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The explosive xenobiotic 2,4,6-trinitrotoluene (TNT) is a major worldwide environmental
pollutant and its persistence in the environment presents health and environmental
concerns. The chemical structure of TNT dictates that biological detoxification pathways
follow predominantly reductive transformation of the nitro groups, and as a result, TNT
is notoriously recalcitrant to mineralization in the environment. Plant-based technologies
to remediate this toxic pollutant rely on a solid understanding of the biochemical
detoxification pathways involved. Toward this, two Arabidopsis Tau class glutathione
transferases, GSTU24 and GSTU25, have been identified that catalyze the formation
of three TNT-glutathionylated conjugates. These two GSTs share 79% identity yet only
GSTU25 catalyzes the substitution of a nitro group for sulfur to form 2-glutathionyl-4,6-
dinitrotoluene. The production of this compound is of interest because substitution of
a nitro group could lead to destabilization of the aromatic ring, enabling subsequent
biodegradation. To identify target amino acids within GSTU25 that might be involved
in the formation of 2-glutathionyl-4,6-dinitrotoluene, the structure for GSTU25 was
determined, in complex with oxidized glutathione, and used to inform site-directed
mutagenesis studies. Replacement of five amino acids in GSTU24 established a
conjugate profile and activity similar to that found in GSTU25. These findings contribute
to the development of plant-based remediation strategies for the detoxification of TNT
in the environment.

Keywords: 2,4,6-trinitrotoluene, TNT, Arabidopsis, glutathione transferase, GST, detoxification, xenobiotic

INTRODUCTION

The continual use of explosives, along with production and decommissioning is progressively
contaminating military sites worldwide (Amaral et al., 2009; Zheng et al., 2009). The total area
of operational ranges in the United States contaminated with munitions constituents is estimated
to be more than 10 million hectares (United States General Accounting Office, 2004). Pollution
in European countries, from former WWII manufacturing and disposal sites is also widespread
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(Spain et al., 2000). The most broadly used explosive, 2,4,6-
trinitrotoluene (TNT) is associated with extensive soil and water
contamination (Lewis et al., 2004). Contaminated training ranges
have hotspots of TNT that can reach concentrations of up to
87000 mg kg−1 soil (Talmage et al., 1999), with 100–1000 mg
kg−1, or lower for surface soils in artillery training ranges and
1–36 mg kg−1 for hand grenade ranges (Jenkins et al., 2006; Clark
and Boopathy, 2007).

Nitro-substituted organic compounds, such as TNT, pose
a specific challenge to plant and bacterial degradation. The
electron withdrawing nitro groups on the TNT molecule provide
stability to the aromatic ring through resonance, rendering the
ring particularly resistant to oxidative attack and subsequent
ring cleavage (Qasim et al., 2009). Thus TNT is particularly
recalcitrant to biodegradation and persists in the environment
(Rylott et al., 2011).

In a previous study, two Arabidopsis thaliana (Arabidopsis)
glutathione transferases, GSTU24 and GSTU25, were shown to
conjugate TNT to glutathione (GSH) producing three distinct
TNT-GSH conjugates, shown in Figure 1 (Gunning et al.,
2014). For two of the compounds, GSH conjugation occurred
through the methyl group of TNT; however, the third conjugate
(conjugate 3) resulted from the nucleophilic substitution of a
nitro group to form 2-glutathionyl-4,6-dinitrotoluene (GDNT).
Replacement of the nitro group with sulfur could destabilize
the aromatic ring. Fungi and bacteria with the ability to
mineralize dinitrotoluenes exist (Valli et al., 1992; Nishino et al.,
2000; Johnson et al., 2002) and enzymatic pathways for DNT
biodegradation have been characterized (Nishino et al., 2000;
Johnson et al., 2002). Thus, production of GDNT could present
an opportunity for cleavage and subsequent biodegradation of
this toxic environmental pollutant.

