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Chlorophyll fluorescence measurements have been mainly applied to investigate the
functioning of the photosynthetic apparatus in the diagnosis of environmental stress.
Moss is sensitive to several abiotic stresses and is considered an environmental
indicator. Therefore, moss chlorophyll fluorescence can be as a visual parameter
applicable for monitoring heavy metal contaminants in water. Different from previous
studies with value changes of chlorophyll fluorescence in mosses, we suggest that
phenotypes with anthocyanin accumulation pattern and chlorosis pattern and colors
of chlorophyll fluorescence images of the maximum efficiency of PSII photochemistry
(Fv/Fm) and the quantum yield of PSII electron transport (8PSII) could reflect metal
species groups and concentrations roughly. And we further indicated that Cr(III)
and Cr(VI) could be monitored distinguishably according to the non-photochemical
quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images,
respectively. It is interesting that the fluorescence color patterns were nearly the same
for all treatment concentrations. This perspective provides additional data of chlorophyll
fluorescence changes in moss under cold, heat, salinity, high light or osmotic stress.
Only heat stress and high light have significant effects on the fluorescence parameters
of Fv/Fm and 8PSII. In contrast, mosses are less sensitive to short-term cold, salinity, and
osmotic stress. While NPQ decreases rapidly under the osmotic stress. Nevertheless,
heat stress, high light or osmotic stress does not usually co-occur in the place where
the moss grows. Estimation through moss chlorophyll fluorescence color patterns is still
a rapid and non-invasive method to monitor heavy metal pollutions in water.

Keywords: chlorophyll fluorescence, moss, abiotic stress, heavy metal monitoring, non-photochemical
quenching

INTRODUCTION

As a result of global climate change, an increase in temperature, changes in precipitation pattern,
stress by various environmental factors, alone or in combination, leads to a degradation of
natural ecosystems (Hu et al., 2018). Evaluation of the physiological state of plants, their activity,
monitoring the physical existence and intensity of environmental stress by operable methods can
provide essential information for ecosystem management. Various experimental approaches and
analytical methods have been developed for in vivo monitoring of plants’ physiological state, stress
response, and tolerance, including RGB (red, green, and blue) imaging (Berger et al., 2010), thermal
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imaging (Jones et al., 2009), NIR (near-infrared) imaging (Seelig
et al., 2009), and chlorophyll fluorescence (Kalaji et al., 2016).
Among these methods, chlorophyll fluorescence, a powerful
tool extensively used to analyze the status and function of
photosystem II (PSII), is now being commonly employed in
detecting the damage to photosynthetic apparatus caused by
environmental stress (Stirbet et al., 2018). One of the main
features of chlorophyll fluorescence measuring is non-invasive
diagnostics, allowing researchers to get detailed information of
plant performance without destructing the tested sample (Kalaji
et al., 2014).

Chlorophyll fluorescence, which contains a large amount
of information on PSII photochemistry reactions provides a
measure of how well plants use the light energy absorbed at
PSII for electron transport and is therefore a key measure of
photosynthetic activity and performance (Baker, 2008). It is
well known that many abiotic stresses cause changes in the
photosynthetic apparatus at different metabolic levels (Pawłowicz
et al., 2012) and environmental stress factors may produce
directly or indirectly deleterious effects on PSII and many plant
biochemical processes (Gururani et al., 2015). However, because
photosynthesis is linked to many plant metabolic pathways, the
alterations of photosynthesis can represent the physiological state
of the plant and therefore chlorophyll fluorescence signal can
reflect the influence of environmental factors on plants to some
extent (Kalaji et al., 2016). Measuring chlorophyll fluorescence
provides a rapid, non-destructive, and non-invasive screening
tool for plant performance and the ability to cope with stress
because perturbation of chlorophyll fluorescence in metabolism
is sensitive (Barbagallo et al., 2003). Moreover, chlorophyll
fluorescence along with other physiological parameters can bring
more complex and useful information about the mechanisms
contributing to stress responses (Chen et al., 2016, 2017, 2018c).
We refer the reader to numerous other in-depth reviews on
principles and method of chlorophyll fluorescence (Krause and
Weis, 1991; Maxwell and Johnson, 2000; Baker, 2008; Murchie
and Lawson, 2013).

