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A considerable body of research exists concerning the development of technologies to
engineer sterility in forest trees. The primary driver for this work has been to mitigate
concerns arising from gene flow from commercial plantings of genetically engineered
(GE) trees to non-GE plantations, or to wild or feral relatives. More recently, there
has been interest in the use of sterility technologies as a means to mitigate the
global environmental and socio-economic damage caused by the escape of non-native
invasive tree species from planted forests. The current sophisticated understanding
of the molecular processes underpinning sexual reproduction in angiosperms has
facilitated the successful demonstration of a number of control strategies in hardwood
tree species, particularly in the model hardwood tree Poplar. Despite gymnosperm
softwood trees, such as pines, making up the majority of the global planted forest estate,
only pollen sterility, via cell ablation, has been demonstrated in softwoods. Progress has
been limited by the lack of an endogenous model system, long timescales required for
testing, and key differences between softwood reproductive pathways and those of well
characterized angiosperm model systems. The availability of comprehensive genome
and transcriptome resources has allowed unprecedented insights into the reproductive
processes of both hardwood and softwood tree species. This increased fundamental
knowledge together with the implementation of new breeding technologies, such as
gene editing, which potentially face a less oppressive regulatory regime, is making the
implementation of engineered sterility into commercial forestry a realistic possibility.

Keywords: sterility, reproduction, forest trees, gene editing, genetic engineering, containment

DRIVERS FOR ENGINEERING STERILE FOREST TREES

Increasing global population coupled with transition to a sustainable bio-based economy is
predicted to lead to growing pressure on forests to deliver wood-based products, energy, food,
and ecosystem services whilst maintaining their role as major reservoirs of biodiversity. To
accommodate this growing demand, it is estimated that the amount of wood we take from forests
and plantations each year may need to triple by 2050 (WWF, 2015). Planted forests, which in
2015 made up 7% of forest lands, provide a means to sustainably increase production of forest
products and reduce pressure on natural forests (FAO, 2015). Alongside improved silviculture, land
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management and other technological advances, biotech-based
technologies offer tools to enhance the sustainability and
productivity of planted forests (Al-Ahmad, 2018). Sterile trees
have the ability to impact a number of obstacles to increasing
productivity from planted forests.

Containment of Genetically Engineered
Trees
Genetic engineering (GE) is able to provide solutions for
many of the challenges forestry faces to sustainably increase
forest production. Improved wood quantity and quality,
processability, biotic, and abiotic stress tolerance and herbicide
tolerance (Harfouche et al., 2011; Porth and El-Kassaby, 2014;
Etchells et al., 2015; Ault et al., 2016; Zhou et al., 2017) are
amongst the traits successfully demonstrated. The recent
approval by the Brazilian Regulator for GE Eucalyptus
that are able to grow 15–20% faster than the best existing
clonal lines (Nature Biotechnology News, 2015) seems
likely to lead to first large-scale commercial planting of
trees.

There remain well documented regulatory and social
challenges associated with commercial planting of GE
trees (Porth and El-Kassaby, 2014; Strauss et al., 2016).
Gene flow from transgenic trees remains a major concern,
particularly as forest trees are virtually undomesticated
and pollen is able to disseminate over great distances
(DiFazio et al., 2004). Seeds also have the potential to
spread, either locally or over distances, depending on the
species. Transgene containment through the production
of trees that are unable to produce fertile reproductive
propagules has the ability to mitigate these concerns and
prevent, or severely reduce, the flow of genes via sexual
reproduction.

Invasive Tree Species
Increasing attention is being paid to the ecological, economic,
and cultural damage caused by invasive tree species that
have “escaped” by seed dispersal from planted forests (Breton
et al., 2008; Nuñez et al., 2017). Globally, Pinus species are
recognized as among the most widespread and influential of
all invasive plants (Richardson and Rejmánek, 2004). These
escapes, or wildings, are particularly a problem in the Southern
Hemisphere where a large percentage of tree plantations are
composed of exotic species (Franzese and Raffaele, 2017).
South Africa, New Zealand, and Australia, who were early
adopters of exotic conifer plantations, have been joined more
recently by several South American nations in facing wilding
challenges (Simberloff et al., 2010). For example, in New Zealand
several exotic conifer species have become established and
now occupy ∼1.8 million ha, and are expanding by about
6% per annum (Froude, 2011). Economic and ecological
damage resulting from these wildings is challenging the license
to operate, with commercially advantageous, but wilding-
prone species such as Douglas-fir (Pseudotsuga menziesii).
The ability to generate trees that are unable to reproduce
would allow control programs to focus on the existing

populations and give forest owners freedom to operate for new
plantings.

