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This review presents recent developments in plant photobiology and lighting systems for 
horticultural crops, as well as potential applications for cannabis (Cannabis sativa and 
C. indica) plant production. The legal and commercial production of the cannabis plant 
is a relatively new, rapidly growing, and highly profitable industry in Europe and North 
America. However, more knowledge transfer from plant studies and horticultural 
communities to commercial cannabis plant growers is needed. Plant photosynthesis and 
photomorphogenesis are influenced by light wavelength, intensity, and photoperiod via 
plant photoreceptors that sense light and control plant growth. Further, light properties 
play a critical role in plant vegetative growth and reproductive (flowering) developmental 
stages, as well as in biomass, secondary metabolite synthesis, and accumulation. 
Advantages and disadvantages of widespread greenhouse lighting systems that use high 
pressure sodium lamps or light emitting diode (LED) lighting are known. Some artificial 
plant lighting practices will require improvements for cannabis production. By manipulating 
LED light spectra and stimulating specific plant photoreceptors, it may be possible to 
minimize operation costs while maximizing cannabis biomass and cannabinoid yield, 
including tetrahydrocannabinol (or Δ9-tetrahydrocannabinol) and cannabidiol for medicinal 
and recreational purposes. The basics of plant photobiology (photosynthesis and 
photomorphogenesis) and electrical lighting systems are discussed, with an emphasis 
on how the light spectrum and lighting strategies could influence cannabis production 
and secondary compound accumulation.

Keywords: cannabis, Cannabis sativa, HPS, LEDs, light, photobiology, photomorphology, photosynthesis

INTRODUCTION

The legal status of cannabis production is shifting, causing a rapidly expanding market in 
both North America and Europe. Canada has become the second country in the world to 
legalize the use of both medicinal and recreational cannabis (Dyer, 2018). Such full legalization 
allows industry and researchers to work together to explore the uncharted science of this 
once-forbidden plant. Although cannabis (Cannabis sativa ssp.) has been harvested for food 
(seeds), fiber (stems), and medicine (buds) throughout most of human history (Mercuri et al., 2002; 
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Clarke and Merlin, 2013), its listing as an illegal drug to date 
has left little published scientific literature.

Commercial cannabis production typically occurs indoors 
and requires environmental controls such as humidity and 
lighting for both vegetative growth and budding (flowering) 
developmental stages (Hillig, 2005). During the vegetative growth 
stage, high light intensity is needed to maximize cannabis growth 
and proper photoperiodicity control is necessary to initiate 
budding (Arnold, 2013). Growing cannabis plants solely with 
indoor lighting allows a continuous and uniform cannabinoid 
yield for high-quality products, but it requires high-energy 
inputs. As such, indoor cannabis production has been classified 
as one of the most energy-intensive industries in the US (Warren, 
2015). In this regard, the selection of electrical lighting systems 
and light spectra are of utmost importance, as they determine 
operation costs and consequent product pricing.

In the general horticultural industry, growers use different 
light spectra and intensities to influence plant morphology, 
secondary metabolism, and flowering (Lefsrud et  al., 2008; 
Kohyama et al., 2014; Wang et al., 2016). However, commercial 
growers in the cannabis industry are still referring to unreliable 
information, given the lack of peer-reviewed reports on 
cannabis production. Exceptionally, it has been reported that 
reducing the photoperiod to approximately 12 h is a common 
practice in the cannabis production industry to initiate 
flowering (Chandra et  al., 2017). For other commonly grown 
flowering plants in the horticultural industry, flowering is 
initiated via night interruption (Yamada et al., 2008; Blanchard 
and Runkle, 2010; Park et  al., 2016). Both methods initiate 
flowering; however, reducing photoperiod potentially leads 
to plant yield reduction.

With decades of research committed to understanding the 
impact of narrow light spectra on plant growth, the basis of 
wavelength effect on photosynthesis and photomorphogenesis for 
greenhouse crops has been well investigated (Massa et  al., 2008; 
Bugbee, 2016; Bantis et  al., 2018). Until now, our knowledge of 
cannabis production has stemmed from experiments performed 
when growing cannabis was illegal (Vanhove et al., 2011). Current 
findings in plant photobiology and lighting control will provide 
the information needed by horticultural scientists to establish 
optimal cannabis production protocols and to maximize 
cannabinoid  yields. To this end, this review focuses on recent 
developments  and  our current understanding of photosynthesis 
and photomorphogenesis in greenhouse crops, with the latest 
reports on cannabis production in order to adequately inform 
the industry on the importance of lighting control for cannabis 
growth and cannabinoid production. A brief overview of the 
cannabis profile is provided, and three main topics are explored: 
(1) light, photosynthesis, and photosynthetically active radiation 
(PAR); (2) photomorphogenesis, plant photoreceptors, and secondary 
plant metabolites; and (3) electrical lighting systems.

CANNABIS PROFILE

The cannabis plant is the one of the oldest plant sources for 
food, medicinal, or ritual use (Kriese et al., 2004; Chandra et al., 
2017). Today, cannabis is often referred to as marijuana, a term 
used to describe a female cannabis plant that produces flower 
buds, as opposed to hemp, which is grown for several industrial 
applications. Throughout this review, use of the term “cannabis” 
will refer to the female cannabis (C. sativa) plant with high 
psychoactive properties. Cannabis plants synthesize and accumulate 
60–85 different psychoactive cannabinoids in their budding 
structures, and these are directly associated with cannabis 
consumption (El-Alfy et al., 2010). The most abundantly produced 
cannabinoids in cannabis plants are tetrahydrocannabinol [THC; 
or Δ9-tetrahydrocannabinol (Δ9−THC), cannabidiol (CBD), and 
the primary product of THC-degradation, cannabinol (Benson 
et  al., 1999)]. The most psychoactive cannabinoid is THC, and 
its pharmacology has been well studied (El-Alfy et  al., 2010). 
Over the last few years, CBD has drawn significant attention 
since its reported therapeutic potential as a treatment for intractable 
pediatric epilepsy (Friedman and Devinsky, 2015).