At present, mosses and lichens have been used widely as
bioindicators of atmospheric pollution (Pott and Turpin, 1996).
Some mosses have also been used to evaluate water pollution
(Bruns et al., 1997). In the late 1960s, Rühling and Tyler
used mosses as sensitive bioindicators for surveying heavy
metal contamination (Rühling and Tyler, 1968, 1970). Since
then terrestrial mosses have been widely applied for pollution
biomonitoring in different countries and regions (Pott and
Turpin, 1996; Ermakova et al., 2004; Shotbolt et al., 2007; Chen
et al., 2010). For example, using moss bags is a common strategy
to measure heavy metals directly with terrestrial mosses. This
technique employs placing suitable mosses, collected from clean
areas, in a mesh net bag and measuring concentrations of
contaminants in samples exposed to a polluted area (Ares et al.,
2012). However, many methods using mosses for biomonitoring
like moss bags are time-consuming, inconvenient and do not
indicate the contaminants in situ immediately.

Moss rhizoid is too short to monitor deep soil pollution and
therefore it is only used to monitor heavy metals in aquatic
environment accurately. Based on the previous researches using

chlorophyll fluorescence to detect abiotic stresses in the aquatic
bioindicator mosses (Rau et al., 2007; Proctor and Smirnoff,
2011; Liepiņa and Ievinsh, 2013; Kangas et al., 2014; Jägerbrand
and Kudo, 2016), we provided new ideas to monitor water
heavy metals rapidly and non-invasively in a large-scale by
moss visible parameters of Fv/Fm and 8PSII (Chen et al.,
2015a). In other words, metal contaminations could be roughly
estimated visually using the chlorophyll fluorescence images.
This perspective provides further information about chlorophyll
fluorescence changes in moss under cold, heat, salt stress, high
light or osmotic stress. Only heat stress and high light had
significant effects on Fv/Fm and 8PSII. However, mosses are
less sensitive to cold, salt stress or osmotic stress. While NPQ
decreased rapidly under the osmotic stress. Fortunately, heat
stress, high light, and osmotic stress do not usually co-occur
in heavy-metal-polluted water. Moss fluorescence imaging is
still a rapid and non-invasive method to monitor heavy metal
contaminations in water. Moreover, insufficiency of this method
and future research directions also are discussed.

MOSS AS AN INDICATOR PLANT

Mosses are suitable objects for biomonitoring because of their
extreme ability to accumulate pollutants such as heavy metals,
radioisotopes and multifold chemical pollutants (Carballeira
et al., 2006). The reasons for this over-accumulation capacity of
mosses include the lack of the complex regulatory mechanisms of
vascular plants due to the deficiency of a real root and vascular
system (Tyler, 1990). In mosses, the leaves, which mostly lack
a protective cuticle, normally have only a layer of cells and
consequently offer a large surface for absorption (Ares et al.,
2012). They readily absorb most of their nutrients and pollutants
directly from atmosphere and precipitation through the entire
surfaces (Tyler, 1990). As a result, Mosses can be applied to
monitor heavy metals in aquatic environment, such as water,
wetland, and moist soil surface. Mosses are more quickly and
seriously poisoned by pollutants than vascular plants, and reflect
with their specific victimization symptoms (Vanderpoorten and
Goffinet, 2009).