Increased Wood Production and Other
Benefits
The ability to either prevent reproduction or limit the
development of reproductive propagules is predicted to boost
growth and increase wood production in forest trees by
redirecting energy and nutrients to increased vegetative growth
(Strauss et al., 1995; Luis and José, 2014). Conclusive evidence
for such a reproductive cost is lacking but is supported by
evidence that in conifers cone production may utilize a significant
proportion of the trees energy and assimilates (Cremer, 1992;
Sala et al., 2012; Kramer et al., 2014). Unsurprisingly, in conifers,
the long-lived female cones are more energy demanding than
the generally more transient male cones (Obeso, 2002). These
observations suggest that engineered sterility, particularly female
sterility is likely to have a positive impact on vegetative growth
and wood production. Long-term growth comparisons between
sterile and reproductive trees would provide direct evidence for
this and allow quantification of growth differences.

Pollen from many trees cause allergenic reactions and
symptoms correlate with exposure (Buters et al., 2012). Planted
forests can provide a major source of seasonal allergens (D’amato
et al., 2007). For example, allergy to sugi (Cryptomeria japonica)
pollen is reported to effect 26.5% of the Japanese population
(Taniguchi, 2018). The ability to prevent or limit pollen
production from planted forests would provide relief to allergy
suffers and mitigate potential social license to operate challenges.

CURRENT UNDERSTANDING OF
REPRODUCTIVE PROCESSES IN
FOREST TREES

Both angiosperm (hardwood) and gymnosperm/conifer
(softwood) trees are used as plantation species. Although they
share broad similarities in their reproductive processes, there are
distinct differences between them.

Angiosperm Trees
Perhaps no other plant development process has been studied
more than flowering. For Arabidopsis, the in planta functions
of a large number of flowering genes as well as their regulatory
network context are known and studies in plants such as rice
and petunia have revealed broad functional conservation (Pajoro
et al., 2014). These include genes that regulate the transition
to flowering, floral organ identity as well as pollen and ovule
development. Although advances in sequencing have enabled the
identification of flowering gene homologs in diverse angiosperm
trees, there are few cases where in planta functions have been
characterized in trees (Brunner et al., 2017; Klocko et al., 2018).
This is due to the long non-flowering period that can last years
to decades and that for most species, genetic transformation is
a formidable hurdle. Trees also differ from herbaceous plants in
the prolonged period between the floral transition and anthesis.
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In tropical species such as Eucalyptus, this occurs in one season,
but temperate species exhibit indirect flowering, with flower
development initiated in 1 year and completed the following year
(Vining et al., 2015; Brunner et al., 2017). Thus, multi-year field
trials that require monitoring of large trees and collecting flowers
from the upper portion of the tree crown are typically required to
demonstrate sterility or delay of flowering.

