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We report the first plastome sequence of giant ragweed (Ambrosia trifida); with this new
genome information, we assessed the phylogeny of Asteraceae and the transcriptional
profiling against glyphosate resistance in giant ragweed. Assembly and genic features
show a normal angiosperm quadripartite plastome structure with no signatures of
deviation in gene directionality. Comparative analysis revealed large inversions across
the plastome of giant ragweed and the previously sequenced members of the plant
family. Asteraceae plastid genomes contain two inversions of 22.8 and 3.3 kb; the
former is located between trnS-GCU and trnG-UCC genes, and the latter between
trnE-UUC and trnT-GGU genes. The plastid genome sequences of A. trifida and the
related species, Ambrosia artemisiifolia, are identical in gene content and arrangement,
but they differ in length. The phylogeny is well-resolved and congruent with previous
hypotheses about the phylogenetic relationship of Asteraceae. Transcriptomic analysis
revealed divergence in the relative expressions at the exonic and intronic levels, providing
hints toward the ecological adaptation of the genus. Giant ragweed shows various levels
of glyphosate resistance, with introns displaying higher expression patterns at resistant
time points after the assumed herbicide treatment.

Keywords: Ambrosia trifida, chloroplast genome, genome skimming, glyphosate, herbicide resistance, invasive
plants, noxious weeds, ragweed

INTRODUCTION

Plant invasions are accelerating on a global scale and cannot be fully understood without analyzing
the genetic background of the source and invading populations. Biological invasions may threaten
both global and local biodiversity, ecosystem functions, agriculture, and public health (Vitousek
et al., 1997). Human-induced global climate change might further complicate the effects of the
invasions. In Europe, as in many other regions of the world, the number of invasive plant species
has increased considerably in the past 200 years due to increased trade, tourism, and disturbance
(Pyšek et al., 2009). Europe suffers from invasive species in many ways, and a crude estimate of
monetary impact (diminished yield and control measures) suggests that these additional costs due
to invasive species exceed €12 billion annually (Kettunen et al., 2009), although this may be an
underestimate (Vilá et al., 2010).
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The genus Ambrosia L. (ragweeds) of the Asteraceae (tribe
Heliantheae, subtribe Ambrosiinae) includes 40–50 species
(Payne, 1964; Martin et al., 2018). Most are dioecious desert
shrubs, both annual and perennial, while some species are
weedy pioneers that have become established as exotics outside
of their original range (Martin et al., 2018). Based on their
current diversity and distribution, Ambrosia most likely evolved
in the SW USA and adjacent Mexico, then subsequently
radiated to many areas of North America (Payne, 1964).
Giant ragweed (Ambrosia trifida L.) has raised awareness as
an invasive plant in Europe — together with its relatives,
common (Ambrosia artemisiifolia L.) and perennial ragweed
(A. psilostachya DC.), it represents an example of aggressive
invasion all over the continent. Ragweeds are among the most
economically destructive weeds, as they interfere with the growth
and establishment of various crops (Cowborough et al., 2003;
Kong et al., 2007). A. trifida was primarily a weed of floodplains
and ditch banks, but in the past decades it has expanded its
native range in North America, causing considerable economic
loss in the Corn Belt (Regnier et al., 2016). It can dominate in
common croplands due to its rapid growth and large leaf area.
Notably, its ability to adjust its resource utilization responses and
extend its germination period has allowed it to tolerate changing
environments, adding to its success as an invasive species (Abul-
fatih and Bazzaz, 1979). Ragweeds also produce large amounts
of pollen that causes allergenic rhinitis, presenting a burden to
public health (Kazinczi et al., 2008). Currently half of all hay
fever cases in North America are caused by ragweeds (Taramarcaz
et al., 2005), making it one of the most powerful aeroallergens.
In fact, it has been estimated that areas in Europe affected by
severe ragweed allergy are likely to increase substantially by
the year 2100 (Rasmussen et al., 2017). Pollen production of
these plants is enhanced by special anemophily-specialized floral
organs, including the pistillodium (thought to be universal within
Ambrosia), which is a vestigial pistil in staminate flowers that
forces pollen away from the corolla (Payne, 1963; Martin et al.,
2009; Martin et al., 2010).

Giant ragweed is often controlled with the broad-spectrum
herbicide glyphosate [N-(phosphonomethyl) glycine], which has
become a dominant herbicide worldwide since its introduction
in 1974. Although glyphosate belongs to the herbicide group
with the greatest increase in resistance cases, it is still the
most widely used non-selective systemic herbicide worldwide
(Bracamonte et al., 2018), despite its debated environmental
effects (Vandenberg et al., 2017). Recently, it was shown that
glyphosate affects the gut microbiome of honeybees, inducing
susceptibility to infections and death from pathogenic bacteria
(Motta et al., 2018). The continuous application of glyphosate,
along with reduced use of other weed management practices
has also caused many weeds, including A. trifida, to become
glyphosate-resistant (Ganie et al., 2017). Since the introduction
of transgenic glyphosate-resistant (GR) crops in 1996, 19 weeds
have evolved resistance to glyphosate; about half evolved in
GR crops (Heap, 2018). In 2016, the area of transgenic crops
reached 185.1 million ha globally, and approximately 80% were
planted solely with GR crops (International Service for the
Acquisition of Agri-biotech Applications [ISAAA], 2016). This

means that growers continually applied glyphosate alone over
these vast areas to control genetically variable and prolific weeds.
The high initial efficacy of glyphosate often leads to a decline
in the use of other herbicide options and less investment by
industry to discover new herbicide active ingredients (Green
and Owen, 2011). No matter how effective the herbicide is,
weed management programs cannot rely heavily on only one
tactic otherwise weeds will ultimately adapt and survive in large
numbers (Green and Owen, 2011).