BIOMONITORING HEAVY METAL
CONTAMINATIONS BY CHLOROPHYLL
FLUORESCENCE PARAMETERS IN
MOSSES

Heavy metal majorly affects chloroplast ultrastructure, causing
lipid peroxidation in photosynthetic membranes, degrades
photosynthetic pigments, inhibits PSII activity and electron
transport, decreases carboxylation efficiency of Rubisco and
restrains net photosynthetic rate (Mishra and Dubey, 2005).
Previous research has suggested that the ratio of Fv/Fm of aquatic
moss Fontinalis antipyretica could be used as an indicator of
heavy metal toxicity (Rau et al., 2007). Other studies have only
used chlorophyll fluorescence as one of the test parameters,
along with other physiological parameters, to explore the effects

Frontiers in Plant Science | www.frontiersin.org 2 January 2019 | Volume 10 | Article 35

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00035 January 23, 2019 Time: 17:10 # 3

Chen et al. Monitoring Metals by Moss Chl-Fluorescence

of heavy metal stress on moss. Our previous experimental
data (Chen et al., 2015a, 2018a) of chlorophyll fluorescence
changes in mosses under heavy metal stress are summarized
in Figure 1. In our previous report (Chen et al., 2015a),
two moss species Taxiphyllum taxirameum and Eurhynchium
eustegium were compared. They showed similar chlorophyll
fluorescence images under metal stresses (the same color patterns
with slightly different values). However, T. taxirameum has
larger-area leaves than E. eustegium, and therefore is better for
observing chlorophyll fluorescence changes. On the other hand,
T. taxirameum has more branches and forms dense carpet than
other hydrophilous moss species, which increases its capacity to
concentrate heavy metals from the water. Therefore the heavy
metal accumulation ability of T. taxirameum was higher than
other hydrophilous moss species (Chen et al., 2010, 2015b).

Phenotypes with anthocyanin accumulation pattern and
chlorosis pattern and colors and values of chlorophyll
fluorescence images of Fv/Fm and 8PSII could reflect metal
species groups and concentrations roughly (Figure 1).
Furthermore, the fluorescence color patterns were nearly the
same for all concentrations (10, 25, or 50 µM) of the same heavy
metal treatments, although the high concentration (50 µM) led
to larger declines in Fv/Fm and 8PSII values (Chen et al., 2015a).
The phenotype of non-stressed mosses was bright green. Copper
and Zinc (≤50 µM) did not cause apparent chlorosis but caused
noticeable anthocyanin accumulation in leaves. Pb and Cr led
partial chlorosis and slightly less anthocyanin accumulation. Cd
and Hg did not induce observable anthocyanin accumulation,
but instead induced partial or complete chlorosis, respectively,
in the entire moss, perhaps due to a large amount of damage
to moss cells. The color of Fv/Fm and 8PSII image is uniform
blue and green in a control moss, respectively. Then, the color
of Fv/Fm and 8PSII image is blue with sporadic green and green
with sporadic yellow for Cu and Zn-treated mosses, respectively.
Lead and Chromium treatment forms Fv/Fm image green with
sporadic blue and 8PSII image turns green with sporadic red. The
color of Fv/Fm image is green with sporadic red for Cadmium-
treated mosses and a large dark area for Mercury-treated mosses
as well as 8PSII image is a large dark area on Cadmium and
Mercury treatment. It is interesting to note that the basal tissues
show higher Fv/Fm and 8PSII fluorescence (blue to green colors)
than the apical tissues (green to yellow colors); contrastingly,
the basal tissues present much lower NPQ fluorescence (red
to black colors) than the apical tissues (green to yellow colors;
Chen et al., 2015b, 2018a). These differences may suggest that
the apical tissues are subjected to more severe damages than
the basal tissues during the metal stress. Correspondingly, more
superoxide accumulation and more cell death were observed
for the apical tissues than the basal tissues (Chen et al., 2015b,
2018a).