Plant GSTs are a superfamily of enzymes: In Arabidopsis,
there are 54 GSTs subdivided into seven classes. While many
GSTs are able to conjugate GSH to a wide range of xenobiotic
substrates, they are also involved in catalyzing ascorbate recycling
and various metabolic reactions, with some GSTs also exhibiting
glutathione peroxidase (GPOX) activity (Dixon and Edwards,
2010), and non-enzymatic ligand binding properties (Smith
et al., 2003; Dixon et al., 2011). The Tau class, to which
GSTU24 and GSTU25 belong, can be subdivided into three
distinct clades. Many of the GSTs within the clade GSTU19
to GSTU28 are implicated in the detoxification of xenobiotics
such as herbicides and safeners (Edwards et al., 2005; Labrou
et al., 2015). Expression of both GSTU24 and GSTU25 is induced
by TNT, with GSTU25 also exhibiting relatively high GPOX
activity (Dixon and Edwards, 2009) and activity toward the
model substrate 1-chloro-2,4-dinitrobenzene (CDNB; Mezzari
et al., 2005; Gandia-Herrero et al., 2008). To date, Tau class
GSTs are unique in their ability to bind glutathione-conjugated
fatty acid derivatives (Mezzari et al., 2005; Dixon and Edwards,
2009), with GSTU25 known to selectively bind hydroxylated fatty
acids. Yet, despite the mounting knowledge on these enzymes,
the endogenous roles for GSTU24 and GSTU25, and the vast
majority of plant GSTs in general, remains elusive.

The structures of several Tau class plant GSTs have been
solved: The wheat (Triticum aestivum), TaGSTU4-4 structure was

determined in complex with S-hexylglutathione (Thom et al.,
2002) and rice (Oryza sativa) OsGSTU1 (Protein Data Bank
code 1OYJ), while two soybean (Glycine max) GSTs have been
determined; GmGST-U4-4 in complex with S-(p-nitrobenzyl)-
glutathione (Axarli et al., 2009) and GmGSTU10-10 (Skopelitou
et al., 2015). Although there is high protein sequence variability
between these GSTs, the structures are remarkably conserved
(Dixon and Edwards, 2010; Skopelitou et al., 2015). Existing
as soluble homo or heterodimers, each 23–30 kDa subunit
is 200–300 amino acids in length. Within each subunit is a
kinetically independent active site containing G and H sites. The
G site, which is relatively well conserved, is formed from the
N-terminal domain which exhibits α/β topology, and binds GSH
and, less commonly, other closely related peptides. The H-site
exists within an α-helical structure in the C-terminal domain but
is less well conserved than the G site and, as a result, GSTs have
wide substrate specificity.

Only 1.3 kb apart on chromosome I, GSTU24 and GSTU25
share 79% protein identity, indicative of a relatively recent
gene duplication event. In this study, we report the structure
of GSTU25. We then use this structure, in combination with
alignment from other Tau-class plant GSTS whose structures
have previously been solved (Axarli et al., 2009, 2016), to predict
the key amino acids in the active site of GSTU25 that are
associated with the specificity of the conjugation reactions of
TNT with GSH.

MATERIALS AND METHODS

Expression and Protein Purification for
Crystallization
The GSTU24 and GSTU25 from A. thaliana (Arabidopsis)
ecotype Col0, and mutants, were cloned from pET-YSBLIC3C
(described below) into pET22a to remove the his-tag, then
transformed into Escherichia coli Tuner (DE3) cells (Novagen)
that also contained the pRARE plasmid from Rosetta (Novagen).
Transformants were grown on agar plates of Luria Bertani
medium containing kanamycin (100 µg mL−1) and 50 µg mL−1

chloramphenicol (50 µg mL−1) (LB+KC). A single colony of
a plate grown overnight was used to inoculate a 5 mL starter
culture of LB+KC medium, which was grown overnight at 37◦C,
180 rpm. The starter culture was then used to inoculate 400 mL
LB+KC medium which was incubated at 37◦C with shaking
until an OD600 of 0.5–0.8 was reached. At this point expression
of the GST was induced by the addition of isopropyl β-D-1-
thiogalactopyranoside (IPTG, final concentration of 1 mM) and
culture incubated at 20◦C, 180 rpm. After approximately 18 h
growth, cells were harvested by centrifugation at 5000 g for
15 min then resuspended in 20 mM Tris/HCl buffer pH 7.5.
Cells were disrupted by ultrasonication, centrifuged at 15,000 g
for 30 min then the supernatant loaded onto a 10 mL GSH
Sepharose 4B (GE healthcare). Column fractions were analyzed
by SDS-PAGE and the fraction containing purified proteins were
pooled and concentrated using a 10 kDa cut-off Centricon R©

filter membrane. Concentrated protein was loaded onto an S75
SuperdexTM gel filtration column and fractions containing pure
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FIGURE 1 | Chemical structures of 2,4,6-trinitrotoluene (TNT) and the three glutathione-TNT conjugates, as determined by Gunning et al. (2014).

protein, as determined by SDS-PAGE, were pooled and stored
at−20◦C.

