR through a plant TOS motif, and ATG13
lacking the TOS motif enhanced autophagy activity and could not
be phosphorylated by TOR kinase (Son et al., 2018). These results
indicate that TOR negatively regulates autophagy through direct
phosphorylation of ATG13 in plants (Figure 1).

Previous research has suggested that the SnRK1 kinase
(AMPK homologue in plants) is repressed by sugars, but
activated under energy-deficient conditions, such as darkness,
or biotic and abiotic stresses (Baena-Gonzalez et al., 2007).
SnRK1 positively regulates autophagy through two different
pathways: phosphorylation of ATG1 or phosphorylation of the
TOR complex (Chen et al., 2017; Soto-Burgos and Bassham,
2017). In Arabidopsis, ATG1 is s phosphorylated upon nutrient
deprivation (Suttangkakul et al., 2011). KIN10 is the most active
protein of the SnRK1s and enhances the phosphorylation of
ATG1 possibly through interacting with ATG1a (Chen et al.,
2017) (Figure 1). Furthermore, KIN10 phosphorylates the TOR
complex subunit RAPTOR (Nukarinen et al., 2016). KIN10-
activated autophagy is blocked by TOR activation (Soto-Burgos
and Bassham, 2017). These results suggest that KIN10 also
regulates autophagy through the inhibition of TOR activity

(Figure 1). However, the phosphorylation sites of ATG1 and
RAPTOR that are recognized by SnRK1 have not been identified
in Arabidopsis.

Ubiquitination
Generally, ubiquitination is a kind of post-translational protein
modification in which proteins are labeled with ubiquitin
and then recognized by the 26S proteasome for degradation
(Kerscher et al., 2006). During autophagy, the stability and
function of several core ATG components were highly influenced
by ubiquitination (Xie et al., 2015). For example, TNF
receptor-associated factor 6 (TRAF6) promotes autophagy by
ubiquitination of BECN1 and ULK1 in mammalian cells (Shi and
Kehrl, 2010; Nazio et al., 2013). TRAFs were previously identified
as signaling adaptors and also function as E3 ubiquitin ligases.
In Arabidopsis, TRAF proteins play dual roles in regulating
autophagy by modulating ATG6 stability (Qi et al., 2017). Under
nutrient-rich conditions, TRAF1a and TRAF1b recruit two RING
finger E3 ligases, SINAT1/2 (SINA of Arabidopsis thaliana), to
ubiquitylate and degrade ATG6, thereby suppressing autophagy
(Figure 1). Upon starvation, the interaction between TRAF1a/1b
and SINAT1/2 is disrupted by SINAT6, which leads to the
stabilization of ATG6 and thus autophagy activation (Figure 1).

Lipidation
Lipidation is a post-translational modification by which proteins
are covalently modified with specific lipids (Nadolski and Linder,
2007). In the process of autophagosome formation, ATG8
is lipidated by conjugating to phosphatidylethanolamine (PE)
through a ubiquitin-like conjugation pathway (Avin-Wittenberg
et al., 2012; Flick and Kaiser, 2012). Generally, lipidation of ATG8

FIGURE 1 | The post-translational regulation of autophagy in plants. The model shows known post-translational regulation of plant autophagy. Under nutrient-rich
conditions, the activated TOR kinase phosphorylates ATG13 to inactivate the ATG1 complex, thereby suppressing autophagy; TRAF1s suppress autophagy by
recruiting SINAT1/2 to ubiquitylate and degrade ATG6. Under nutrient-poor conditions, TOR is inhibited and SnRK1 is activated, and the activated SnRK1 induces
autophagy by phosphorylating ATG1; SINAT6 disrupts the interaction between TRAF1s and SINAT1/2 to stabilize ATG6 and activate autophagy. ACBP3 disrupts
autophagosome formation by competing with ATG8 for PE. SnRK1, sucrose non-fermenting 1–related kinase 1; TOR, target of rapamycin; ATG, autophagy-related;
VPS, vacuolar protein sorting; TRAF, TNF receptor-associated factor; SINAT, SINA of Arabidopsis thaliana.
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is measured by western blot as a marker for autophagic activation
(Klionsky et al., 2016). Recent studies have reported that ATG8
lipidation is enhanced by a range of stresses and hormones,
such as pathogen infection (Kwon et al., 2013), drought (Wang
et al., 2015), BL (Wang et al., 2019), and ACC (Zhu et al.,
2018) treatments. Knockout of ATG5 or ATG7, the rate-limiting
components of ATG8-PE conjugation, completely blocks ATG8
lipidation and autophagosome formation (Thompson et al., 2005;
Phillips et al., 2008; Chung et al., 2010), whereas overexpression
of ATG5 or ATG7 enhances ATG8 lipidation and therefore
autophagosome formation (Minina et al., 2018). ATG4 is a
cysteine protease and plays a dual role in ATG8 lipidation. On
the one hand, ATG4 processes the carboxy-terminal Arg residue
of the newly synthesized ATG8 for the exposure of the Gly
residue, which is essential for ATG8 lipidation (Kirisako et al.,
2000). On the other hand, ATG4 also delipidates ATG8 from
the autophagosome membrane for recycling (Kirisako et al.,
2000). In Arabidopsis, ATG4 mutation blocks the autophagy
process because the ATG8s are unable to conjugate to PE
(Yoshimoto et al., 2004). Interestingly, the abundance of PE can
also influence plant autophagy activity. For example, acyl-CoA
binding protein3 (ACBP3) in Arabidopsis can strongly bind PE,
and therefore overexpression of ACBP3 disrupts autophagosome
formation by competing with ATG8 for PE and modulating
ATG8 stability (Xiao et al., 2010).

CONCLUSION AND PROSPECTS

Great achievements have been made in characterizing the
components of core autophagy machinery and the roles of
autophagy in stress responses, development, and metabolism
in plants. However, the regulatory mechanisms underlying
plant autophagy remain largely unknown. As autophagy plays
important roles in plant development and stress responses,
fully understanding the complex network of regulatory factors

that control autophagy processes will contribute to agronomic
trait improvement by manipulating autophagy in crops. Several
autophagy regulators have been identified and characterized at
the transcriptional, post-transcriptional, and post-translational
levels in plants. However, there are fewer regulators of plant
autophagy than there are for yeast and animals, and probably
many more that remain unidentified in plants. There is a large gap
in the literature regarding the post-transcriptional regulation of
autophagy in plants, such as the process in which miRNA targets
ATG genes to repress gene expression. In addition, modifications
of ATG proteins at post-translational level, such as acetylation,
are yet to be determined in plants. Protein acetylation fine
controls mammalian autophagy at multiple levels, including ATG
proteins and regulatory proteins (Banreti et al., 2013). Therefore,
identification of novel regulators involved in the regulation of
plant autophagy remains a critical and challenging subject for
future research.
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