Our knowledge about glyphosate resistance is still limited
(Duke and Powles, 2008; Sammons and Gaines, 2014), and
several mechanisms have been reported in various weeds
(Norsworthy et al., 2011). A specific type of resistance, called
target-site resistance, may occur when single or several mutations
take place in the conserved region of the EPSPS gene and/or its
duplications (Yu et al., 2015; Patterson et al., 2018; Sammons
et al., 2018). This gene codes the 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS) enzyme that is inactivated by
glyphosate, thus disrupting aromatic amino acid synthesis in
plants. Such target-site resistance appears rapidly in weed
populations. However, the evaluation of several glyphosate-
resistant A. trifida accessions revealed no changes in the EPSPS
gene sequence and copy number. Rather, a form of non-target-
site resistance (NTSR) known as metabolic resistance has been
suggested (Moretti et al., 2018; Van Horn et al., 2018). This
type of metabolic resistance involves more changes than just
the target site alone. Plants with NTSR rapidly metabolize or
break down the herbicide before it is able to cause toxic effects
(Sammons and Gaines, 2014), thus representing a major issue
for the chemical control of weeds. NTSR is hard to manage
because weeds have unpredictable resistance to herbicides with
different chemical structures and/or target proteins (Délye, 2013).
Furthermore, recent studies have demonstrated that weeds with
NTSR can transmit cross-resistance to other herbicides with
different modes of action, even to those not yet marketed (Petit
et al., 2010). This is because NTSR is much more of a general
adaptive response to herbicides (Yuan et al., 2007). According to
the current view, herbicide application is a stress to the plant,
which triggers response pathways in weeds irrespective of their
sensitivity to the herbicide (Délye, 2013). These stress–response
pathways are pre-existent in plant species, coded by multiple
genes and alleles. The selection of these genes starts with the
uneven application of the herbicide in the field. For example,
some individuals may survive herbicide spraying because they
receive less of the chemical, hence their genes are carried to
future generations, providing resistance to some degree. Further
NTSR evolution likely requires several generations of sexual
recombination within a population until individuals accumulate
enough alleles to possess a resistance level that would enable
survival of the full dose of herbicide (Délye et al., 2013). Recurrent
selection experiments have convincingly provided support for
this theory (Neve and Powels, 2005; Busi et al., 2012). Studies
of the genetic basis of NTSR are sparse, and only the key role of
glutathione transferase genes have been investigated (Cummins
et al., 2013). Research addressing NTSR in weeds has long
been hampered by the absence of ‘omics’ resources for the vast
majority of weed species. The increasing accessibility of genomics
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and transcriptomics supported by next-generation sequencing
(NGS) technologies should rapidly enable the identification of
genes governing NTSR (Délye et al., 2013). For such purposes,
transcriptomes are already available for various weeds (Peng
et al., 2010; Riggins et al., 2010; Zhang et al., 2012) including
A. artemisiifolia (Taller et al., 2016b; Virág et al., 2016).

Genetic research of ragweeds has mostly been focused
on A. artemisiifolia, with the use of microsatellite markers
to determine the origins of invading populations (Genton
et al., 2005a,b; Gaudeul et al., 2011). Population genetics of
A. artemisiifolia has also been investigated (Cseh and Taller, 2008;
Chun et al., 2010; Gladieux et al., 2011; Mátyás et al., 2012;
Martin et al., 2016; von Boheemen et al., 2017), and genomic tools
are under development for the analysis of historical specimens
(Sánchez Barreiro et al., 2017) and fresh plant material (Cseh
et al., 2009; Cseh, 2010; Mátyás et al., 2011; Taller et al., 2016a;
Virág et al., 2016; Nagy et al., 2017). The history of common
ragweed distribution was revealed based on comprehensive
studies of herbarium specimens (Chauvel et al., 2006; Csontos
et al., 2010; Martin et al., 2014). However, the genetics of other
ragweed species in Europe have been less studied. As such,
the relationships of ragweeds are poorly understood and thus a
taxonomic update of Payne (1964), with newly described species
and a solid phylogenetic framework of the genus is necessary.
Toward this goal, herbarium specimens accumulated over the
past 100 years that are readily available for sampling would be
valuable material to assess ragweed diversity, and to perform
evolutionary studies. Accordingly, a recent study by Martin
et al. (2018) demonstrated the utility of herbarium specimens in
phylogenetic analyses.

Until recently, the use of herbarium collections for obtaining
molecular-level data has been difficult due to the generally
poor condition of their DNA (Besnard et al., 2014). However,
advances in NGS technologies and subsequent development of
techniques for extracting historical DNA (Gutaker et al., 2017;
Shepherd, 2017) have recently made herbarium specimens an
attractive option. In fact, most NGS methods are designed
for using short fragmented DNA molecules (100–400 bp) as
templates, which suits herbarium specimens (Staats et al., 2013).
Gutaker and Burbano (2017) demonstrated that NGS is better
suited than PCR-based approaches for ancient DNA sequencing,
because adapter ligation allows interrogation of the molecule
ends so that longer molecules can be obtained for sequencing.
As such, this approach has enabled access to genetic information
on type or other important historical specimens, which are
crucial for resolving taxonomic uncertainties. Moreover, NGS
is both feasible and cost-effective (Bakker et al., 2015; Bakker,
2017). Staats et al. (2011) showed that it is also possible to use
genome skimming to analyze DNA that is otherwise too degraded
for PCR−based approaches, thus offering the possibility to
include rare and extinct species from natural history collections
in phylogenetic analyses. Several phylogenomic studies have
explored the potential of herbarium specimens of different ages
(Staats et al., 2013; Besnard et al., 2014; Aubriot et al., 2018;
McManus et al., 2018; Zeng et al., 2018). For example, the
entire nuclear genome of a 43-year-old Arabidopsis thaliana
(L.) Heynh. (Brassicaceae) herbarium specimen with high

and uniform sequence coverage has been reported using a
reference-based assembly approach (Staats et al., 2013). NGS
techniques can also be used to further acquire mitochondrial
genomic data, which provides the possibility to address questions
related to hybridization and introgression (e.g., Rydin et al.,
2017; Vargas et al., 2017), as well as assess the phylogenetic
congruence between topologies based on mitochondrial regions
and plastomes (Van de Paer et al., 2018). For example, the
evolutionary history of an extinct plant lineage Hesperelaea A.
Gray, known from an 1875 collection from Guadalupe Island, has
been revealed based on both the plastome (Zedane et al., 2016)
and mitogenome (Van de Paer et al., 2016).