The Cannabis genus is commonly conceived as only 
constituting a single species. However, C. sativa L. may be divided 
into three sub-species: C. sativa ssp. sativa, C. sativa ssp. indica, 
and C. sativa ssp. ruderalis. The first two species, often referred 
to as “Sativa” and “Indica”, are the main cannabis plant species 
of recreational and medicinal interest (McPartland, 2017). They 
have distinct yet opposing THC and CBD ratios; C. sativa 
ssp. indica typically possesses a high THC to CBD ratio 
(Fischedick et  al., 2010), whereas the reverse is known for  
C. sativa ssp. sativa. In today’s marketplace, however, these 
distinctions are almost meaningless as new strains have been 
created from crossbreeding. C. ruderalis is the least known 
subspecies, and it is not commercially produced because of 
low plant yields (Fischedick et  al., 2010).

LIGHT, PHOTOSYNTHESIS, AND 
PHOTOSYNTHETICALLY ACTIVE 
RADIATION (PAR)

Light is one of the most important environmental parameters 
that impacts plant growth and development. It exerts a vast 
range of effects on photosynthetic activity and photomorphogenic 
responses throughout the plant’s life (Pocock, 2015; Naznin et al., 
2016; Ouzounis et  al., 2016). Close to half of the sun’s total 
radiation emission reaching the Earth’s surface is visible light, 
ranging from 400  to 740  nm wavelengths (Both et  al., 2015). 
Visible light is flanked by shorter wavelengths and invisible ultra-
violet (UV) electromagnetic radiation (10–400 nm) and by infrared 
radiation (IR; 700–1 mm); this roughly constitutes the remaining 
half of the solar radiation incident on the Earth’s surface (Cooper 
and Hausman, 2004). These three wavelength regions of the 
electromagnetic spectrum are the most significant with respect 
to biological systems (Mishra, 2004). Visible light includes violet 
(~400–450  nm), blue (~450–520  nm), green (~520–560  nm), 
yellow (~560–600 nm), orange (~600–625 nm), red (~625–700 nm), 

Abbreviations: CBD: cannabidiol, FR: far red, HPS: high pressure sodium, IR: 
infrared radiation, LED: light emitting diode, PAR: photosynthetically active 
radiation, PCET: proton-coupled electron transfer, PPFD: photosynthetic photon 
flux density, THC (or Δ9: THC): tetrahydrocannabinol (Δ9-tetrahydrocannabinol), 
UV: ultraviolet.
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and far-red (FR; > 700  nm). The most important part of the 
light spectrum for plants, PAR (400–700  nm), falls within the 
visible light range (McCree, 1972a,b; van Iersel, 2017).

The Basis of Photosynthesis
Photosynthesis plays a critical role in plant growth, as there is 
a close correlation between plant productivity and their 
photosynthetic rates in a given environment (Zelitch, 1975). 
Photosynthesis defines the complex set of reactions by which 
plant and phototrophic cells harvest, transfer, and store light energy 
as chemical potential in the carbon bonds of carbohydrates (Cooper 
and Hausman, 2004). Photosynthesis occurs within the chloroplast, 
a chlorophyll-bearing plastid organelle dedicated to energy 
production (Cooper and Hausman, 2004; Mishra, 2004). Chloroplasts 
are mostly found in the cytoplasm of palisade and spongy mesophyll 
cells located between the bounding epidermal layers of leaves 
(Mishra, 2004). The energy-generating, photooxidation-reduction 
reactions of photosynthesis occur within the third, internal thylakoid 
membrane system of the chloroplast; it forms networks of flattened 
thylakoid disks, often stacked in grana (Cooper and Hausman, 
2004). Embedded in the thylakoid membrane are five-membrane 
protein complexes that serve in electron transport and the 
concomitant synthesis of the energy carrier molecules NADPH 
and ATP, fueling carbohydrate synthesis. Prominent among these 
are the two main photosynthetic light reaction centers, membrane 
protein photosystem I  and II complexes (PSI and PSII), named 
after the order of their discovery yet counterintuitive to their 
evolution in nature (Cooper and Hausman, 2004).

The aforementioned photosystems contain arrays of associated 
chlorophyll and carotenoid antenna pigments, molecules involved 

in harvesting light energy for photosynthesis, organized in such 
a way as to maximize light energy capture and transfer. Plant 
pigments have specific wavelength absorbance patterns known 
as the absorbance spectrum (Figure 1). Chlorophylls a and b 
(Chl a and b) absorb wavelengths of light strongly in the red 
and blue regions, with less absorbance occurring in the green 
wavelengths. In acetone, Chl a exhibits peak absorbance at 
430 and 663  nm, while Chl b peaks at 453 and 642  nm. The 
pigments β-carotene and lutein in acetone absorb strongly in 
the blue region of light with a maximum peak occurring at 
454 and 448  nm, respectively (Hopkins and Hüner, 1995; Taiz 
and Zeiger, 2002). These pigments have local absorbance peaks, 
while β-carotene has a second absorbance peak at 477  nm, 
and lutein has two local absorbance peaks at 422 and 474  nm. 
However, it is important to note that peak absorbance can 
shift up to 38 nm and is dependent on the specific environment 
surrounding the chloroplasts (Heber and Shuvalov, 2005).

Photosynthetically Active Radiation (PAR) 
and Standard Units for Plant Lighting
Understanding the spectral quality of photosynthesis is critical 
when selecting a lighting system with proper light quality and 
quantity for any indoor plant cultivation. Our current 
understanding of the spectral quality of photosynthesis is mainly 
based on McCree’s findings in the 1970s (McCree, 1972a). The 
action spectrum of plant leaves was described as the span of 
wavelengths from approximately 400–700 nm, over which plants 
absorb and effectively use radiant light energy for photosynthesis 
(McCree, 1972a). This brought some definition to what is now 
commonly known as PAR (measured in μmol m−2  s−1), the 

FIGURE 1 | Absorbance spectra of plant photosynthetic pigments in acetone. Absorbance data are derived from Avital et al. (2006), Kobayashi et al. (2013), 
Heddad et al. (2006), and Taiz and Zeiger (2002).
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measure of that relates the intensity and rate of radiant light 
energy per surface area emitted by a light source from within 
the action spectrum of plants. To achieve this, the photosynthetic 
spectral quantum yield or the CO2 consumed by plant leaves 
per mole of photons absorbed was determined for 22 crop 
plant species by correlating the monochromatic light irradiance 
intensity (W  m−2) required to obtain a certain rate of 
photosynthesis in leaf fragments to their absorption spectrum, 
measured in an integrating sphere with a spectrophotometer. 
The assay covered the wavelength range from 350 to 750  nm, 
in 25 nm waveband increments, and photosynthesis was measured 
based on the CO2 uptake rate, measured with an infrared gas 
analyzer based on CO2 differentials under dark light versus 
the tested wavelength band of light. Two major, distinct peaks 
at 440 and 620  nm were observed, followed by a secondary 
peak at 670  nm. To this end, McCree’s experiments first 
described a plant’s PAR curve, a term that defines a plant’s 
light action spectrum and the wavelengths used most efficiently 
for glucose biosynthesis and the storage of free chemical energy 
(McCree, 1972b; Young, 1991).