Selection of candidate genes for genetic containment in trees
based on homology to Arabidopsis flowering genes and gene
expression might be straightforward, but such conservation
does not necessarily translate to the predicted or desired
phenotype. Flowering time genes are attractive targets because
prevention of flowering is easier to monitor (e.g., no need
to demonstrate flowers are sterile) and to prevent resource
allocation to reproduction. However, accumulating evidence
supports that tree homologs of various flowering time and
floral meristem identity genes have roles in both vegetative and
reproductive phenology (Bohlenius et al., 2006; Bielenberg et al.,
2008; Hoenicka et al., 2008; Mohamed et al., 2010; Hsu et al.,
2011; Azeez et al., 2014; Tylewicz et al., 2015; Parmentier-Line
and Coleman, 2016). Targeting such genes for manipulation can
thus result in undesired vegetative effects, such as delayed bud
flush, in addition to predicted effects on flowering or no effect
on flowering (Hoenicka et al., 2012). However, promising results
have also been achieved, such as the delayed flowering without
growth reduction demonstrated by overexpressing the poplar
ortholog of the floral repressor SHORT VEGETATIVE PHASE
(SVP) (Klocko et al., 2018). Manipulation of floral organ identity
genes might be less likely to have vegetative effects as these genes
may show stronger conservation of reproductive-only function.
For example, considerable evidence supports that the AGAMOUS
(AG) subgroup of MADS-box genes have reproductive functions
not only in angiosperms but also in gymnosperms (Dreni and
Kater, 2014). However, even in these cases, results can differ from
expectation. For example, downregulation of the conserved floral
meristem identity gene LEAFY (LFY) in a male poplar genotype
induced bisexual and female flowers (Klocko et al., 2018). Despite
the challenges, the knowledge gained from gene function and
sterility studies in trees along with more detailed and extensive
genome-wide expression studies in different angiosperm trees
will enable more accurate gene selection for manipulation of
only-reproductive traits.

Gymnosperm Trees
Unlike angiosperms, where there is extensive knowledge of
the molecular factors involved in the reproduction process,
relatively little is known regarding gymnosperms. A number of
putative genes have been identified through comparative analyses
of orthologous angiosperm genes, tissue-specific expression
analysis or genome sequencing. However, several key floral genes
including FD, SQUAMOSA- (SQUA-) or SEPALLATA-like (SEP-
like) seem to be absent (Becker, 2003; Abe et al., 2005; Zahn
et al., 2005; Melzer et al., 2010; Karlgren et al., 2011; Jaeger et al.,
2013). Initial research was able to detect orthologs to only the B-
and C-genes involved in the control of meristem formation and
organ identity in the developing cones (Tandre et al., 1995, 1998;
Mouradov et al., 1998; Rutledge et al., 1998; Fukui et al., 2001;

Sundström and Engström, 2002; Gramzow et al., 2014; Katahata
et al., 2014; Uddenberg et al., 2015). More recently, ABCE
model prototype transcription factors, genes that define the
developmental flower organ model (ABC(DE)) in angiosperms,
have been confirmed in gymnosperms (Chen et al., 2017).
Conifer-specific genes such as the DEFICIENS-AGAMOUS-LIKE
(DAL) and NEEDLY have also been identified but functional
knowledge is limited due to the lack of angiosperm orthologs
(Carlsbecker et al., 2003, 2004; Rudall et al., 2011). It is not
generally possible to predict which of the many vegetative
meristems will undergo the reproductive bud transition before
changes are initiated making research on reproductive initiation
a bold venture (Williams, 2009).

The biggest bottleneck for conifer reproduction research
is the inability to carry out functional characterization in an
endogenous system which prevents the definitive elucidation of
gene function. Testing of gene function in angiosperm model
systems has produced inconclusive results. Whilst some such
studies have confirmed the function of putative orthologs,
others failed to find flowering related differences, found multiple
phenotypic alteration or were unable to complement mutants,
highlighting the need for a reliable conifer testing system
(Rutledge et al., 1998; Tandre et al., 1998; Shindo et al., 2001;
Sundström and Engström, 2002; Carlsbecker et al., 2003, 2004;
Nilsson et al., 2007; Shiokawa et al., 2008; Klintenas et al.,
2012; Katahata et al., 2014; Liu et al., 2018). As discussed
above for angiosperm trees, it might be challenging to identify
flowering time gene homologs in conifers that do not have
roles in vegetative development that make their manipulation for
reproductive sterility problematic. For example, the gymnosperm
FLOWERING LOCUS T-like subfamily has been suggested
to have roles in both vegetative and reproductive phenology
(Klintenas et al., 2012; Karlgren et al., 2013; Nystedt et al., 2013;
Liu et al., 2016). However, the lack of characterization in an
endogenous system means that the function of the sub-family
members remains unresolved.

ENGINEERED STERILITY IN TREES

The increasingly sophisticated understanding of the molecular
processes underpinning sexual reproduction described above has
facilitated the successful demonstration of a number of sterility
strategies in plants. Chief amongst these are strategies using
ablation of reproductive cells or structures and the inactivation or
suppression of genes essential for normal reproductive processes.
Here, we highlight only a selection of sterility approaches and
refer readers to Brunner et al. (2007) and Hoenicka et al. (2016b)
for additional examples.