Herbarium specimens also offer a unique opportunity to
study the plastid genome compartments preserved in specimens.
Plastomes of angiosperms are small (typically approximately
120–190 kb in size) and have a highly conserved quadripartite
structure containing two inverted repeats (IRa and IRb), which
separate the large and small single-copy regions (LSC and SSC).
The plastid genome includes 110 to 130 genes that participate
primarily in photosynthesis, transcription, and translation
(Palmer, 1985; Olmstead and Palmer, 1994; Daniell et al.,
2016). Their conserved gene content, order, and organization
make plastid genomes fairly well-suited for studies about
gene loss, structural rearrangement, pseudogenes, or additional
mutation events that might be characteristic of some lineages
(Poczai and Hyvönen, 2013, 2017; Beck and Semple, 2015;
Wicke and Schneeweiss, 2015). Herbarium specimens appear
to yield enough reads for effective plastome assembly, similar
to fresh specimens (Bakker et al., 2015). This is because plant
cell walls are composed of cellulose microfibrils (Cosgrove,
1999) that provide additional protection for preservation of
the genomic DNA (Bakker, 2017). The total assembly length
of plastid genomes is comparable between fresh material and
herbarium specimens. Those from herbarium specimens simply
need slightly more editing and “scaffolding” because on average
they yield shorter contigs (Bakker et al., 2015; Bakker, 2017;
Twyford and Ness, 2017).

In the current study, we sought to develop further resources
to facilitate genomic research of ragweeds. By using a herbarium
specimen, we aimed to demonstrate the utility of such collections
for weed genomics. We present the complete chloroplast
genome sequence of giant ragweed (A. trifida) using high-
throughput sequencing, and report the assembly, annotation,
gene expression, and unique structure characterization of its
plastome. Comparison of the gene order and inverted repeat
(IR) length across Asteraceae is also presented, as well as
transcriptional profiling against glyphosate resistance.

MATERIALS AND METHODS

DNA Isolation and Plastome Sequencing
Giant ragweed leaves (0.5 g) were obtained from a herbarium
specimen of the Finnish Museum of Natural History (H),
University of Helsinki, Finland (H1645542; Mansfield, OH,
United States, 1886). Leaf samples were rinsed with deionized
water and 70% ethanol, and total genomic DNA was isolated
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using the NucleoSpin Plant II kit (Macherey-Nagel, Düren,
Germany). All work was carried out in a dedicated laboratory
with UV sterilized equipment; blank samples were processed
during DNA extraction. DNA concentration was measured with
a Qubit fluorometer (Invitrogen) and verified on an 0.8% agarose
gel. A paired-end genomic library was constructed using the
Nextera DNA library preparation kit (Illumina, San Diego,
CA, United States). Fragment analysis was conducted with an
Agilent Technologies 2100 Bioanalyzer using a DNA 1000 chip.
Sequencing was performed on an Illumina MiSeq platform from
both ends with 150 bp read length.

Genome Assembly and Annotation
To obtain high-quality clean data, raw reads were first filtered
by removing low-quality reads with a sliding window quality
cutoff of Q20 using Trimmomatic (Bolger et al., 2014). Plastid
reads were obtained by reference mapping using A. artemisiifolia
L. (MG019037; NC035875) plastid genome (Amiryousefi et al.,
2017; Nagy et al., 2017) with Geneious R10 (Kearse et al.,
2012). Clean reads were used for de novo assembly, which
was performed with three different algorithms of the programs
Velvet v1.2.10 (Zerbino and Birney, 2008), Geneious assembler,
and NOVOPlasty (Dierckxsens et al., 2017). General genome
structure and ambiguous nucleotide positions were evaluated
by an additional assessment. Sequence inconsistencies were
checked by mapping reads to the plastome as described in
Wysocki et al. (2015). The final de novo assembly was used to
map the reads and calculate the mean coverage of the plastid
genome using Geneious R10. Sanger-based gap closure and
IR junction verification was performed following Poczai and
Hyvönen (2017). Annotation was performed using a two-step
procedure. First, we transferred all annotations in Geneious from
the reference A. artemisiifolia to the A. trifida genome using
a similarity threshold of 80%. The genome sequence was also
annotated using GeSeq (Tillich et al., 2017), since this program
performed better than other algorithms in a comparative study
(Amiryousefi et al., 2018b). In a second step, we inspected,
compared, and curated all annotations manually. This included
extracting all coding regions per genome, confirming start/stop
codons and features for each gene, and aligning extracted regions
across all plastid genomes to confirm approximate gene lengths
based on their conserved gene order. Final curated annotations
were transferred to the complete plastid genome sequence
of A. trifida, which was deposited in GenBank (NC036810).
The resulting genome map was drawn with OGDraw v.1.2
(Lohse et al., 2007).

Comparative Plastome Analysis of
Sequenced Asteraceae With Ambrosia
trifida
To highlight the significance of the sequenced A. trifida plastome
compared to the previously available plastomes of Asteraceae,
we first investigated the repeat proportion of the genome using
MISA (Thiel et al., 2003; Beier et al., 2017) and REPUTER (Kurtz
et al., 2001) to identify the stretches of the perfect, compound,
and long-forward repeats. MISA was used to analyze the perfect

microsatellites [often abbreviated as simple sequence repeats
(SSRs)] with a defined length of n = 10 in mononucleotide
repeats, n = 6 in dinucleotide repeats, and n = 3 in tri-,
tetra-, penta-, and hexa-nucleotide repeats. For the compound
repeats, two defined SSRs should be interrupted by 100 bp. For
comparative analysis, a repeat profile was mined across the 10
species to observe any divergence in the occurrence of the repeat
motifs. For the identification of the forward repeats, REPUTER
was used with a defined length of 30 bp and a hamming
distance of 3. For the identification of microstructural events,
pairwise alignments of the Asteraceae plastomes with A. trifida
were performed using LASTZ (Harris, 2007) and MuMMER
version 3.1 (Kurtz et al., 2004). The show-snps feature was
used to evaluate the identification of plastomic variations. Once
microstructural events were identified, they were further plotted
using Circos (Krzywinski et al., 2009) and ggbio (Yin et al., 2012).