McCree (1972b) determined that quantifying PAR in 
quantum or photon flux units based on moles of photons 
would yield results that more closely correlated to the actual 
photosynthetic rate, since photosynthesis is a quantum 
photochemical process, with one carbon fixed and one molecule 
of oxygen evolved per roughly 10 photons (quanta) of light 
absorbed. Both units of measurement, radiant flux density 
(W m−2) and photon flux density (μmol m−2  s−1), are typically 
used to report plant lighting systems (McCree, 1972a; Inada, 
1976; Both et al., 2015); however, plant yields are overestimated 
for blue light over red light when using radiant flux density, 
and this overestimation is smaller when light energy is measured 
in photon flux density (McCree, 1972b; Inada, 1976). Therefore, 
PAR is defined from 400 to 700  nm in quantum units of 
photosynthetic photon flux density (PPFD, μmol m−2  s−1) 
(McCree, 1972b; Inada, 1976; van Iersel, 2017). PPFD is 
broadly considered as the available estimate of potential 
photosynthetic flux, since the two are positively correlated. 
PAR is determined by integrating PPFD values within the 
limits of the plant action spectrum for photosynthesis (Mccree, 
1971, 1972b). Based on McCree’s findings on plant action 
spectrum, the PAR spectrum is used to integrate photon flux 
values, and PPFD gives an instantaneous estimate of potential 
photosynthetic activity with regard to measured light source 
emissions (Sager and Giger, 1980; Sager et  al., 1982).

Although McCree (1972a,b) proved that the use of PPFD 
is necessary when quantifying photosynthetic productivity over 
four decades ago, other photometric units of light such as 
lumens, lux, or foot-candles are still employed. These photometric 
units are based on the eye’s response to brightness, where 
human eyes are more sensitive to green light than red or blue 
light. Moreover, light below 400 nm and above 700 nm induces 
photosynthetic activity, which was not previously considered 
in PAR (McCree, 1972a; Inada, 1976). This led to the use of 
yield photon flux. Yield photon flux weighs photosynthetic 
activity from 360 to 760  nm based on McCree’s quantum 
yield curve, under the assumption that the curve remains true 

with different light conditions (Sager et  al., 1988; Barnes et  al., 
1993). Importantly, all spectral quality studies were conducted 
under low light intensity (< 150  μmol  m−2  s−1). Whether the 
curve keeps its infamous form under higher light intensities 
or can be  applied to other plants remains to be  determined 
(Lefsrud et  al., 2008). In the case of cannabis plants, most 
studies have been conducted under light intensities ranging 
from 300 to 2000  μmol  m−2  s−1; this is higher than what is 
typically used for greenhouse crops and all spectral quality 
studies (McCree, 1972a; Inada, 1976; Chandra et  al., 2008; 
Chandra et  al., 2015). In this scenario, the spectral quality of 
photosynthesis for cannabis plants is required to optimize growth.

Light Compensation and Saturation Points
Increased PPFD increases with plant growth and photosynthetic 
rate, and this linear increase occurs between the light 
compensation point and the light saturation point. The light 
compensation point is the point at which the photosynthetic 
activity of the plant equals its respiration activity, and the 
resulting CO2 release from respiration is equivalent to that 
used during photosynthesis. The light compensation point is 
used as a base to select an appropriate light intensity. If light 
intensity is below the light compensation point, there is a net 
loss of sugars (Noodén and Schneider, 2004). For broad spectrum 
light, Erwin and Gesick (2017) reported that light compensation 
points were 25, 13, and 73  μmol  m−2  s−1 for chard, kale, and 
spinach, respectively.

The light saturation point is the light intensity at which the 
photosynthetic rate reaches its maximum, where more light has 
no or a negative effect on photosynthesis. Understanding the 
light saturation point in plants provides lighting engineers with 
an opportunity to provide optimal light intensities that will 
maximize plant growth. Light saturation points have been 
investigated for many greenhouse crops, including kale, spinach, 
and Swiss chard (Boese and Huner, 1990; Yamori et  al., 2005; 
Dahal et  al., 2012; Ruhil et  al., 2015). A study using 470 and 
655  nm LEDs reported that the light saturation points for kale 
and chard ranged between 884 and 978  μmol  m−2  s−1 and at 
1238  μmol  m−2  s−1 for spinach (Erwin and Gesick, 2017). The 
light saturation point for cannabis has not yet been determined, 
but its net photosynthetic rates at different temperatures (25–40°C) 
and intensities (up to 2,000 μmol m−2 s−1) were reported (Chandra 
et  al., 2008; Chandra et  al., 2015). In these studies, no decline 
in photosynthesis rate was observed at the highest intensity 
used; however, net photosynthetic rates at 30°C decreased by 
~20% from 1,500 to 2,000  μmol  m−2  s−1 (Chandra et  al., 2008; 
Chandra et  al., 2015).