The colors changes indicate great reductions in these
parameters. For example, 5–20% declines in Fv/Fm and 8PSII
values indicate approximate 10 µM metal ions; 20–40% declines
in these two parameters indicate 25 µM metal ions; 40–75%
declines indicate 50 µM metal ions. Detailed value changes have
been shown in the report by Chen et al. (2015a). Despite the fact
that some moss species (like Physcomitrella) has a much stronger

NPQ than higher plants (Alboresi et al., 2010; Chen et al., 2018b),
the NPQ value increases in mosses treated with 10 or 25 µM of
metal ions, but decreases at 50 µM, and the color varies largely
(therefore not shown in Figure 1). The detection limits are in
great variation among different metal species groups. 50 µM Cu,
Zn, Pb, or Cr (VI) treatments would result in about half declines
in Fv/Fm and 8PSII values. However, over 70% declines could
be observed for 50 µM Cd or Hg ions (a large dark area on
the chlorophyll fluorescence image). Therefore, 50 µM is the
detection limit for Cd or Hg contaminants (Chen et al., 2015a).
While for less toxic metal ions, the detection limits may be up to
500 µM (Chen et al., 2015b, 2018a).

Moreover, we reported the difference of toxicity between
trivalent chromium and hexavalent chromium using chlorophyll
fluorescence (Chen et al., 2018a), and found that Cr (III) and Cr
(VI) could be monitored distinguishably according to the NPQ
of sporadic purple and sporadic lavender images, respectively
(Figure 1). White-purple spots appear on the edges of the leaves
at the apical tissues in the NPQ image for Cr (VI)-treated
mosses. As the Cr (VI) treatment concentration increases, white-
purple points increasingly begin to appear. However, regardless
of the concentration of Cr (III), the NPQ image of Cr (III)-
treated mosses is mostly blue-purple patches with no white-
purple spots (Chen et al., 2018a). White-purple spots present
extremely high NPQ values on these points, also indicating
that apical tissues have higher NPQ fluorescence than the basal
tissues. Detailed value changes have been shown in the report
by Chen et al. (2018a). Our previous report indicated that the
uptake of Cr (VI) was much easier than Cr (III) in moss plants
(almost two times higher). Thus for less mobile Cr (III) ions,
the detection limits may be further up to 1000 µM (Chen et al.,
2018a).

Chlorophyll fluorescence appeared to be a useful technique
to monitor heavy metals in water or on wetland and humid
soil surface without destructive measurements. However, two or
more metal contaminants may co-exist in a natural environment.
For example, it is also difficult to judge the degree of Cr pollution
if other heavy metal contaminants are present. Therefore, this
method is suitable for detecting single Cr contaminations in an
area known to be polluted by Cr (Chen et al., 2018a).

OTHER ABIOTIC STRESSES MAY NOT
AFFECT HEAVY METAL
BIOMONITORING BY MOSS
CHLOROPHYLL FLUORESCENCE

Despite the well-documented influence of abiotic stress on
photosynthetic processes and chlorophyll fluorescence being
explored in many higher plants (Kalaji et al., 2016), the
relationship between abiotic stress and chlorophyll fluorescence
of mosses is weakly summarized in the literature. An experiment
was carried out to observe how the chlorophyll fluorescence of
moss changed under several common stresses, including cold,
heat, salinity, high light, and osmotic stress. The experimental
results have been shown in Figure 2.

Frontiers in Plant Science | www.frontiersin.org 3 January 2019 | Volume 10 | Article 35

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00035 January 23, 2019 Time: 17:10 # 4