Protein Crystallization
Commercially available crystallization screens in 96-well plate
sitting drop format were pre-incubated with 2 mM GSH and
2 mM TNT in 54 µL of reservoir solution in reservoir well.
Pure AtGSTU25 was then subjected to crystallization trials
using a Mosquito R© ROBOT (TTP LabTech) in which each drop
contained 150 nL protein and 150 nL precipitant reservoir
solution. Initial crystals observed for the complex of AtGSTU25
mixture were obtained in solutions containing 0.2 M ammonium
acetate, 0.1 M bis-tris propane pH 5.5 and 25% (w/v) PEG 3350.
Larger crystals for diffraction analysis were obtained using the
hanging-drop vapor diffusion method in 24-well plate Linbro
dishes with 2 µL drops of a ratio of mother liquor to protein
solution. The best crystals of the complex of GSTU25 with
oxidized glutathione were obtained in crystal drops containing
0.2 M ammonium acetate, 0.1 M bis-tris propane pH 5.5 and 23%
(w/v) PEG 3350. Prior to analysis on in-house X-ray equipment,
the crystals were washed with the reservoir solution containing
20% (v/v) ethylene glycol as the cryoprotectant, followed by flash-
cooling in the liquid nitrogen. Crystals were tested for diffraction
using a Rigaku Micromax-007HF fitted with Osmic multilayer
optics and a MARRESEARCH MAR345 imaging plate detector.
Those crystals that diffracted to a resolution of equal to, or better
than, 3 Å were retained for dataset collection at the synchrotron.

Data Collection, Structure Solution,
Model Building, and Refinement
The complete dataset described in this report was collected at the
Diamond Light Source, Didcot, United Kingdom on beamline
I02. The data were processed and integrated using XDS (Kabsch,
2010) and scaled using SCALA (Evans, 2006) included in the
Xia2 processing system (Winter, 2010). Data collection statistics
are provided in Table 1. All crystals of U25 were obtained in
space group P212121, with four molecules in the asymmetric unit,
constituting two dimers. The structure of AtGSTU25 was solved
using MOLREP (Vagin and Teplyakov, 1997), with a monomer of
the structure of the Tau class glutathione transferase from G. max
(PDB 4TOP; 65% sequence identity) as a model. The solvent
content in crystals was 51%. Structures were built and refined
using iterative cycles using Coot (Emsley and Cowtan, 2004)
and REFMAC (Murshudov et al., 1997), employing local NCS
restraints in the refinement cycles. After building and refinement

of the protein and water molecules, clear residual density was
observed in the omit maps at the GSH binding site. This could
be clearly modeled as glutathione disulfide (GSSG). The final
structure exhibited Rcryst and Rfree values of 20.5 and 21.7%,
respectively. All structures were validated and checked using PDB
validation software upon deposition. Refinement statistics for all
structures are presented in Table 1. The Ramachandran plot for
AtGSTU25-GSSG showed 98.4% of residues to be situated in
the most favored regions, 1.1% in additional allowed and 0.5%
residues in outlier regions.

Generation of the GST Mutants
A QuickChange II Site-Directed Mutagenesis Kit (Agilent
Technologies) was used to generate the mutants, using the
primers listed in Table 2. Wild-type and mutated GSTU24 and
GSTU25 were cloned into pET-YSBLIC3C, used to transform
E. coli (BL21) cells, and expressed and purified as described
previously (Gunning et al., 2014).

TABLE 1 | Data collection and refinement statistics for GSTU25-GSSG complex.

Beamline Diamond I02

Wavelength (Å) 0.97949

Resolution (Å) 48.54–1.95 (1.99–1.95)

Space group P212121

Unit cell (Å) a = 87.83; b = 107.67; c = 108.75’
α = β = γ = 90◦

No. of molecules in the asymmetric unit 4

Unique reflections 75638 (4446)

Completeness (%) 99.8 (100.0)

Rmerge (%) 0.07 (0.54)

Rp.i.m. 0.05 (0.36)

Multiplicity 6.4 (6.2)

<I/σ(I)> 12.7 (3.0)

Overall B factor from Wilson plot (Å2) 25

Rcryst/Rfree (%) 20.5/21.7

r.m.s.d 1–2 bonds (Å) 0.02

r.m.s.d 1–3 angles (◦) 1.94

Avge main chain B (Å2) 31

Avge side chain B (Å2) 35

Avge water B (Å2) 42

Avge ligand B (Å2) 40

Numbers in brackets refer to data for highest resolution shells.
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TABLE 2 | Primers used for the site-directed mutagenesis of GSTU24 and GSTU25.