For any given wavelength and plant, an increase in 
photosynthetic rate results in increased yields until reaching 
the light saturation point. Therefore, additional lighting results 
in a similar linear increase in biomass yield that is counteracted 
by increased operating light-related energy costs (Terashima 
et  al., 2009). With high-intensity LED lights, a favorable and 
constant light intensity above the light compensation point and 
below the light saturation point is required but this is species-, 
environment-, and grower needs-dependent (Mathieu et al., 2002; 
van Ieperen and Trouwborst, 2007).
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PHOTOMORPHOGENESIS, PLANT 
PHOTORECEPTORS, AND SECONDARY 
PLANT METABOLITES

Light wavelength and intensity are used to quantify light in 
plant lighting experiments, and it is now widely accepted 
that both influence photosynthesis and photomorphogenesis 
(Olle and Viršile, 2013; Singh et  al., 2015). With the  
McCree curve and lighting technology improvements, 
photomorphogenic responses with whole plant measurements 
have been investigated under various wavelengths and 
intensities of narrow spectrum light for greenhouse crops 
(Hoenecke et  al., 1992; Kim et  al., 2004a; Li and Kubota, 
2009; Stutte et  al., 2009; Martineau et  al., 2012). In contrast 
to photosynthesis that is associated with growth from direct 
light energy, photomorphogenesis is defined as the effect of 
light on plant development. Several plant responses such as 
germination and flowering result from the mere presence 
of light and are not influenced greatly by its intensity (Hall 
et  al., 2014; Kołodziejek and Patykowski, 2015). Therefore, 
the outcome of a plant’s response under any light spectrum 
results from the interactive effects between photosynthesis 
and photomorphogenesis. These two responses are difficult 
to separate from each other for long-term whole plant growth. 
Note that plants grown with sunlight, whether in an outdoor 
environment or in a greenhouse with supplemental electrical 
lighting, still receive the broad spectrum of light and have 
corresponding photomorphogenic responses. Sunlight and 
electrical lighting systems are further discussed in Section 
Traditional Light Sources.

Photomorphogenic Responses 
and Photoreceptors
Photomorphogenesis is the light-mediated development of plants 
regulated by five different photoreceptors (Figure 2; Folta and 
Carvalho, 2015; Pocock, 2015). They mediate and modulate dozens 
of structural plant developments such as height, leaf size, and 
flowering. These changes to plant architecture affect long-term 
plant development and subsequent photosynthetic surfaces.

Red (~625–700 nm) and Far-Red 
(> 700 nm) Light
Red light impacts photomorphogenesis, leaf nutrient content, 
and stem growth. It is essential for chlorophyll synthesis and 
for straightening the epicotyl or hypocotyl hook of dicot 
seedlings (McNellis and Deng, 1995; Goins et al., 1997; Poudel 
et  al., 2008; Johkan et  al., 2012). These processes are under 
the influence of phytochrome control. Phytochrome is sensitive 
to red (~650–670 nm) light and far-red (FR) light (~705–740 nm), 
and to a lesser extent, blue light (~400–500  nm). For any one 
phytochrome, there exists a photoequilibrium of two 
interconvertible forms, red and FR absorbing forms (also known 
as Pr and Pfr, respectively). Pfr is the active form of phytochrome 
and it elicits physiological responses (Shinomura et  al., 2000). 
Pr, the other form of phytochrome, is the inactive form that 
switches to Pfr upon absorbing ~650–670  nm light (Nagatani, 
2010; Folta and Carvalho, 2015). In long day plants, various 
experiments suggest that flowering is promoted mostly when 
red light (or light creating a high Pfr/Pr ratio) is delivered 
during the early part of the photoperiod and when FR light 
(or light creating a lower Pfr/Pr ratio) is delivered toward the 

FIGURE 2 | Absorbance spectra of photoreceptors. Spectrum data are derived from Taiz and Zeiger (2002), Galvão and Fankhauser (2015), and Sager et al. (1988).
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end of the photoperiod (Lane et al., 1965; Evans, 1976; Kadman-
Zahavi and Ephrat, 1976; Thomas and Vince-Prue, 1996). 
However, certain cannabis genotypes such as “G-170” are 
insensitive to changes in the R:FR ratio, and no effect on 
flowering has been observed (Magagnini et  al., 2018). The 
authors concluded that a low R:FR ratio during a long photoperiod 
(18  h light, 6  h dark/vegetative stage) is beneficial to the 
development of mature cuttings, contradicting popular belief 
in the cannabis industry.

The effect of red light on plant physiology has been investigated 
(Poudel et  al., 2008; Vu et  al., 2014). Poudel et  al. (2008) 
reported that red light induced an increase in rooting percentage 
and root numbers in grape (Vitis vinifera) plants. Wu and Lin 
(2012) showed that king protea (Protea cynaroides L.) plantlets 
grown in red light produce a higher number of roots and 
new leaves. Vu et  al. (2014) reported that “Lapito” tomato 
plants grown solely under red LED light produce a higher 
total root surface area, length, and number of root tips in 
comparison with other light treatments. Lower leaf nitrogen 
content was found in rice (Oryza sativa L.) and spinach (Spinacia 
oleracea L., cv. Megaton) grown under red light treatment 
(Matsuda et  al., 2004; Ohashi et  al., 2005; Matsuda et  al., 
2007). In addition, photosynthetic rate reductions observed 
for plants grown under red light are reportedly due to stomata 
being controlled more by blue light than by red light (Sharkey 
and Raschke, 1981; Zeiger, 1984; Bukhov et  al., 1996).

Red light further regulates flowering quality, quantity, and 
flowering duration (Bula et  al., 1991; Tennessen et  al., 1994). 
According to Guo et  al. (1998) and Thomas and Vince-Prue 
(1996), inhibition of flowering with red light is effected by 
red light receptors including phytochromes (Kelly and Lagarias, 
1985). The number of visible flower buds in marigold plants 
was approximately five times higher when grown with 
fluorescent light supplemented with red LEDs, as well as 
under fluorescent light, when compared to monochromatic 
blue or red light. No flower buds formed in salvia plants 
when grown under monochromic blue or red light or when 
fluorescent light supplemented with FR light was used for 
marigold (Tagetes minuta) plants.