Comparative Phylogenomics
We based our sampling on the results of Panéro and Funk
(2002), updated in Panéro et al. (2014), considering the
availability of currently deposited plastid genomes in the
Organelle Genome Resources of NCBI (Wolfsberg et al., 2001)
accessed on 12.12.2017. Of the currently accepted 13 subfamilies
of Asteraceae, only three (Carduoideae [8], Cichorioideae [8],
and Asteroideae [128]) had complete plastid genome sequences
deposited with a prominent bias in the genomes of Asteroideae.
Genomes within subfamilies were chosen to represent each
(super)tribe from the available sequences. For Carduoideae,
we included one species from all accessible genera that
were sequenced and available at the time we conducted the
phylogenetic analysis. In Cichorioideae, only two — Lactuca L.
and Taraxacum F. H. Wigg — were available. From Asteroideae,
we aimed to include at least one species from each of the 21
tribes. We also included genome sequences of Carum carvi L.
and Foeniculum vulgare Mill. of Apiaceae from the campanulid
clade (Angiosperm Phylogeny Group, 2016) as outgroups.
Accession numbers are provided in Supplementary Table S1.
For phylogenetic analysis, we used a matrix of 50 protein-coding
genes representing 43 species, with a total concatenated matrix
alignment of 31,356 bp. We estimated congruence between
different sources of information by comparing the whole genome
alignment matrix, coding region matrix, and non-coding region
matrix (intergenic regions). We observed ambiguity in the
repeat expansion, which might affect the gene composition.
Since large microstructural variations such as single nucleotide
polymorphism (SNPs), and insertions/deletions (INDELs) were
observed, phylogenetic analyses were limited to the coding
regions (Curci et al., 2015).

From all the sequenced Asteraceae and A. trifida, coding
alignments were constructed for the following fifty protein-
coding genes: cemA, infA, matK, ndhC, ndhD, ndhE, ndhF,
ndhG, ndhH, ndhI, ndhJ, ndhK, petA, petG, petL, psaA, psaB,
psaC, psaI, psaJ, psbA, psbB, psbC, psbD, psbF, psbH, psbI,
psbJ, psbK, psbL, psbM, psbN, psbT, rbcL, rpl14, rpl20, rpl22,
rpl32, rpl33, rpl36, rpoA, rpoB, rps2, rps3, rps4, rps8, rps11,
rps14, rps18, and ycf4, using MACSE (Ranwez et al., 2011),
which uses a frameshift alignment algorithm for aligning
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coding sequences. Following the MACSE alignments, each
frameshift was masked and the subsequent alignment was
trimmed using trimAL (Capella-Gutiérrez et al., 2009). Finally,
prior to the construction of the super-matrix, terminal stop
codons were identified and subsequently removed from the
trimmed alignments. Concatenation of the phylogenetic matrix
was performed using SequenceMatrix version 1.8 (Vaidya et al.,
2011). The concatenated sequence matrix was analyzed by
maximum likelihood (ML) and parsimony methods. ML analyses
were performed with IQ-TREE (Nguyen et al., 2015). The best
fitting model (GY+F+I+G4) was determined by ModelFinder
(Kalyaanamoorthy et al., 2017) as implemented in IQ-TREE
according to the Akaike information criterion (AIC), and
Bayesian information criterion (BIC). To assess branch support,
all IQ-TREE analyses used the ultrafast bootstrap approximation
(UFBoot; Hoang et al., 2018) with 1,000 replicates and the SH-
like approximate likelihood ratio test (SH-aLRT) also with 1,000
bootstrap replicates.

Parsimony analyses were performed using nona (Goloboff,
1994) within winclada (Nixon, 2002) shell. Prior to analyses,
the command “mop uninformative characters” was used to
exclude parsimony uninformative characters. This resulted in
a matrix of 3,769 characters. Two separate searches were
performed (using processor time as a seed to randomize the
order of the terminals) with the following settings: hold 30,000
(holding defined maximum number of trees), 100 replications
(search performed with multiple tree-bisection-reconnection
algorithm mult∗max∗), hold/3 (keeping three starting trees for
each replication). In addition, we also performed larger analyses
by keeping 20 starting trees for each replication (hold/20)
with 1,000 replications. To assess whether the longer genes
have any compositional heterogeneity, we created a partition-
specific matrix of the long genes ndhD, ndhH, psaA, psaB,
psbA, psbB, psbC, and rbcL and evaluated the skewness and the
compositional heterogeneity across the combined and partition-
specific variations.

To reveal the placement of the genes near the inverted
repeat junction sites of A. trifida, an IR plot of this
species and nine other Asteraceae were obtained with IRscope
(Amiryousefi et al., 2018a).

Transcriptome Profiling
Despite their small size, plastids represent a classical example
of miniature genomes containing mono- and polycistronic
transcripts. With the advent of plastome sequencing, there has
been considerable interest in understanding the transcriptional
activity of plastid genes, as well as other events related to
RNA editing and post-transcriptional splicing. To understand
the transcriptional divergence associated with glyphosate
resistance, which is defined as the amount of the transcriptional
plasticity between the sensitive and resistant treatment in
the giant ragweed plastome, we mapped the RNA-seq reads
previously deposited to the currently sequenced A. trifida
plastid genome using ChloroSeq (Castandet et al., 2016),
with the defined exonic and intronic localization in the
annotated GFF3 (NCBI SRA: PRJNA267208; Supplementary
Table S2). For mapping the RNA-seq reads, tophat2 (Kim

et al., 2013) was used with -g 2 and -no-novel-junctions
functions to minimize the identification of the novel splice
sites. IR repeat diversity, mapping read estimation, and genome
coverage was subsequently calculated using SAMtools version
1.15 (Li et al., 2009) and bedtools version 2.25 (Quinlan
and Hall, 2010). Expression values in terms of the RPKM
values were mapped to the genome features and were
visualized using Circos (Krzywinski et al., 2009) and ggbio
(Yin et al., 2012).