Chen et al. Monitoring Metals by Moss Chl-Fluorescence

FIGURE 1 | Putative heavy metal estimation criteria of moss phenotype and chlorophyll fluorescence imaging. The moss was cultured in distilled sterile modified
Mohr medium (KNO3 100 mg, CaCl2·4H2O 10 mg, MgSO4 10 mg, KH2PO4 136 mg, and FeSO4 0.4 mg to 1000 mL distilled water, pH 7.5) for 3 days in lab before
the metal stress to make them adjust to indoor environment (16/8 h photoperiod at 100 µmol of photons m−2 s−1, 25 ± 1◦C). Metal stresses applied by adding 0
(control), 10, 25, or 50 µM CuSO4.5H2O, ZnSO4.7H2O, Pb(NO3)2, CrCl3, K2CrO4, CdCl2.2.5H2O, HgCl2 to the Mohr solution. Solutions were replaced every
2 days. The mosses were cultured or stressed for 30 days. Chlorophyll fluorescence images were obtained at room temperature using a modulated imaging
fluorometer (the Imaging PAM M-Series Chlorophyll Fluorescence System, Heinz-Walz Instruments, Effeltrich, Germany) according to the instructions provided by the
manufacturer. Images of Fv/Fm after dark adaptation and of 8PSII and NPQ at the steady-state of the induction curve with actinic illumination of 100 µmol photons
m−2 s−1. The color scale shows at the bottom of the figure represents the range from 0 (black) to 1.0 (purple) for each parameter. Diagrams representing
T. taxirameum chlorophyll fluorescence are shown. NPQ increases in mosses treated with 10 or 25 µM of metal ions, but decreases at 50 µM, and the color varies
largely, therefore not shown in the figure.

Only heat stress and high light have a significant effect
on the fluorescence parameters of T. taxirameum among five
stresses. In contrast, T. taxirameum is less sensitive to short-
term cold, salinity, and osmotic stress as the fluorescence
parameters do not change much with the timed exposure.
When chlorophyll fluorescence of moss is used to biomonitor
heavy metal contamination in aquatic environment, where
both heat stress and high light are present at the same time,
the fluorescence parameters are seriously reduced, resulting
in an inaccurate observation. However, the effects of cold,
salinity, and osmotic stress are minimal. It is important to
note that the value of NPQ decreases rapidly under osmotic
stress, so it should not be possible to distinguish Cr (VI)
from Cr (III) by a NPQ image when there is osmotic stress.
The fluorescence parameters of mosses are diverse under five
stresses, so the detailed mechanism remains to be further
studied.

Mosses are usually grown in the shaded (cool) and humid
(water) environments, such as the shallow water or the soil at the
water’s edge, where heat stress, high light or osmotic stress does
not usually co-occur. Alternatively, we should not select mosses
grown under high-light conditions when acquiring chlorophyll
fluorescence images. Although mosses may encounter low
temperature or salinity, these two environmental stresses do not

affect the chlorophyll fluorescence significantly. Thus, heat stress,
high light, or osmotic stress may not compromise the accuracy
of heavy metal biomonitoring through the moss chlorophyll
fluorescence.