Plants grown under canopy shade conditions or in the 
proximity of other plants show a range of responses to changes 
in R:FR ratios of ambient light. This response, known as shade 
avoidance or the near neighbor detection response, is characterized 
by an acceleration of flowering time (i.e., becoming visible 
within the expanded floral bud) and rapid elongation of stems 
and leaves (Halliday et  al., 1994; Smith, 1994). Kasperbauer 
(1988) determined that FR light reflected from neighboring 
seedlings increased the R:FR ratio plants received, inducing a 
density-dependent increase in stem length, chloroplast content, 
chlorophyll a/b ratio, and CO2 fixation rate, along with decreased 
leaf thickness. In recent years, the effect of FR light (or a low 
R:FR ratio) has been intensively investigated in different plant 
species and development stages (Li and Kubota, 2009; Finlayson 
et  al., 2010; Mickens et  al., 2018; Park and Runkle, 2018). 
Supplemental FR treatments increased dry mass for many 
greenhouse crops during vegetative development (Hogewoning 
et  al., 2012; Lee et  al., 2016; Mickens et  al., 2018; Park and 

Runkle, 2018), but conflicting results on leaf area were reported. 
Hogewoning et  al. (2012) reported no significant difference in 
leaf area for tomato (L. esculentum “Mecano”) and cucumber 
(Cucumis sativus “Venice”), whereas an increase in leaf area 
was observed for lettuce, petunia (Petunia × hybrida), geranium 
(Pelargonium × hortorum), and coleus (Solenostemon 
scutellariodes) (Lee et  al., 2016; Mickens et  al., 2018; Park and 
Runkle, 2018). Such differences in leaf area responses among 
species are still unknown and need to be  addressed. For an 
extensive examination of FR light, the reader is referred to a 
recent review (Demotes-Mainard et  al., 2016).

Blue (~450–520 nm) and UV 
(< 400 nm) Light
Blue and UV-A light triggers cryptochrome (320–500  nm) and 
phototropin (phot1 and pho2; 320–500  nm) function (Jones, 
2018). These two photoreceptors regulate various physiological 
and developmental processes including chloroplast relocation, 
germination, elongation, and stomatal opening, which impacts 
water transpiration and CO2 exchange (Cosgrove, 1981; Schwartz 
and Zeiger, 1984). Blue light mediates chlorophyll and chloroplast 
development, enzyme synthesis, and plant density, and regulates 
responses to biotic environmental stresses (Goins et  al., 1997; 
Schuerger et  al., 1997). Walters and Horton (1995) reported that 
blue light deficiency can impact the light saturation rate of 
photosynthesis and can change the Chl a/b ratio in Arabidopsis 
thaliana. Blue light causes thickness of the epidermis and palisade 
mesophyll cells in Betula pendula (Sæbø et  al., 1995). Lee et  al. 
(2014) concluded that shorter blue wavelengths (<445 nm) promote 
stem growth, plant height, and anthocyanin synthesis in green 
perilla (Perilla frutescens var. japonica Hara cv. Soim) plants. 
Cannabis plants grown under blue light with a short photoperiod 
(12  h light:12  h dark/flowering stage) improved cannabinoid 
content (Magagnini et  al., 2018). This same study suggested that 
there is a synergy between UV-A and blue wavelengths that 
induces cannabigerol accumulation in cannabis flowers.

Blue light activates Zeitlupe (ZTL) family function, a group 
of proteins that plays a role in circadian clock regulation, 
wherein their light-dependent function allows modulation of 
internal timing signals (Kim et al., 2007). Accordingly, optimal 
lighting regimes for cannabis growth and production should 
take advantage of this temporal regulation initiated by the 
circadian clock and light-sensitive ZTL protein function.

Wavelengths of light that are shorter than the PAR spectrum 
[e.g., violet light and UV (<400  nm) radiation] have limited 
photosynthesis; however, discrete photomorphogenic effects 
are observed when UV-B (290–320  nm) sensing systems 
are triggered (Frohnmeyer and Staiger, 2003; Folta and 
Carvalho, 2015). UV-B radiation is perceived via the UV-B 
photoreceptor UV resistance locus 8 (UVR8). Although UV-B 
represents a threat to plant integrity in large quantities, 
smaller quantities of UV-B have important benefits such as 
promoting pest resistance, increasing flavonoid accumulation, 
improving photosynthetic efficiency, and serving as an 
indicator of direct sunlight and sunflecks (Ballaré et  al., 
2012; Wargent and Jordan, 2013; Zoratti et al., 2014; Moriconi 
et  al., 2018). Further to this, some UV-B responses can 
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also be modulated by a UVR8-independent signal and UV-A 
radiation, since plants’ responses to UV-B light are regulated 
by both UVR8-dependent and -independent pathways (Morales 
et  al., 2013; Li et  al., 2015; Jenkins, 2017). UV-B light 
reportedly elicits THC accumulation in both leaves and buds 
(Pate, 1983; Lydon et al., 1987; Potter and Duncombe, 2012).

Green (~520–560 nm) Light
Green light is often considered unavailable for plant growth 
since plant photosynthetic pigments have limited absorbance 
for these wavelengths. However, there is evidence that green 
light is available for active plant growth, yet this phenomenon 
is wavelength- and intensity-dependent (Kim et  al., 2004a; 
Kim et  al., 2005; Johkan et  al., 2012). Green light influences 
plant morphology, including leaf growth, stomatal conductance, 
and early stem elongation (Folta, 2004; Kim et  al., 2004a,b). 
Kim et  al. (2004) first examined the effect of green light on 
plant growth and photomorphogenesis, later concluding that 
it impacted plant growth at low light intensity 
(~150  μmol·m−2·sec−1) (Kim et  al., 2005). A low percentage 
(≤ 24%) of green light enhanced plant growth, whereas plant 
growth was inhibited under a higher percentage of green light 
(Kim et  al., 2004a, 2005; Folta and Maruhnich, 2007; Lee 
et  al., 2011; Liu et  al., 2017). Lee et  al. (2011) reported that 
lady’s slipper orchid grown under a combined LED lighting 
regime (8:1:1 ratio; 660  nm, 525  nm, and 450  nm) had at 
least 60% greater shoot dry mass when compared to blue or 
red LED emissions alone, or to a combination of red and 
blue lights at the same light intensity. Furthermore, green 
light exhibits better leaf tissue penetration ability (Brodersen 
and Vogelmann, 2010), resulting in better plant canopy 
penetration than either red or blue light (Klein, 1992). The 
issue with green light is that it exerts an antagonistic effect 
on other blue light-induced responses, including stomatal 
closure (Frechilla et  al., 2000) or anthocyanin accumulation 
(Zhang and Folta, 2012). In cannabis plants, THC levels are 
negatively affected by the presence of green light (Mahlberg 
and Hemphill, 1983; Magagnini et  al., 2018).

Secondary Plant Metabolites
Secondary plant metabolites such as carotenoids, flavonoids, 
and anthocyanins accumulate in plant cells and leaves as 
light-screening compounds to limit damage caused by high 
light intensity and UV radiation (Takahashi and Badger, 2011; 
Darko et  al., 2014).