RESULTS AND DISCUSSION

Genome Assembly and Plastome
Features
Plastid DNA sequencing generated 145,207 paired-end reads,
with an average fragment length of 267 bp. De novo assemblies of
reads resulted a total of 38 contigs with an N50 of 13,231 bp. Ten
contigs were alignable and covered 100% of the A. artemisiifolia
reference genome. Mapping of the reads to the de novo
assembled plastid genome resulted in a 180×mean coverage. The
chloroplast genome of A. trifida was 152,040 bp and showed a
quadripartite structure of long (83,966 bp) and small (17,894 bp)
single-copy regions, separated by two inverted repeat regions
of 25,090 bp (Figure 1). As in other species of Asteraceae,
the A. trifida chloroplast genome contains 80 protein-coding,
28 tRNA, and four rRNA genes comprising a total of 112
unique genes (Supplementary Tables S3, S4). The distribution
of the genes also exhibited similarity with other Asteraceae and
angiosperms, with 13 genes found in the SSC, 19 genes in the
IR, and 80 genes in the LSC. The overall GC content of the
chloroplast genome was 37.2%. Only 21% of the whole genome
is non-coding. There were 18 intron-containing genes in the
giant ragweed plastome (Supplementary Table S4). From these,
16 (10 protein-coding and six tRNA) genes had a single intron,
and two (ycf 3, clpP) had two introns. 12 (eight protein-coding
and four tRNA) genes are located in the LSC, one (protein-
coding) gene in the SSC, and five (three protein-coding and two
tRNA) genes in the IR region. The largest intron (2,565 bp)
was located in the trnK-UUU gene, including the highly diverse
matK gene. The trnK intron is of interest because it represents
an unusual form of a group II intron derived from a mobile
group of mitochondrial-like intron ORFs (Hausner et al., 2006).
The rps12 gene was trans-spliced with the 5′ end exon located
in the LSC region and the two remaining exons found in the
IR regions. We also observed three cases of overlapping genes,
namely psbD/psbC, atpE/atpB, and rps3/rpl22. In the ndhD and
psbL genes, we observed that ACG is used as an alternative start
codon instead of the common AUG in A. trifida and in most
species of Asteraceae. It has been shown that this exceptional
ACG start codon is RNA edited in all Solanaceae (Amiryousefi
et al., 2018b) except Datura stramonium L., while the start codon
of psbL is unedited. In Asteraceae, the canonical AUG form is
found for both psbL and ndhD in Ageratina adenophora (Spreng.)
King & H. Rob., Pericallis hybrida (Willd.) R. Nordenstam,
Silybum marianum (L.) Gaertn. However, only ndhD possesses
the AUG start codon in Centaurea diffusa Lam., Chrysanthemum
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FIGURE 1 | Plastome map of Ambrosia trifida. Gene features and distribution of the direction of genes with respect to their localization. Genes on the inner side of
the outer circle are transcribed counterclockwise while those on the outer side are transcribed clockwise. Genes belonging to different functional groups are
color-coded; the GC and AT content of the genome are plotted on the inner circle as dark and light gray, respectively. Inverted repeats (IR); large single copy (LSC)
regions; small single copy (SSC) regions.

indicum L., Jacobaea vulgaris Gaertn., Mikania micrantha Kunth
and Saussurea involucrata Matsum. & Koidz.

Genomic Repeats and Rearrangements
Microsatellites (or SSRs) are valuable molecular markers of high-
degree variations within the same species. These markers have
been previously used in population genetics and polymorphism
investigation of ragweeds (Genton et al., 2005a,b; Gaudeul et al.,
2011). We analyzed the distribution of SSRs according to the

defined length criteria in the giant ragweed plastome. A total
of 100 SSRs were observed, with eight present in compound
form. To understand whether their distribution varies among
Asteraceae species, we further compared 10 previously sequenced
plastomes (Table 1). The most abundant motifs of the SSRs
were poly-A/T stretches characteristic of angiosperm plastid
genomes. These results are consistent with previous findings
that the SRs are generally composed of short poly-A or poly-T
repeats and rarely contain tandem G or C repeats h. In addition
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to mononucleotide stretches, we observed tetra- (AGAT/ATCT)
and hexa- (AAGGAT/ATCCTT) nucleotide repeats, which could
be of specific interest for future cpSSR marker development
in cross-species amplifications or population genetic studies of
ragweeds. We further identified 25 larger repeats (>30 bp) using
the defined parameters in REPUTER (Kurtz et al., 2001). Most
of these long repeats were present in the intergenic spacers
(Table 2). Among these repeats, a large portion were found
within ycf genes, which have been shown to have high divergence
rates in most embryophyte lineages and have undergone
pseudogenization (Michelangeli et al., 2003). The nucleotide
sequence similarity among embryophyte ycf 2 is extraordinarily
low compared to other plastid-encoded genes: it is less than 50%
across bryophytes, ferns, and seed plants (Wicke et al., 2011).
This divergence is not surprising since ycf genes have experienced
many insertions/deletions. For example, these deletions account
for the reduction in the chloroplast genome size among members
of the Graminid clade (Poczai and Hyvönen, 2017).

Asteraceae plastid genomes contain two inversions of 22.8 and
3.3 kb as compared with the outgroup terminals Carum carvi and

Foeniculum vulgare of Apiaceae. The larger inversion is located
between the trnS-GCU and trnG-UCC genes, and the smaller
between the trnE-UUC and trnT-GGU genes. In addition to these
large inversions, another smaller inversion of 3.3 kb is located
within the larger inversion, between the trnC-GCA and rpoB
genes. These rearrangements are assumed to have originated in
the late Eocene (36–42 My BP) and are commonly reported for
Asteraceae (Jansen and Palmer, 1987; Kim et al., 2005). They
are absent in the species of the basal subfamily Barnadesioideae
as assessed by restriction endonuclease digestions (Jansen and
Palmer, 1987). This interesting finding should be confirmed by
future research, since complete plastid genome data is currently
missing for this group. To further understand the level of the
microstructural events, we performed a pairwise comparison of
the Asteraceae plastomes with the sequenced A. trifida, revealing
a high number of substitutions compared to insertions and
deletions. Interestingly, we observed a large number of inversions
compared with Parthenium argentatum A. Gray and Ageratina
adenophora (Spreng.) King & H. RobAs in other angiosperms,
the coding regions of Asteraceae are more conservative than

TABLE 1 | Distribution and summary of the shared SSRs across the Asteraceae plastomes.

Repeats Ambrosia
trifida

Helianthus
annuus

Jacobaea
vulgaris

Taraxacum
officinale

Echinacea
purpurea

Artemisia
annua

Soliva
sessilis

Westoniella
kohkemperi

Carthamus
tinctorius

Ambrosia
artemisiifolia

A/T 30 39 34 19 38 39 16 49 19 36

AAC/GTT 4 4 4 4 4 4 4 4 3 4

AAG/CTT 28 24 24 20 25 21 23 22 20 28

AAT/ATT 16 18 26 20 19 26 34 40 24 19

ACC/GGT 2 3 NIL 2 3 3 3 3 3 2

ACG/CGT 1 1 1 1 1 NIL NIL 1 1 1

ACT/AGT 1 1 1 1 1 NIL 2 NIL NIL 1

AGC/CTG 7 7 6 7 7 7 7 7 6 7

AGG/CCT 3 3 4 2 2 4 3 3 3 3

ATC/ATG 3 3 3 3 3 5 4 3 3 3

AAAG/CTTT 1 1 1 3 1 1 1 NIL 1 1

AAAT/ATTT 2 2 5 1 2 7 3 9 3 4

AGAT/ATCT 1 1 NIL NIL 1 NIL NIL 2 NIL 1

AAGGAT/ATCCTT 1 NIL NIL NIL 1 NIL NIL NIL NIL 1

TABLE 2 | Summary of the identified forward repeat stretched across the Ambrosia trifida plastome.