GSTU24

Mutation Primer set Primer sequence (5′–>3′)

Ala12Pro U24-A12P-F GGCAGATGAGGTGATTCTTCTGGATTTCTGGCCGAGTATGTTTGGG

U24-A12P-R GCCAGAGCAATTCTTGTCCTCATCCCAAACATACTCGGCCAGAAATC

Asn107Tyr U24-N107Y-F CTGGGCCGACTTCATCGACAAAAAGGTGTATGTTACGGCGAG

U24-N107Y-R GACCGCCCAAATCCTTCTCGCCGTAACATACACCTTTTTGTCG

Ala115Gly U24-A115G-F GGTGAATGTTACGGCGAGAAGGATTTGGGGGGTCAAAGG

U24-A115G-R GCTGCTTCTTGCTCCTCACCTTTGACCCCCCAAATCC

Ala115Gly∗ U24-A115Gb-F GGTGTATGTTACGGCGAGAAGGATTTGGGGGGTCAAAGG

U24-A115Gb-R Same as U24-A115G-R

Ile208Val U24-I208V-F GCCCTGCCTGAGTCAGAGAAGGTCATTACATTCGTTTCCGAACG

U24-I208V-R CTCCAACCCAAGTTTCTTCCTACGTTCGGAAACGAATGTAATG

Arg211Leu U24-R211L-F GGTCATTACATTCATTTCCGAACTTAGGAAGAAACTTGGGTTGG

U24-R211L-R CTCCAACCCAAGTTTCTTCCTAAGTTCGGAAATGAATGTAATGACC

Arg211Leu∗ U24-R211Lb-F GGTCATTACATTCGTTTCCGAACTTAGGAAGAAACTTGGGTTGG

U24-R211Lb-R CTCCAACCCAAGTTTCTTCCTAAGTTCGGAAACGAATGTAATGACC

Pro12Ala U25-P12A-F GGCAGACGAGGTGATTCTTCTTGATTTCTGGGCGAGCATG

U25-P12A-R GCAATCCTCGTCCTCATTCCAAACATGCTCGCCCAGAAATC

Tyr107Asn U25-Y107N-F GGCCAAATTTTGGGGAGATTTCATTGATAAGAAGGTGAATGCTTCAGC

U25-Y107N-R GCTCCCCAAATCAACCTCGCTGAAGCATTCACCTTCTTATC

Gly115Ala U25-G115A-F GGTGTATGCTTCAGCGAGGTTGATTTGGGCAGCTAAAGGC

U25-G115A-R CGCCTCATGCTCTTCGCCTTTAGCTGCCCAAATCAACCT

Gly115Ala∗ U25-G115Ab-F GGTGAATGCTTCAGCGAGGTTGATTTGGGCAGCTAAAGGC

U25-G115Ab-R Same as U25-G115A-R

Val209Ile U25-V209I-F GTCTCTTCCTGATTCGGAGAAGATCATTAAGTTCATTCCTGAGC

U25-V209I-R CCCAAGTTTTTTCCTTAGCTCAGGAATGAACTTAATGATCTTCTCCG

Leu212Arg U25-L212R-F CGGAGAAGATCATTAAGTTCGTTCCTGAGCGAAGGAAAAAAC

U25-L212R-R CTATTCGATTTCGATCCCAAGTTTTTTCCTTCGCTCAGGAACG

Leu212Arg∗ U25-L212Rb-F CGGAGAAGATCATTAAGTTCATTCCTGAGCGAAGGAAAAAAC

U25-L212Rb-R CTATTCGATTTCGATCCCAAGTTTTTTCCTTCGCTCAGGAATG

The asterisks (∗) mark primer sets that were designed for the generation of sequential mutations and carry in their sequence the previous mutation, e.g., the Ala115Gly∗

primer set is designed to insert the Ala115Gly mutation into a sequence that already has the Asn107Tyr mutation.