The use of cell or tissue-specific promoters to direct
the expression of cytotoxic genes (Palmiter et al., 1987) to
reproductive tissues has been widely used to investigate and
modify reproductive development in plants (Goldman et al.,
1994; Beals and Goldberg, 1997). Numerous examples exist
of using this technology in plants to generate male and
female sterility (Mariani et al., 1990; Goldman et al., 1994;
De Block et al., 1997). Complete (dual male and female) sterility
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TABLE 1 | Examples of Engineered Sterility in Forest Trees.

Species Sterility target Strategy Candidate gene(s) Reference

Angiosperm trees

Betula pendula Male Cell ablation inflorescences BpFULL1::barnase Lännenpää et al., 2005

Eucalyptus occidentalis Male Cell ablation male flowers PrMC2::barnaseH102E Zhang et al., 2012

Populus tremula x tremuloides Male Cell ablation tapetum TA29:: barnase Elorriaga et al., 2014

Populus alba Female Suppression via RNAi PtLFY Klocko et al., 2016a

Populus alba Female Suppression via RNAi PtAG Lu and Strauss, 2018

Populus tremula x tremuloides Male Suppression via RNAi LFY/AG Klocko et al., 2018

Gymnosperm trees

Pinus rigida x. P. taeda Male Cell ablation male cones PrMC2-barnaseH102E Zhang et al., 2012

has also been achieved using either independent male- and
female-specific promoters or a single promoter targeting both
tissues simultaneously (Liu and Liu, 2008; Huang et al.,
2016). Male sterility using this cell ablation strategy has
been demonstrated in both hardwood and softwood trees via
expression of the BARNASE gene from Bacillus amyloliquefaciens
under the control of reproductive tissue-specific promoters
(Table 1). A key requirement for a cell ablation strategy is
a promoter that tightly directs expression of the cytotoxin to
the desired reproductive tissue to prevent pleiotropic effects
on non-reproductive tissues. The conservation of expression of
some floral genes has facilitated the use of a number of well
characterized promoters across species (Strauss et al., 1995).
Indeed, an anther-specific promoter derived from Pinus radiata
has been used to express the BARNASE gene in both a softwood
(pine) and hardwood (Eucalyptus) tree to deliver male sterility
(Zhang et al., 2012). We are unware of dual male/female
BARNASE-mediated sterility being demonstrated in trees without
negative pleiotropic effects (Lemmetyinen et al., 2004) but this
should be possible if a suitable promoter is used.

RNA interference (RNAi) is a well proven homology-
dependent gene silencing technology that involves double-
stranded RNA directed against a target gene or its promoter
region (Mansoor et al., 2006). Numerous demonstrations of
engineered sterility through the suppression of genes essential
for normal reproduction are available in angiosperm species
(Wang et al., 2012). RNAi silencing has been used in angiosperm
trees to engineer sterility with constructs targeting LFY and AG
successfully producing sterile trees (Table 1). The production of
male and female sterile plants via the use of chimeric repressors
targeting transcription factors involved in flower development
has also been demonstrated (Mitsuda et al., 2006; Katahata
et al., 2014). In conifers the use of gene suppression methods
to prevent reproduction has not been demonstrated even though
such methods have been widely used to investigate wood quality
traits (Wagner et al., 2005, 2009; Souza et al., 2007; Trontin
et al., 2007). Attempts have been reported of expressing conifer
flowering-associated genes in an endogenous system (Karlgren
et al., 2013) but these studies have not directly sought to address
sterility.

This lack of success in conifers reflects both a lack of
fundamental knowledge regarding conifer reproduction and
the inherent difficulties in working with conifers including the

long timescale required for testing. For example, attempts to
investigate the effects of over-expressing the Arabidopsis LFY
gene in P. radiata were not informative as neither modified or
control plants initiated reproduction during the 8 years that the
trees were grown (NZ-EPA, 2008; Lottmann et al., 2010).