No Type Location Region Repeat unit Period size (bp) Copy nr.

1 P ycf3/ndhA Intron LSC/SSC CAGAACCGTACATGAGATTTTCATCTCATACGGCTCCTC 41 2

2 P rps12-ycf16 IGS IR CAGAACCGTACATGAGATTTTCA[CT]CTCATACGGCTCCTC 39 2

3 P rps12-ycf15 IGS IR TATTAGATTAGTCTATTAATTCATATTAGATTAGTCT 37 2

4 F pdbE – petL IGS LSC ATTCATGAATTGATTAGAATATTGCCGCAATTG 34 2

5 F ycf2 Gene IR TGACGATATTGATGCTAGTGACGATAT 27 2

6 P psbT-psbN IGS LSC AATTGAAGTAATGAGCCTCCCAAT 24 2

7 F rps12-ycf15 IGS IR CTATTAGATTAGTCTATTAATTCA 23 2

8 F rpl32-ndhF IGS SSC ATAAAAATATTCAATAAGTATAA 23 2

9 F trnD – trnY IGS LSC TTCTCTCGTATCAGGTAT 18 3

10 F ycf1 Gene SSC AATGGAAATAGAAGAAG 18 3

11 F psbK -psbI IGS LSC ATACCTTATTAGC 13 4

IGS, intergenic spacer; IR, inverted repeat; LSC, large single copy region; SSC, small single copy region; F, forward repeat; P, palindromic repeat.
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FIGURE 2 | Segmental synteny and conservation of Ambrosia trifida across Asteraceae plastomes. LASTz alignments were filtered to keep only colored tracks
showing > 70% alignment coverage, with the colored ribbons are species-specific. The inner tract displays the corresponding gene annotations of A. trifida, with the
corresponding ribbons showing the inversions and segmental rearrangement across the gene regions.

the non-coding regions; rpoC1 is the most divergent of all the
genes. The invasive weed Ageratina adenophora rpoC1 contains
two introns, while only one intron is found in the plastid
genomes of other Asteraceae (Nie et al., 2012). Our LASTZ
dot-plot comparison with the complete plastome of Saussurea
involucrata Matsum. & Koidz. showed rearrangement patterns
(Figure 2 and Supplementary Figure S1) caused by a large
shift (approximately 93 kb) in residue numbering that caused
problems during de-circularization of the genome. The published
genome of this species (Xie et al., 2015) also contains numerous

annotation errors with several key genes unannotated (for
example, rpl16 exon 2, rps12, and truncated rps19). We found
that SSC regions showed signatures of inversions (Figure 2),
which is consistent with previous reports (Liu et al., 2013;
Walker et al., 2014; Gruenstaeudl et al., 2017). These major
spots of inversions have also been reported previously in
the plastomes of several plant lineages (Schwarz et al., 2015;
Hsu et al., 2016; Graham et al., 2017; Sinn et al., 2018),
It is important to note that the SSC region occurs in two
inversion isomers that exist in equimolar proportions in the
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FIGURE 3 | Inverted repeat plot of Ambrosia trifida. rps19 gene on the LSC/IRb regions with corresponding 184/95 bp. The positive strand synteny of the rpl2,
rps19, and rpl22 on the IRb, JLB, and LSC, respectively, is also confirmed. In accordance with the other selected nine Asteraceae, the JSB of A. trifida is hosting the
extended functional version of the ycf1 gene, while the pseudo version of this gene beside ndhF is placed near the JSA site. Another copy of the rps19 and trnH,
along rpl2 are gathered near the JLA.

same individual, which are identical in sequence but different
in orientation (Palmer, 1983). Presently, whole plastid genome
sequences are uploaded in GenBank without preference for
the orientation of the SSC region, which appears as a genome
structural inversion but is truly just chloroplast heteroplasmy
(Walker et al., 2015). Many plastid genome studies use reference-
guided mapping, where the orientation of the SSC is copied
along novel genomes. For example, SSC regions occur in
inverted orientations in Solanaceae compared to Asteraceae
(Salih et al., 2017). Another good example in Asteraceae is the
plastid genome of Lactuca sativa L., which has been published
twice independently (NC007578 and DQ383816). Besides minor
polymorphisms among these genomes, the major difference is the
orientation of the SSC, which appears to be inverted. Due to the
rapid increase in amount of de novo assembled plastid genomes

that are often deposited independently and parallel to each other,
this phenomenon should not be overlooked, and SSC orientations
should not be regarded as diversity hot-spots.

Inverted Repeat (IR) Diversity
Most of the length variation in angiosperms is attributed to
expansion or contraction of the IR regions. It is rare that this
variation is due to gene losses, which could vary within a single
genus (Sloan et al., 2014). To obtain comprehensive insight into
the IR regions of the Asteraceae, a survey of over 40 species was
performed using a recently published tool IRscope (Amiryousefi
et al., 2018a). This revealed the placement of rps19 in the JLB
(LSC/IRb) in almost all cases (Figure 3 and Supplementary
Figure S2). The inversion of the SSC region, and hence its
reversed gene annotation, is a main distinguishing factor in the
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FIGURE 4 | Phylogenetic tree (left in cladogram style, right with branch lengths) inferred from plastid genome data. Maximum likelihood phylogeny illustrating the
phylogenetic relationships of Asteraceae based on fifty protein-coding genes. Species of the genus Amrbosia are highlighted in red. Branch lengths are proportional
to the number of substitutions, while numbers represent bootstrap support values for each node. The given scale represents substitutions per site.