CONCLUSION AND PERSPECTIVES

Chlorophyll fluorescence tool provides useful information
about plant photosynthetic performance and the extent to
which this performance is limited by photochemical and
non-photochemical processes. As reported in this article, this
technique has been conveniently used in stress researches where
it provides the possibility to detect the responses of mosses to
abiotic stresses. Previous studies provide new ideas to monitor
water heavy metal rapidly and non-invasively in a large-scale
using moss chlorophyll fluorescence parameters with imaging.
However, it is difficult to identify specific stresses in any plant
including moss directly through chlorophyll fluorescence tool
for the time being. In the laboratory, it is easy to create a
single controllable stress condition to induce clear symptoms,
whereas in the field, plant is often exposed to several joint stresses
at the same time. Nevertheless, mosses are usually grown in
the shaded and humid environments without heat stress, high
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FIGURE 2 | Chlorophyll fluorescence imaging of T. taxirameum under cold stress, heat stress, salt stress, high light, and osmotic stress. Experimental materials
were T. taxirameum (Mitt.) Fleisch, which were collected in Sichuan Agricultural University (Ya’an, China) and brought back to laboratory to be thoroughly washed.
T. taxirameum were further acclimatized in distilled sterile modified Mohr medium for 3 days under the controlled conditions (16/8 h light/dark cycles at 100 µmol of
photons m−2 s−1, 25 ± 1◦C) before stress treatment. Adapted mosses were transferred to 10◦C or 45◦C 1 day/3 days for cold or heat stress. For salt stress,
adapted mosses were placed in 300 mM NaCl solution for 2 or 6 h. For high-light stress, adapted mosses were placed at 1000 µmol of light photons m−2 s−1,
25 ± 1◦C for 20 min or 1 h. Adapted mosses were placed in 20% PEG solution for 1 or 3 days for osmotic stress. Chlorophyll fluorescence images were obtained at
room temperature using a modulated imaging fluorometer (the Imaging PAM M-Series Chlorophyll Fluorescence System, Heinz-Walz Instruments, Effeltrich,
Germany) according to the instructions provided by the manufacturer. Images of Fv/Fm after dark adaptation and of 8PSII and NPQ at the steady-state of the
induction curve with actinic illumination of 100 µmol photons m−2 s−1. The color scale shows at the bottom of the figure represents the range from 0 (black) to 1.0
(purple) for each parameter. (A–C) Means the three chlorophyll fluorescence parameters Fv/Fm, 8PSII, and NPQ respectively.
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light or osmotic stress (or these environmental stresses can be
avoided). And they are insensitive to low temperature or salinity.
Thus, other environmental factors may not affect heavy metal
biomonitoring by the moss-chlorophyll-fluorescence method.

For highly toxic metal ions (such as Cd and Hg), the detection
limit is about 50 µM, contrasting to 500 µM for low toxic
metal ions. However, Cd or Hg ion concentrations may exceed
50 µM in some heavily polluted water. How to monitor these
metal ions at extremely high levels needs further investigation.
Our previous work only considered the case of a certain heavy
metal stress, but mosses often suffer many heavy metals at
the same time in the real natural environment. Studying the
chlorophyll fluorescence of the moss after multiple heavy metals
treatments will be the future research direction. In addition,
the effect of water organic matter pollution on the chlorophyll
fluorescence of moss has not been studied, and it is therefore
another research direction for the future. Nevertheless, a single
mine water pollution usually contains only one major metal
iron. For example, lead mine often contaminates nearby surface
water by letting out Pb irons. While chromium occurs naturally
as both a chromite (FeCr2O4) in serpentine and ultramafic
rocks and mostly exists in trivalent Cr (Becquer et al., 2003).
Our method with the moss chlorophyll fluorescence may be
especially useful to monitor heavy metal in the surface water of
mining areas. However, for monitoring industrial contaminants
(mixtures of toxic organic pollutants and inorganic pollutants
including heavy metals), more feasible methods still need to be
developed.

Most previous studies of moss chlorophyll fluorescence (Rau
et al., 2007; Proctor and Smirnoff, 2011; Liepiņa and Ievinsh,
2013; Kangas et al., 2014; Jägerbrand and Kudo, 2016) focused on
the fluorescence value changes. Our former studies (Chen et al.,
2015a, 2018a) and the data proposed in this perspective suggest
that color patterns of the fluorescence images could reflect metal

species groups and concentrations. And the color pattern remains
stable as the metal concentration increases. For Fv/Fm and 8PSII,
a higher treatment concentration would result in a larger area of
colors representing low fluorescence values. For example of Cd
treatments, 50 µM led to a larger area of red on Fv/Fm image,
than that of 10 µM treatment. However, the color pattern always
is “Green with sporadic red,” regardless of the concentration of
Cd (Chen et al., 2015a). Metal-iron-specific fluorescence color
pattern can only be observed in moss plants, but not in higher
plants (data not shown). Different colors on the same moss
thallus may indicate different accumulations of metal irons at
different parts of the thallus, or possible translocation of metal
irons within a thallus, or some particularity of moss chlorophyll
fluorescence, which requires further explorations.
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