Carotenoids
Carotenoids are photosynthetic accessory pigments that have 
absorbance spectra in the 400–550  nm region (Frank and 
Cogdell, 1996). Carotenoids prevent photo-oxidative damage 
caused by the photosynthetic light harvesting apparatus and 
other cell components by thermally dissipating the excess 
energy of the single excited chlorophyll (1Chl*) and possibly 
a triplet excited chlorophyll (3Chl*) within light reaction 
centers, as well as scavenging any evolved singlet-oxygen (1O2) 
(Müller et  al., 2001; Mozzo et  al., 2008).

Terpenes
Although present in much smaller quantities than cannabinoids, 
most terpenes in cannabis plants (e.g., monoterpenes and 
sesquiterpenes) are located in the glandular trichomes and are 
functionally diverse (Malingre et  al., 1975; Turner et  al., 1980). 
Terpenes are volatile aromatics that impact or contribute to the 
taste and smell of plants (Goff and Klee, 2006), defend against 
biotic stresses (Martin et  al., 2003), and are plant hormones that 
regulate growth (Milborrow, 2001; Sakakibara, 2005; Hedden and 
Thomas, 2012). In addition, some terpenes help plants manage 
light and drought stress (Buchanan et  al., 2000). Studies have 
demonstrated a relationship between terpene biosynthesis and 
light (Loveys and Wareing, 1971; Gleizes et  al., 1980; Yamaura 
et al., 1991). Schnarrenberger and Mohr (1970) and Tanaka et al. 
(1989) both observed that carotenoid and monoterpene biosynthesis 
is regulated by the red light photoreceptor, phytochrome.

Cannabinoids
Cannabinoids are synthesized in secretory cells inside glandular 
trichomes, which are highly concentrated in unfertilized female 
flowers before senescence (Potter, 2004, 2009). Shoyama et  al. 
(2008) found that cell death was induced when cannabis leaves 
secrete cannabinoids from glandular trichomes into leaf tissue. 
Lydon et  al. (1987) reported increased THC concentrations 
when cannabis plants were grown with supplemental UV-B 
radiation, suggesting that cannabinoids may play some role in 
UV protection. Limited published research exists on the role 
of cannabinoids in cannabis plants.

Flavonoids
Flavonoids are sensitive to light quality, and flavonoid 
concentrations in plants are higher when grown under UV, 
blue, and FR light treatment (Fu et  al., 2016; Pedroso et  al., 
2017; Liu et al., 2018). The two-ring, 15-carbon, general structure 
of flavonoids makes this group structurally and functionally 
diverse. Flavonoids comprise many classes (flavonols, flavones, 
flavanones, anthocyanins, and isoflavonoids) that are defined 
by various accessory groups attached to the central 15-carbon 
skeleton (Iwashina, 2000). This allows for their important roles 
as pollinator and feeding attractants, oviposition stimulants, 
and feeding deterrents, as well as in plant disease resistance 
and managing light stress (Hamamura et  al., 1962; Ingham, 
1972; Arakawa et  al., 1985; Noh and Spalding, 1998; Nishida, 
2005; Goff and Klee, 2006). Optimal lighting systems for 
cannabis growth and production must include an optimal light 
spectrum for flavonoid production. UV, blue, and FR are 
beneficial wavelengths that should be given greater consideration.

ELECTRICAL LIGHTING SYSTEMS

Electrical lighting systems usually serve as supplemental lighting 
for photoperiod control, to increase light intensity in a greenhouse, 
or as sole lighting for indoor plant production. Electrical lighting 
systems available for plant growth include incandescent bulbs, 
fluorescent bulbs, high pressure sodium (HPS) lamps, and LEDs. 
All of these light sources have been used throughout the history 
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of cannabis production (Potter, 2009). For instance, fluorescent 
bulbs and HPS lamps are mainly used for young cuttings and 
during the flowering stage, respectively. For the vegetative growth 
stage, a wide variety of lighting types have been reported; these 
include metal halide bulbs, HPS lamps, LEDs, or a combination 
of different lighting types (Sweet, 2016; Chandra et  al., 2017).

Traditional Light Sources
Sunlight and traditional light source spectra are shown in Figure 3. 
Incandescent light bulbs are composed of an airtight glass bulb 
and a tungsten filament that emanates electromagnetic radiation 
in the visible spectrum upon being heated (Kitsinelis, 2016). 
Visible light is emitted as the filament reaches ~2,800  K, with 
intensity increasing from 400 to 700  nm (Gupta and Agarwal, 
2017). Most energy is emitted as FR light and only 60% of light 
energy is within the PAR spectrum. Its luminous efficiency never 
exceeds 20 lumens per watt (lm/W), and the energy conversion 
efficiency ranges from 1 to 5% (Gupta and Agarwal, 2017). The 
low luminous efficiency of incandescent light compared to other 
lighting systems has led to the phasing out of incandescent light 
bulbs, and they have limited applications for cannabis cultivation.

Gas discharge lamps include fluorescent bulbs, high-intensity 
discharge lamps, and metal halide lamps. Fluorescent bulbs are 
low-pressure mercury vapor discharge lamps that produce UV 
light via the ionization of the gaseous metal ions, which excite 

a phosphor coating that results in a visible light fluorescence. 
The energy conversion efficiency of fluorescent bulbs are below 
30% (Shur and Zukauskas, 2005), yet the spectral quality of 
fluorescent bulbs has 90% of its emitted photons in the PAR 
spectrum (Gupta and Agarwal, 2017). The lifespan of fluorescent 
lamps, however, depends on starting and stopping frequencies 
since the emissive coating (usually phosphor) on the electrodes 
slowly evaporates during operation and rapidly erodes during 
start-up. Fluorescent bulbs are usually used for the establishment 
of seedlings or young cuttings of cannabis plants with an 18-h 
photoperiod before transplanting (Chandra et  al., 2017).

High-intensity discharge lamps operate under the same 
working principles as fluorescent bulbs, apart from being operated 
at high pressures and temperatures. High-intensity discharge 
lamps are classified into three types based on the vapors used: 
sodium, mercury, and metal halide. High-pressure mercury 
lamps have a luminous efficiency of 60  lm/W, whereas HPS 
lamps have a luminous efficiency between 80 and 125  lm/W. 
HPS lights not only emit most strongly in the yellow light 
(560–600  nm) of the PAR spectrum but also emit IR that is 
not useful for photosynthesis (Gupta and Agarwal, 2017). In 
both general horticultural and cannabis production industries, 
HPS lamps are widely used but have disadvantages. Firstly, 
high heat outputs (>200°C) dramatically increase temperatures 
in the propagation room without proper thermal management. 