FIGURE 5 | Violin plots showing the exonic and intronic RPKM distribution across the sensitive and resistant glyphosate ragweeds. Time points indicate sample
collection: 0, 3, 8, and 12 h after herbicide application.

visual representation of the species. The fixation of the extended
ycf 1 in the JSB (IRb/SSC) was confirmed for the majority of
the species (approximately 80%). For the same set of species,

we observed a pseudo ycf 1 gene often tangental to the JSA
(SSC/IRa) on the IRa side and the ndhF gene near the JSA
on the SSC side. In some species, the SSC occurred in the
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FIGURE 6 | Circos plot visualization of the transcriptional mapping of Ambrosia trifida. Single-base resolution of the mapped RNA-seq reads across the A. trifida
plastome with represented gene annotations. Track ribbons order according to the following SRA accession number: SRR1661420, SRR1661463, SRR1661464,
SRR1661465, SRR1661466, SRR1661467, SRR1661468 and SRR1661469.

reverse orientation and with ycf 1 extending on the JSA site
and a pseudo ycf 1 and ndhF plotted on the JSB. The JLA has
the rps19 and trnH genes in its vicinity, with psbA further in
the LSC region in almost all cases. The pseudo rps19 gene was
unannotated in the original files of the first four species in
Figure 3. Hence, we obtained the corresponding annotations
using GeSeq and inverted the SSC region with IRscope for the
first five species to improve visual comparison. Unlike the others,
the new annotation of A. artemisiifolia confirmed the existence
of the rps19 and its corresponding pseudo fragment on the LSC

adjacent to IRb and IRa, respectively (Figure 3). Non-identical IR
features were observed for A. artemisiifolia (NC035875), where
the IRb contains a single C base insertion near rpl2 (84,242 bp).
The trnH gene was also assigned to the opposite DNA strand,
which we have manually corrected for Figure 3. After these
adjustments, we obtained a corrected size of 25,086 bp for the IRs
(cf. Nagy et al., 2017).

The conservation of the length of the IRs, SSC, and LSC is
another interesting point. These regions were between 24 to 26,
18 to 19, and 82 to 84 kb, respectively. The maximum length
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of plastid genomes is 153,014 bp for Conyza bonariensis (L.)
Cronquist, while the shortest length of 149, 510 bp was found in
Aster spathulifolius Maxim. As in other Asteraceae, the inverted
repeat plot of the A. trifida showed the rps19 in the LSC/IRb
regions with a corresponding 184/95 bp. The synteny of the rpl2,
rps19, and rpl22 (for IRb, JLB, and LSC, respectively) of the
positive strand was also confirmed. As in the majority of other
angiosperms, the JSB of A. trifida has the extended functional
version of the ycf 1 gene while the pseudo version of this gene
beside ndhF is placed near the JSA site. Another copy of the genes
rps19, trnH and rpl2 can be found near the JLA.

Comparative Phylogenomics
Asteraceae is one of the largest families of flowering plants,
with approximately 1,500 genera and 23,000 species (Kumar
et al., 2009). While several studies have been conducted to
resolve the phylogeny (Denda et al., 1999; Panéro and Funk,
2002, 2008; Panéro et al., 2014), many questions remain open.
Plastome sequences can now be easily acquired for phylogenomic
analyses at relatively low costs, thus providing rich sources of
phylogenetic information. To assess the phylogenetic position of
A. trifida relative to the previously sequenced Asteraceae species,
we performed maximum likelihood (Figure 4) and parsimony
analysis. The latter resulted in six equally parsimonious trees
with length of 7,297 steps, with consistency index (Kluge and
Farris, 1969) CI 0.65 and retention index (Farris, 1989) RI 0.83
(Supplementary Figure S3). The tree is congruent with that
obtained by using maximum likelihood as an optimality criterion,
and no bias in compositional heterogeneity was detected in the
sequences (Supplementary Figure S4).

Historically, Asteraceae were divided into two large
subfamilies (Asteroideae and Cichorioideae) and 13 tribes
(Bentham, 1873). Major changes in classification have been
made during the past decade, resulting in a better phylogenetic
framework. Based on the analyses of chloroplast DNA markers
(Panéro and Funk, 2002, 2008; Panéro et al., 2014), 13 major
clades (subfamilies) were identified in Asteraceae. From these
subfamilies, our study included representatives of Carduoideae,
Cichorioideae and Asteroideae with complete plastid genome
sequences available from public databases. The Asteroideae
subfamily was sister to Cichorioideae, including Lactuca sativa
L. and Taraxacum officinale (L.) Weber ex F. H. Wigg of the
tribe Cichorieae. Taxa within the subfamily Carduoideae were
represented by members of the tribe Cynareae, and formed
two clades. The first was composed of Carthamus tinctorius
L. and Centaurea diffusa Lam. The second included Cynara
baetica (Spreng.) Pau and Silybum marianum (L.) Gaertn. as
sisters, while Saussurea involucrata Matsum. & Koidz. were
resolved in a basal position. This phylogeny obtained for the
Cynareae is consistent with the results of a more detailed
molecular analysis (Barres et al., 2013) including larger number
of terminals. As expected, our tree resolved three supertribes
Asteroideae, Helianthidae, and Senecionodae within the
subfamily Asteroideae. Jacobea vulgaris Gaertn., together with
Pericallis hybrida (Willd.) R. Nordenstam, grouped in the
supertribe Senecionodae. In the Asterodae, all three sampled
tribes of Anthemidae, Gnaphalieae, and Astereae were distinct

with high support values compared to previous plastid studies
where tribes of Asteroideae were not resolved (Curci et al.,
2015). Helianthus annuus L, A. artemisiifolia, and A. trifida
grouped in the Heliantheae alliance indicating a group with high
support values within the supertribe Helianthodae, and separate
of Millerideae (Galinsoga quadriradiata Ruiz & Pav., Guizotia
abyssinica) and Eupatorieae (Ageratina adenophora [Spreng.]
King & H. Rob.; Mikania micrantha Kunth). Deeper level
relationships within the alliance Heliantheae were unresolved.
Whole chloroplast genome sequences were unavailable for the
cockleburs (Xanthium L.) thus we were unable to provide support
for the previously reported sister genus relationship to Ambrosia
(Miao et al., 1995). Both genera are monoecious with pistilate
florets surrounded by woody involucres, a morphological trait
that has been assumed to indicate their close relationship
(Peterson and Payne, 1973).