FUTURE OUTLOOK AND CHALLENGES

The social, legal and ecological impacts of sterile trees is still
controversial (Williams, 2005; Kazana et al., 2015; Strauss et al.,
2017). Although sterility provides mitigation for some of the
social and ecological objections to the deployment of both GE
trees and species with the potential to become invasive, this may
be challenged if the sterility technology is itself GE.

The recent development of a number of new breeding
technologies, including gene editing, that are already seeing
widespread application in crop species (Nekrasov et al.,
2017; Waltz, 2018) have great potential in forest trees. Site-
directed mutagenesis would allow the inactivation of genes
that are essential for normal reproductive processes and the
generation of sterile trees. Gene editing-mediated mutagenesis
would be particularly advantageous in forest trees where, to
date, mutagenesis breeding has played an extremely limited
role. The permanent inactivation of a gene would provide
assurance of enduring containment and reduce concerns
associated with the stability of long-term transgene expression
associated with silencing of over-expression technologies (Li
et al., 2008). Site directed mutagenesis via CRISPR-cas9 has
been demonstrated in a number of tree species including
Poplar (Fan et al., 2015) where mutagenesis of genes involved
in flowering (Elorriaga et al., 2018) has also been shown.
To date, gene editing has not been published in conifer
species. However, the existence of a small number of natural
spontaneous sterile conifer mutants (Orr-Ewing, 1977; Wilson
and Owens, 2003; Rudall et al., 2011) suggest that a targeted-
mutagenesis strategy would be successful if suitable targets can
be identified.

Although the regulatory landscape regarding gene editing
technologies remains complex, it is likely that in many
jurisdictions versions of the technology that do not include
foreign DNA in the final organisms will not be regulated
as GMOs (Waltz, 2016; Davison and Ammann, 2017;
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Ishii and Araki, 2017). This would provide a more
straightforward and less costly route to commercial release than
is currently the case for products of GE technology (Waltz,
2018). This regulatory approach would hold particular promise
in applications where sterility is a standalone trait, such as for the
control of invasive tree species, rather than providing a means of
containment for other (GE) traits. This strategy would require
DNA-free editing technologies as outcrossing of transgenes
would not be possible with sterile trees.

The second major challenge has been the inability to carry
out timely prototyping of sterility constructs in commercially
important species. To facilitate testing in conifers it is desirable to
develop a system analogous to the Poplar model system (Jansson
and Douglas, 2007; Douglas, 2017) which has allowed relatively
rapid prototyping of sterility constructs (Klocko et al., 2018).
Although effective transformation systems exist for a number of
commercially important conifers including P. radiata, P. taeda,
and Picea abies, these species have long pre-reproductive juvenile
growth periods that limits their use as sterility-testing platforms
(Tang and Newton, 2003; Uddenberg et al., 2015). Some conifer
species are able to reproduce at a much younger age (Righter,
1939; Pharis et al., 1987; Uddenberg et al., 2013) or can be induced
to undergo early reproduction. Such precocious reproduction has
been demonstrated in both hardwoods and softwoods by grafting
onto older rootstock (Simak, 1978; Zhang et al., 2012), and by
the application of external stimuli such as hormone treatments
(Pharis et al., 1965; Ross and Pharis, 1985; Meilan, 1997). Stable
introduction of FT transgenes induced precocious fertile flowers
in Eucalyptus (Klocko et al., 2016b) and in Populus when
combined with a low temperature treatment (Hoenicka et al.,
2016a). In fruit trees, viral vectors that express floral promoters or

silence repressors induced early flowering (Velázquez et al., 2016;
Yamagishi et al., 2016). Although these offer potential routes to
earlier testing of sterility strategies, developing the required tissue
culture and transformation capabilities for a new tree species
remains a significant barrier.

The increasing availability of genome and transcriptome
resources for forest trees is providing new insights into
reproductive processes. This is reducing the reliance on non-tree
model systems and providing novel species-specific knowledge
of reproductive processes and candidate genes for modification.
The development of gene-editing-based targeted mutagenesis is
likely to be the most attractive route to engineered sterility as
it offers precise and predictable modifications combined with
assurance of phenotypic stability. The lack of global consensus
on the regulation of gene editing technology remains a barrier to
research investment and commercialization and complicates the
public debate that must go hand-in-hand with progress toward
implementation.
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