FIGURE 3 | Sunlight and traditional light source spectra. Data were collected using a spectroradiometer (PS-300, Apogee, UT).
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Secondly, although HPS lamps are rated for a longer lifespan 
(24,000  h) compared to fluorescent lamps, frequent starts will 
reduce the lifespan of HPS lamps, as does excessive lamp voltage 
(power surges). Metal halide lamps are modified high-pressure 
mercury vapor lamps. Spectral quality and intensity are controlled 
and have more visible wavelengths with the use of metal halides 
and mercury vapor. In addition, the spectral quality of the 
emitted radiation can be  manipulated with the use of different 
metals and inert gases, producing light with a high luminous 
efficiency from 100 to 120  lm/W (Gupta and Agarwal, 2017).

Light Emitting Diodes
LEDs are an emerging, versatile artificial light source offering 
many advantages over other conventional artificial light sources. 
Advantages include high photoelectric conversion efficiency 
(~50%), long lifespan (30,000–50,000  h), narrow spectral 
emissions (~10  nm), and adjustable light intensity and quality 
to investigate the effects of many different spectral combinations 
of wavelengths on plant growth and development (Chang et al., 
2012; Olle and Viršile, 2013). LED working principles and 
history have been extensively reviewed elsewhere (Morrow, 
2008; Yeh and Chung, 2009; Singh et  al., 2015; Cho et  al., 
2017; De Cesari et  al., 2017; Viršilė et  al., 2017) and will not 
be  repeated in this review. Typical LED spectra used in the 
general horticultural industry are shown in Figure 4.

Apart from versatility, LEDs can address the challenge of 
low light intensity within the plant canopy (Massa et  al., 2005). 
In HPS and overhead LED lighting systems, the top of the 
canopy is often light saturated, while the whole canopy remains 
light-limited. Providing additional light to the lower canopy 
increases the proportion of light used for photosynthesis without 
exceeding the point of photosynthetic light saturation (Massa 
et al., 2005). Unlike HPS that dissipate heat toward the illuminated 
plane, LEDs dissipate their heat away from its illumination plane, 
thereby emitting little heat (Nelson and Bugbee, 2014). Producing 
significantly lower leaf temperatures, they can be used for close-
canopy applications, making them a practical interlighting system 
in commercial settings. For example, a cowpea (Vigna unguicultata 
L. Walp.) canopy irradiated by intra-canopy LEDs improved 
biomass production, whereas plants grown under overhead lights 
produced less biomass and had a reduced energy conversion 
rate than plants grown with intra-canopy lights. When quantified, 
overhead-lighted plants averaged 75% the productivity of 
intracanopy-lighted plants (Massa et  al., 2005).

Spectral Effects on Cannabis Production
Cannabis yield data often refers to dried floral material and 
corresponding cannabinoid content (Vanhove et  al., 2011; Potter 
and Duncombe, 2012; Chandra et  al., 2015). Dried bud yield 
may be  presented on the basis of mass per plant (g per plant) 

FIGURE 4 | Different LED light spectra. Data were collected using a spectroradiometer (PS-300, Apogee, UT).
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or mass per unit growing area (g m−2) (Table 1; Rosenthal, 2010; 
Potter and Duncombe, 2012; Vanhove et  al., 2012). Currently, 
there is no “standard” unit to represent dried bud yield data. 
In recent years, unit mass per wattage of electrical energy consumed 
by the lighting system (g  W−1), has been used, since it reflects 
the correlation between light intensity, cannabis growth, and 
lighting system efficacy (Hough, 2003; Potter and Duncombe, 
2012). Depending on the cannabis plant variety, yield data in g 
W−1 varies between 0.9–1.6  g  W−1, and some growers claim that the 
“standard” unit is 1  g  W−1 (Potter and Duncombe, 2012).

Cannabis plants have been cultivated under different lighting 
systems (Lydon et  al., 1987; Chandra et  al., 2008, 2015; Potter, 
2009; Potter and Duncombe, 2012; Hawley, 2018; Magagnini et al., 
2018). Lydon et  al. (1987) and Marti et  al. (2014) studied the 
effect of UV radiation on cannabis growth and cannabinoid profiles. 
Lydon et  al. (1987) reported that supplementing with UV-B 
radiation for 3 h daily increased THC concentrations on C. sativa 
leaves and buds, whereas supplementing with UV-C radiation 
(100–280 nm) influenced resveratrol and piceid levels (Marti et al., 
2014). Photosynthetic responses in C. sativa were measured at 
different light intensities, temperatures, and CO2 concentrations 
(Chandra et al., 2008, 2011a, 2015). Of the environmental conditions 
tested, the highest net photosynthetic rates occurred at 30°C and 
1,500  μmol  m−2  s−1, but this was reduced by nearly 20% when 
intensity increased to 2000  μmol  m−2  s−1; no declined trend was 
observed at any other test temperatures (Chandra et  al., 2008). 
At 25°C, an increase in net photosynthetic rates with intensity 
was observed (Chandra et  al., 2015). Further, elevated CO2 
concentrations resulted in increased photosynthetic activity but 
had variety-specific responses (Chandra et  al., 2011a).

Studies have reported that light spectrum influences 
cannabinoid quality and cannabinoid secondary metabolite 
production (Hawley, 2018; Magagnini et  al., 2018). Magagnini 
et  al. (2018) compared overhead HPS lamps to LEDs with two 
different light spectra (peaks at ~450 and 620  nm, as well as 

at ~450, 550, and 660  nm). THC percentages in C.  sativa L. 
flowers were 9.5 and 15.4% for LEDs and HPS, respectively, 
at 450  μmol  m−2  s−1. Other cannabinoids such as CBD and 
cannabigerol showed higher concentrations under LED light 
treatments compared to HPS light. Hawley (2018) reported that 
combining 530-nm LED light, 440-nm LED light, 655-nm LED 
light, and metal halide lamps increased dry bud yield by 18–24% 
relative to the control. The same trends were observed with 
cannabinoid and terpene concentrations (Hawley, 2018). This 
up-regulation of secondary metabolites resulted in the 
up-regulation of IPP and DMAPP; both are precursors for 
terpenes and cannabinoids. In addition to environmental factors, 
studies reported that strain and plant density should be considered 
when estimating cannabis yield (Toonen et  al., 2006; Vanhove 
et  al., 2011; Potter and Duncombe, 2012; Vanhove et  al., 2012).