FIGURE 2 | Structures of GSTU25 and target residues. (A) Structure of the GSTU25 dimer, with monomers in blue and brown. Oxidized glutathione can be
observed in each of the monomer active sites, in stick format. (B) Active site of the GSTU25 monomer showing binding of GSSG. The electron density corresponds
to the Fo-Fc omit map contoured at a level of 3σ, and is that which was obtained prior to refinement of the ligand atoms, which have been added from the refined
ligand complex for clarity. Side chains of residues conserved between U24 and U25 are shown with side-chain carbon atoms in Blue; Side-chains of residue
positions chosen for mutation are shown with side-chain carbon atoms in gold.
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GST Assays Using CDNB
Conjugating activity of the purified proteins, and crude extracts
from rosette leaves, was assessed using CDNB as described
previously (Colville and Smirnoff, 2008). Briefly, the reaction,
at 25◦C, comprised 100 mM potassium phosphate buffer pH
6.5, 5 mM GSH and a range of CDNB concentrations, and
was initiated by addition of 5 µg of purified enzyme to
a final volume of 1 mL. Increase in absorbance at A340
was measured spectrophotometrically. The Michaelis–Menten
plots and kinetic calculations (Km and Vmax) were performed
using SigmaPlot 14 software. Statistical analysis was performed
using Statistical Package for Social Sciences (SPSS) software
(version 25, SPSS, Inc., Chicago, IL, United States). Results were
analyzed using the analysis of variance (ANOVA) for continuous
variables. P-values <0.05 were considered to be statistically
significant.

GST Assays Using TNT
Reactions, carried out at 20◦C, contained 100 mM potassium
phosphate buffer pH 7.0, 300 µg of purified enzyme and 5 mM
GSH and was initiated by addition of TNT to a final volume of
250 µL. Reactions were stopped by the addition of trichloroacetic
acid, to a final concentration of 10% (v/v), and samples analyzed
by HPLC.

Measurement of TNT and Products
The TNT and conjugates were analyzed by HPLC using a
Waters HPLC system (Waters 2695 separator and Waters
Photodiode array detector) with Waters X-Bridge C18 column
(300 mm × 4.5 mm, 5 µM). The mobile phases for the gradient
conditions were: mobile phase A, acetonitrile; mobile phase B,
50 mM NaH2PO4, pH 2.7, with 85% (v/v) phosphoric acid. The
gradient ran: 0 min 0% A 100% B, 6 min 0% A 100% B, 11 min
50% A 50% B, 25 min 100% A 0% B, 30 min 0% A 100% B,
runtime 30 min. Integration was performed at 250 nm with
Empower Pro Software.

Nitrite Measurement
Nitrite production was assayed according to the method of
French et al. (1998) with modifications as described in Gunning
et al. (2014).

Probing the Mutants With ANS
The ANS binding assay, based on the protocol by Yang et al.
(2009), was used to determine conformational changes. The assay
was performed in a 1 mL cuvette with 100 µl of 2 mM ANS,
50 µg of enzyme and 100 mM potassium phosphate buffer pH 6.5.
The fluorescence emission was monitored using a FluoroMax R©-4
Spectrofluorometer (Horiba Scientific).

Accession Numbers
AtGSTU24; TAIR accession number At1g17180, AtGSTU25;
TAIR acc. no. At1g17170. AtGSTU25-GSSG coordinates; Protein
Databank (PDB) acc. no. 5g5a. GmGSTU4-4; PDB acc. no.
2VO4, Sh14; PDB acc. no. 5AGY, PcUre2pA; PDB acc. no.
4F0B, EcYghU; PDB acc. no. 3C8E, EcYfcG; PDB acc. no. 3GX0,
CoGRX2; PDB acc. no. 4TR0.

RESULTS

Structure of GSTU25
The structure of GSTU25 was solved using molecular
replacement at a resolution of 1.99 Å with GmGSTU4-4 as
template (Axarli et al., 2009). Analysis of the protein structure
using the DALI server (Holm and Rosenstrom, 2010) revealed
that the monomer was more similar to the structure of a Tau
class GST mutant from G. max, called Sh14 (Axarli et al., 2016).
Both structures were 68% identical, with a RMS value of 1.2 Å
over 219 residues. Each monomer of GSTU25 has four β-strands
and nine α-helices adopting the canonical GST fold. The first 77
residues at the N-terminus fold into a thioredoxin-like domain
followed by an α-helical domain at the C-terminus from position
89 to 216, with the two domains connected together by a short
linker. Although the crystals were incubated with TNT and
GSH, binding of TNT was not detected. Instead, multiple rounds
of structure refinement cycles using the REFMAC5 program
(Murshudov et al., 2011) revealed two GSH molecules covalently
linked by a disulfide bond, showing the structure of GSTU25
in complex with glutathione disulfide (GSSG) (Figure 2A). At
the binding site, the GSSG subunits: GSH-1 and GSH-2, were
located in a binding pocket surrounded by polar, non-polar and
charged amino acids (Figure 2B). This pocket was similar to the