Comparative Transcriptional Profiles
Against Glyphosate Resistance
As a first contribution toward deciphering the complete genetic
information of giant ragweed, we determined the complete
sequence of its plastome. Since assembling plastid genomes
from herbarium specimens is possible, the complete sequences
can be used in further applications. The analysis presented
here is an example of the use of herbarium genomics in
other fields like weed research where, besides the biology of
ragweeds, their control with herbicides is a major area of
focus for research. Herbicides have a pivotal role in controlling
weeds and sustaining food security by restricting weeds while
being as harmless as possible for crops (Duhoux et al., 2017).
Reaching this specific goal with various mechanisms of action,
herbicides induce changes in gene expression to alter or terminate
plant physiological pathways. Knowledge about the regulation
of plastid gene expression in response to herbicide treatments
is central to our understanding of photosynthesis and other
plastid-localized metabolic pathways associated with herbicide
resistance. To date, the molecular basis of herbicide resistance has
been largely investigated by single-gene sequencing to identify
single-point mutations in the target site of the herbicide. More
recently, second-generation sequencing technologies have also
enabled transcriptomic approaches (e.g., RNA-seq) to identify
candidate genes underlying more complex NTSR mechanisms,
such as herbicide metabolism and translocation (Ravet et al.,
2018). Weed genomics offers the promise to go beyond
transcriptomics and provide further novel insights into the
biological processes such as NTSR.

Despite its small size, the transcriptional apparatus of plastids
is relatively divergent at the expression level compared to
the nuclear genome, which is the first line in transcriptional-
mediated responses pertaining to abiotic and biotic stress
including herbicide resistance. These transcriptional events,
as defined by the variations observed in the transcriptional
expression levels, play an important role in understanding plastid
metabolism at the cellular and energetic levels by altering the
transport of solutes across the membrane, or by regulating
their sequestration through membrane trafficking (Sammons
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and Gaines, 2014). One such example is glyphosate, which
is sequestered by a transport mechanism and inhibits the
shikimate pathway in the chloroplast (Sammons and Gaines,
2014). Plastid gene expression and its regulation has been
intensely studied in chloroplasts (see the review of Leister
et al., 2017). By contrast, knowledge of gene expression under
herbicide treatment in plastids is still very limited. Since
a large fraction of plastid protein-coding genes is involved
in photosynthesis, it is generally believed that plastid gene
expression is affected in plant tissues treated with herbicides.
Until now, limited knowledge has been accumulated to
understand the transcriptional events related to glyphosate
resistance, although it has been used globally to control
noxious weeds such as A. trifida (Sammons and Gaines, 2014).
As previously mentioned, since glyphosate sequestration and
harvesting through the chloroplast mediated shikimate pathway
play an important role in herbicide resistance, we compared
the transcriptional events in the plastid genome of A. trifida.
For this, we used RNA-seq reads previously deposited in the
Sequence Read Archive (Supplementary Table S2) gathered
from total plant cell transcriptomes, which capture both primary
and processed mRNA sequences of the plastome. Therefore,
we first isolated the plastid genome data from the total
transcriptomes of glyphosate resistant and sensitive A. trifida
plants sequenced across four different time points – 0, 3, 8,
and 12 h after spraying with the herbicide. In particular, we
observed that exonic divergence (change in the patterns of
the expression levels of exons across the sensitive and the
resistant time points) to be more pronounced compared to the
intronic divergence (change in the patterns of the expression
levels of introns across the sensitive and the resistant time
points; Figure 5 and Supplementary Table S5). Considering
the divergence of the glyphosate uptake, a higher expression
of plastid genes was found in resistant as compared to the
sensitive conditions. As a first line of defense against any abiotic
stress, the primary focus of the gene expression alternation at
the nuclear level is mainly pertaining to the genes involved
in photosynthetic responses, heat shock or those involved in
the membrane transport. We observed a higher expression
of the tRNA genes across all of the time points, which is
conserved across all of the embryophytes and suggests that the
higher expression of the relative tRNAs is required for rapid
transcription activity, which might be required to circumvent
the herbicide-mediated changes in the membrane transport of
the generated ATPs across the NADPH complex. Additionally,
it might indicate that the expression of the SIG2, responsible for
the transcription of tRNA genes, is pre-dominant as compared
to the SIG6, which is mostly associated with the photosynthetic
genes (Figure 6).

Furthermore, A. trifida had relatively low expression levels,
which might hint toward the uptake of the glyphosate and
the rate of disruption of the photosynthetic apparatus and
the metabolic pathways associated with plastid genes. It
has been widely demonstrated that glyphosate also affects
growth by contaminating the environment and accumulating
in plant organs, and can be a major limiting factor for
agricultural productivity (Fartyal et al., 2018). According to

our observations, plastid intronic expression is higher in
glyphosate-resistant giant ragweed at all sequenced time points
compared to the sensitive time points after the herbicide
treatment (Supplementary Table S5). The expression of introns
associated with ycf3 increased during the 8 and 12 h time
points in sensitive A. trifida, which might present a defense
mechanism to combat glyphosate (Figure 6). Relative expression
divergence among the sensitive and resistant time points for
the photosystem I (PSI) assembly protein ycf3 revealed an
up-regulation in the resistant phenotype compared to the
sensitive phenotype. This clearly reflects the role of glyphosate
as an interfering herbicide in plant growth through the
inhibition of the photosynthetic complex (Fartyal et al., 2018).
Higher expression of ribosomal-associated genes has also been
observed in sensitive time points compared to the glyphosate
resistant time points, which might reflect the higher activity
rates of the translation and ribosomal machinery required
for the efficient translation of plastid genes during glyphosate
resistance. We also observed down-regulation of atpF, which
is an H+ATPase (CF0 subunit of the CF0CF1) and a critical
component for energy production also associated with the
down-regulation of ndhA and ndhB. Members of the NADH-
like dehydrogenases play an important role in the PSI cyclic
electron flow (Suorsa et al., 2009). Overall, these findings
suggest that glyphosate has immediate effects on the photo-
accumulation events and thus alters the transport and the energy
production in plastid genes. Similar disruptions were reported in
mitochondrial ATP influx-outflux during glyphosate resistance
(Gomes et al., 2017).

CONCLUSION

The inclusion of historical museum specimens in phylogenomic
analyses of biodiversity provides new possibilities for both
fundamental and applied plant biology research. Our
study is a good example of how herbarium specimens can
be used to investigate phylogeny and genomic patterns
of herbicide resistance. However, it should be kept in
mind that museomics are limited by the amount of plant
material, and disruptive sampling should be cautiously
carried out with such specimens. Herbarium genomics of
weeds could also improve our understanding of resistance to
herbicides. As demonstrated in our study, plastid genomes
reconstructed from herbarium specimens, coupled with
transcriptomic resources can also be used to investigate
herbicide resistance with potential for further applications in
weed management.
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