Although beyond the scope of this review, it is still worth 
mentioning the importance of other environment conditions 
such as temperature, relative humidity, air circulation, fertilizer 
rate, substrate, pH, and electrical conductivity (EC), all of which 
are critical for optimal cannabis growth. For cannabis plants, 
the ideal temperature is between 25 and 30°C, yet this may 
vary depending on the genetic makeup and growth behavior 
of each plant strain (Chandra et al., 2008, 2011b). Recommended 
relative humidity levels are 75% during the development stage 
and 55–60% during the vegetative and flowering stages (Chandra 
et al., 2017); however, humidity as high as 90% has been reported 
for the propagation stage (Hawley, 2018; Magagnini et al., 2018). 
In the growing room, constant airflow and drier air are also 
recommended to prevent plant diseases and mold formation 
(Chandra et  al., 2017). An optimized fertilizer rate of 351  mg 
nitrogen per liter (N/L) for cannabis was achieved by supplying 
a range of nitrogen concentrations (117–585  mg  N/L) in a 
coir-based substrate with EC ranging between 0.9 and 3.9 
mS·cm−1 and pH ranging between 6.74 and 7.16 (Caplan et  al., 
2017). A growing number of studies reporting optimal values 

TABLE 1 | A comparison of cannabis yield data compiled from published reports (Vanhove et al., 2011; Potter and Duncombe, 2012; Vanhove et al., 2012; 
Caplan et al., 2017; Magagnini et al., 2018).

Source Light source Strain Dried floral yield THC (%) CBD (%)

g plant−1 g m−2

Vanhove et al. (2011)1 HPS (600 W) Big Bud 9.91 142.51 15.30 0.30
NLX 11.63 186.15 10.90 0.20
Super Skunk 18.58 338.54 14.30 0.30
White Widow 8.91 142.52 9.70 0.20

Vanhove et al. (2012)2 HPS (600 W) Big Bud 48.14 577.69 – –
Skunk #1 52.11 625.35 – –
Silver Haze #9 61.96 743.47 – –
X 45.78 549.33 – –

Potter and Duncombe (2012)3 HPS (600 W) – – 544 14.49 –

Caplan et al. (2017) Fluorescent light OG Kush Grizzly 41.6 270.40 10.60 0.08

Magagnini et al. (2018)
HPS

G-170
26.2 – 9.50 0.10

RB LED 23.1 – 13–15 0.15
RGB LED 22.8 – 15.40 0.20

1Reported plant density of 16 m−2.
2Reported plant density of 12 m−2.
3Mean values for seven strains.
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for each of the aforementioned conditions for cannabis growth 
indicate that they have not yet been fully elucidated, particularly 
with respect to the individual cultivars.

LEDs Versus HPS Lamps
The ideal lighting system for cannabis growth is difficult to 
determine as both LEDs and HPS each have their respective 
advantages (Viršilė et  al., 2017). For large scale of production 
with uniformly spaced plants, HPS provides a broader uniform 
light distribution that can cover a larger area of production 
than LEDs (Nelson and Bugbee, 2014). However, LEDs can 
be  optimized to specific production conditions by controlling 
periodicity, quantity, and spectrum of the light provided (Pinho 
et  al., 2007). LEDs allow high-density production systems to 
have a focused spectral quality that can maximize radiation 
transfer to plants (Nelson and Bugbee, 2014). Their low heat 
emission allows them to be  placed in the plant canopy for 
maximum cannabinoid yields (Viršilė et al., 2017; Hawley, 2018).

Based on the cost analysis, photon efficacy, and capital costs 
of fixtures per photon delivered, it has been determined that 
LED fixtures cost five to ten times more than HPS fixtures, 
and that current, efficient fixtures available in the US have 
nearly identical efficiencies of 1.66–1.70  μmol  J−1 (Nelson and 
Bugbee, 2014). The same study showed that both technologies 
have relatively low long-term maintenance costs. Dutch and 
Danish LED fixtures with efficiencies of 2.2–2.4  μmol  J−1 are 
available in Europe, whereas the newest HPS lamps (1,000  W) 
reach up to 2.1  μmol  J−1, indicating that LEDs are fully 
implementable on a commercial scale (Ouzounis et  al., 2015).

SUMMARY AND FUTURE 
PERSPECTIVES

This review provides an outline of the impact of light on cannabis 
growth. Drawing on previous plant studies of other horticultural 
crops and using existing research performed on the cannabis 
plant, plant responses to different irradiance, wavelength, and 
photoperiods are summarized. The existing literature has 
demonstrated that both HPS and LEDs present viable lighting 
system options with possible benefits, but knowledge gaps remain 
with respect to cannabis production. To bridge these gaps, 
we  propose several areas of focus for future experiments: (1) 

determine the effect of spectral quality on cannabis plant growth, 
particularly under high light intensities, as our current knowledge 
of spectral quality is based on typical greenhouse crops at 
moderate temperature (20–25°C) and it is not yet known if 
we  can apply the McCree PAR curve to cannabis plants; (2) 
determine the effect of environmental conditions such as 
temperature and humidity on different cannabis development 
stages, as current recommendations are ambiguous and mostly 
refer to vegetative and flowering stages; (3) determine the effect 
of light wavelength and intensity on photomorphogenesis (for 
each development stage) and final cannabis yield; (4) determine 
the effect of microclimate and different lighting systems on 
cannabis plant yield. For instance, investigating the effect of 
sole electrical lighting systems on indoor cannabis growth, and 
studying how airflow, temperature, and carbon dioxide might 
impact whole plant growth in these microclimates; (5) determine 
the effect of light on nutrient uptake in cannabis while examining 
substrate interactions and nutrient availability across different 
EC and pH ranges. In all, applied research will provide proven 
and reliable information that may ease cannabis plant production 
in this fast-paced and growing industry.
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