FIGURE 3 | Comparison of GSTU25 with CoGRX2. (A) Superimposed
structures of the glutaredoxin subunit from Clostridium oremlandii (CoGRX2 in
complex with GSSG (C-atoms in gray), and the GSTU25 subunit (green) in
complex with GSSG (C-atoms in green). The RMS value for the superimposed
structures is 2.3 Å over 73 residues. (B) Position of the active residue for GSH
thiol stabilization: serine 13, in GSTU25 and cysteine 12 in CoGRX2.
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FIGURE 4 | Multiple sequence alignment of Tau class GSTs. Figure generated using Clustal Omega (Sievers et al., 2011).

active site identified for most GSTs, where the hydroxyl group of
S13 and Y107 has been shown to contribute to the ionization of
the GSH sulfhydryl group (Brock et al., 2013). Similar locations
were observed for the same S and Y residues of GmGSTU4-4
in complex with S-(p-nitrobenzyl)-glutathione (Axarli et al.,
2009). The S residue was found to stabilize the thiolate anion of
GSH and enhance its nucleophilicity, while the Y residue was
important in regulating catalytic function. The GSTU25-GSSG
structure also revealed that the terminal carboxylate group of the
GSH-1 γ -glutamyl moiety formed an interaction at 2.6 Å with
the nitrogen atom of the guanidinium group of R111, and that
the glycine moiety of GSH-1 protruded toward the GSTU25 α4
chain. The GSH-2 molecule, at the carboxylate terminal of the
glycine moiety, formed an interaction with the oxygen atom of
K40 at a distance of 2.7 Å with the γ -glutamyl moiety located in
between the helices α1 and α3.

A Clostridium oremlandii glutaredoxin (CoGRX2) with two
GSSG molecules per dimer has been reported (Lee et al., 2014)

and exhibits significant similarity with GSTU25 at the core of
the thioredoxin fold where four β-strands and α-helices, can be
observed (Figure 3A). In GSTU25, a serine interacts with the

TABLE 3 | Amino acid substitutions in the GSTU24 and GSTU25 mutants.

Enzyme Mutation identifier Substitution

GSTU24 A A12P

B N107Y

C A115G

D I208V

E R211L

GSTU25 F P12A

G Y107N

H G115A

I V209I

J L212R
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GSSG molecule (Figure 3B), whereas in CoGRX2, cysteine acts
as the GSH thiol stabilizer.

Identification of Target Amino Acids for
Site-Directed Mutagenesis
Seven key residues (F15, L37, K40, K53, E66, S67, R111) identified
in the structure of GSTU25, and shown in Figure 2B with
side-chain carbon atoms in blue, are all conserved in GSTU24.
Comparisons with the structure of TaGSTU4-4 (Thom et al.,
2002) and GmGSTU4-4 (Axarli et al., 2009) were used to
highlight further amino acid residues in GSTU24 and GSTU25
that are likely to be involved in the formation of the hydrophobic
H-site and thus in the determination of substrate specificity
(shown as orange-outlined boxes in Figure 4). Of the six residues
known to be important for substrate specificity in Tau class
GSTs (shown in blue boxes), the residue at position 107 (N for
GSTU24, Y for GSTU25) was the only one not identical between
GSTU24 and GSTU25, and was thus targeted for mutagenesis.
Subsequent homology modeling using the published structure
of GmGSTU4-4 (Axarli et al., 2009), which shares high (>60%)
protein sequence identity with GSTU24 and GSTU25, identified
four, further, non-identical residues, at positions 12, 115, 208 (209
for GSTU25) and 211 (212 for GSTU25), as shown in Figure 2B.
The five amino acid residues targeted for reciprocal mutagenesis
are listed in Table 3, marked as blue triangles in Figure 4, and

highlighted with side-chain carbon atoms in gold for U25 in
Figure 2B.

Activity of GSTU24 and GSTU25 Mutants
Toward TNT
To determine the effects of the target mutations on the ability of
the GST proteins to produce the three different TNT-conjugates,
the mutated proteins were assayed using TNT as substrate. For
GSTU24, mutation BCD significantly reduced (p = 0.003) overall
levels of conjugates produced to 52% of the wild-type GSTU24,
whereas mutations AB and ABCDE displayed significantly higher
(82 and 163%, respectively, p < 0.0001) conjugating activity
than the wild type GSTU24 (Figure 5A). Figure 5B shows that
all five mutants were able to produce conjugate 1, which was
not detectable from wild type GSTU24 under these conditions.
The mutant ABCDE was distinct from the others tested as it
displayed the highest overall conjugating activity of the five
U25-derived mutants. This ABCDE mutant was also able to
produce significantly higher (p < 0.0001) amounts of conjugate
3, GDNT, than GSTU24, or the other four mutants. Moreover,
ABCDE produced all three conjugates in almost equimolar
concentrations.

For the GSTU25, mutations, FG and G significantly reduced
(p< 0.0001) overall levels of conjugates produced to 31 and 24%,
respectively, of the wild-type GSTU25. Compared to GSTU25,

FIGURE 5 | TNT-conjugate profiles from GSTs. (A) Total conjugates and (B) conjugate profiles produced by AtGSTU24, AtGSTU25, and mutants. Conjugate
3 = 2-glutathionyl-4,6-dinitrotoluene (GDNT). Results are means of three replicates ± SE, a, significantly different from AtGSTU24, b, significantly different from
AtGSTU25.
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these FG and G mutants also yielded significantly reduced
(p < 0.0001) overall levels of GDNT, while levels of conjugate 2
were not significantly affected for G (Figure 5B). Mutant GHI
produced significantly more overall conjugates (p = 0.007) when
compared to wild-type GSTU25, with both GHI and FGHI also
producing significantly more conjugate 2 (p< 0.0001).

Probing the GSTU24 and GSTU25
Mutants for Conformational Changes
To identify any conformational changes in protein structure
resulting from the presence of the mutated residues, the mutants
were probed with 1-anilino-8-naphthalene-sulfonate (ANS) and
the spectra measured. Both GSTU24 and GSTU25 shared a
similar structure in the hydrophobic site (Figure 6A), with
only the ABCDE mutant generating a significantly different
fluorescence spectrum, indicative of a change in conformation

FIGURE 6 | Fluorescence-emission spectra of 1-anilino-8-naphthalene-
sulfonate (ANS) binding to the active site of the GSTs. (A) Spectra from
GSTU24 and GSTU25. (B) Spectra from GSTU24 and its respective mutants.
(C) Spectra from GSTU25 and its respective mutants. ANS, blank sample
without enzyme; A-I, GSTU24 and GSTU25 mutants as presented in Table 3.
Results are means of three technical replicates.

FIGURE 7 | GST activity using 1 mM 1-chloro-2,4-dinitrobenzene (CDNB)
substrate for GSTU24, GSTU25 and their respective mutants. Results are
means of three technical replicates ± SE, a, significantly different from
AtGSTU24; b, significantly different from AtGSTU25.

(Figure 6B). The fluorescence spectra of the different GSTU25
mutants, varied slightly to one another, but none of them
suggested a significant conformational change had occurred
(Figure 6C).

Activity of GSTU24, GSTU25, and
Mutants Toward CDNB
The activity of the mutants was measured using CDNB as a
substrate. The results in Figure 7 show that all the mutants
exhibited changes in activity that were significantly different to
either, or both of the wild type GSTs. Given that the mutant
ABCDE was distinct in displaying the highest overall conjugating
activity, and producing significantly higher amounts of the
desired target, GDNT, kinetic analysis was performed using
CDNB substrate (Figure 8 and Table 4). While GSTU24 and
GSTU25 exhibited similar Vmax values, the Km for GSTU24 was
45-fold higher than for GSTU25. In agreement with our reported
conjugate profiles, the GSTU24 ABCDE mutant also displayed a
reduced, GSTU25-like, Km value.

DISCUSSION

The aim of this study was to identify the amino acids within
GSTU25 involved in the formation of GDNT. To achieve this,
the structure of GSTU25 was first determined. The structure,
along with comparisons with the known Tau class GST structures
TaGSTU4-4 (Thom et al., 2002) and GmGSTU4-4 (Axarli et al.,
2009); and amino acid sequence of the closely related GSTU24,
were used to highlight the amino acid residues in GSTU25 most
likely to be involved.

Crystal Structure of GSTU25
The electron density map for GSTU25 revealed unambiguously
one GSSG per subunit. Within the GSTU25-GSSG structure, the
GSH-1 moiety is stabilized by an arginine side chain (R111) while
the GSH-2 moiety is located at a well-documented GSH binding
site (Axarli et al., 2009, 2016; Skopelitou et al., 2015). The binding
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FIGURE 8 | Michaelis–Menten plots from purified GST proteins. (A) GSTU24,
(B) ABDCE mutant, and (C) GSTU25, assayed with 1-chloro-2,4-
dinitrobenzene (CDNB) substrate. Values represent the mean of at least four
reactions ± SE.

of GSTs to GSSG has been reported in the wood fungus,
Phanerochaete chrysosporium PcUre2pA (Roret et al., 2015), and
E. coli homologs EcYghU and EcYfcG. These bacterial and fungal
GSTs have GSH transferase activity and are distantly related to
glutaredoxins, redox enzymes that reduce disulfide bonds using
glutathione (GSH) as an electron donor (Stourman et al., 2011).
As shown in Figure 3, U25 shares significant similarity CoGRX2.
In yeast (Saccharomyces cerevisiae), glutaredoxins ScGRX1 and
ScGRX2 display GST-like activities, catalyzing the conjugation of

TABLE 4 | Enzyme kinetics for Figure 8, assayed using CDNB substrate.

Enzyme Km (µM) Vmax (nmole min−1 mg−1) R2

GSTU24 972 ± 72.9 64.7 ± 1.6 0.98

ABCDE 64.8 ± 4.3 64.0 ± 0.8 0.96

GSTU25 21.5 ± 1.9 57.6 ± 0.7 0.95

CDNB to GSH (Collinson and Grant, 2003). As a multifunctional
enzyme, exhibiting glutaredoxin, GPOX, and GST activities,
GSTU25 would be well-suited to detoxify a wide range of the
xenobiotics and oxidants present in diverse stress conditions.

Residues Important to TNT-Conjugation
Activity
Both GSTU24 and GSTU25 contain a serine residue (S13) in the
active site at a position that allows it to stabilize the thiolate anion
of glutathione. This is in agreement with structures of GSTs from
Theta and Phi classes that are known to have GSH conjugating
activity (Thom et al., 2001) and is replaced by cysteine for
Lambda and DHAR GSTs (Dixon et al., 2002). The effects of
the mutations on the activity toward TNT showed that Y107 in
GSTU25 is important for conjugate specificity. GSTU24 does not
produce conjugate 1 under the conditions tested; however, the
N107Y mutation confers the ability to produce albeit small (6%)
amounts of this conjugate. The data presented here also indicate
that high activity of toward TNT requires both Y107 and P12.
At the binding site of GSTU25, the GSSG subunits are located
in a binding pocket surrounded by polar, non-polar and charged
amino acids; a well-characterized active site for GSTs (Brock et al.,
2013). In GmGSTU4-4, the same S and Y residues of GmGSTU4-
4 are present in this binding pocket. When in complex with
S-(p-nitrobenzyl)-glutathione, the S residue stabilizes the thiolate
anion of GSH and enhances its nucleophilicity, while the Y
residue is important in regulating catalytic function (Axarli et al.,
2009). In GST25, L212 could also contribute to the production of
GDNT; in GmGSTU4-4, the close proximity of this residue to the
nitro group of 4-nitrobenzyl (Axarli et al., 2009) could orientate
TNT in the active site.

The five consecutive mutations present in GSTU25 ABCDE
were predicted to engineer the near-complete active site of
GSTU25 into GSTU24. The resulting conjugate profile and
activity of ABCDE were similar to GSTU25 in that all three
conjugates were produced, and at levels of overall conjugating
activity similar to those of GSTU24. Furthermore, the Km
value of ABCDE was more in-line with that of GSTU25.
Nonetheless, the fluorescence emission spectrum of ABCDE
was significantly different from both GSTU24 and GSTU25,
indicating a conformational change in the hydrophobic site, and
TNT was not crystalized within the GSTU25 structure. Although
TNT and reduced GSH were supplied during the crystallization
process, incorporation of TNT into the active site was likely
to have been hindered by the low aqueous solubility of TNT.
Using synthesized, and more soluble, GDNT, in the absence of
GSH, during the crystallization process could perhaps yield more
information about the residues involved during the formation of
this conjugate.

In summary, we have solved the structure for GSTU25,
and identified key residues involved in the formation of
2-GDNT. Substitution of a nitro group for sulfur in 2-GDNT
could render the aromatic ring more susceptible to subsequent
degradation, and endogenous degradative pathways may already
exist in planta. Alternatively, both bacteria and fungi are able
to mineralize DNT (Serrano-González et al., 2018), and may
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have activity toward 2-GDNT. These fundamental studies will
contribute toward the development of plant-based remediation
strategies to degrade TNT, a toxic environmental pollutant.
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