
fpls-09-01664 November 14, 2018 Time: 16:40 # 1

ORIGINAL RESEARCH
published: 16 November 2018
doi: 10.3389/fpls.2018.01664

Edited by:
Andrea Genre,

Università degli Studi di Torino, Italy

Reviewed by:
Raffaella Balestrini,

CNR, Institute for Sustainable Plant
Protection, Torino Unit, Italy

Christina Hazard,
Ecole Centrale of Lyon, France

*Correspondence:
Juan Pablo Suárez

jpsuarez@utpl.edu.ec

Specialty section:
This article was submitted to

Plant Microbe Interactions,
a section of the journal

Frontiers in Plant Science

Received: 06 April 2018
Accepted: 26 October 2018

Published: 16 November 2018

Citation:
Cevallos S, Declerck S and

Suárez JP (2018) In situ Orchid
Seedling-Trap Experiment Shows Few

Keystone and Many Randomly
Associated Mycorrhizal Fungal

Species During Early Plant
Colonization. Front. Plant Sci. 9:1664.

doi: 10.3389/fpls.2018.01664

In situ Orchid Seedling-Trap
Experiment Shows Few Keystone
and Many Randomly Associated
Mycorrhizal Fungal Species During
Early Plant Colonization
Stefania Cevallos1,2, Stéphane Declerck1 and Juan Pablo Suárez2*

1 Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium,
2 Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador

Orchids are known for their vast diversity and dependency on mycorrhizal fungi. Under
in situ conditions, the biotic and abiotic factors determining the composition and
distribution of orchid mycorrhizal fungi (OMF) communities remain largely unexplored.
Therefore in situ experiments are needed to better understand the interactions
between orchids and fungi. A seedling-trap experiment was conducted in the Reserva
Biológica San Francisco, a well-known biodiversity hotspot located in the Andes of
southern Ecuador. The objective was to investigate the effect of orchid species, site,
elevation or temporal variation on the assembly and structure of OMF associated with
Cyrtochilum retusum and Epidendrum macrum. The OMF community composition was
determined using the Illumina MiSeq sequencing of the internal transcribed spacer 2
(ITS2) region. The results exhibited 83 OMF operational taxonomic units belonging to
Tulasnellaceae, Ceratobasidiaceae, Serendipitaceae and Atractiellales. It was observed
that the composition of the OMF communities was different among orchid species and
temporal variation but was not different among sites. The results further support that
orchids have a core of keystone OMF that are ubiquitously distributed and stable across
temporal change, whereas the majority of these fungi are randomly associated with the
plants.

Keywords: biotic and abiotic factors, keystone mycorrhizal, mycorrhizal fungi, seedling-trap experiment,
temporal variation

INTRODUCTION

In nature, orchids rely on particular interactions with their pollinators and root fungal associates
(i.e., the mycorrhizal fungi) for completing their life cycle (Selosse, 2014). Orchid mycorrhizal fungi
(OMF) influence plant development at different life stages (Cameron et al., 2006). For instance, the
tiny seeds of orchids lack carbohydrate reserves, making them dependent on mycorrhizal fungi for
germination and subsequent development into protocorms (Smith and Read, 2008).

It is widely accepted that local abundance and population dynamics of orchids are largely
dependent on mycorrhizal fungi (McCormick and Jacquemyn, 2014). However, even if an
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increasing number of OMF have been identified (Kartzinel et al.,
2013; Kohout et al., 2013), their community structures and the
factors affecting their spatial distribution in natural environments
remain poorly explored (McCormick and Jacquemyn, 2014).

Across the last three decades, our knowledge on the diversity
and community composition of OMF has increased markedly
with the development of powerful sequencing technologies
(Merckx, 2013). With Sanger sequencing, fungi within the
Tulasnellaceae (Suárez et al., 2006, 2016; Riofrío et al.,
2013; Herrera et al., 2018), Serendipitaceae (Suárez et al.,
2008), Ceratobasidiaceae (Otero et al., 2004) and Atractiellales
(Kottke et al., 2010) were reported as dominant associates of
tropical orchids. The development of next-generation sequencing
(NGS) technologies (i.e., 454 and Illumina) has further helped
to improve the characterization of fungal communities and
assess their ecological dynamics (Cardenas and Tiedje, 2008).
For instance, Cevallos et al. (2017) and Herrera et al.
(in press) demonstrated that OMF communities were site-
adjusted, consisting of a core of generalists and ubiquitous
orchid mycorrhizal fungi-operational taxonomic units (OMF-
OTUs), considered as keystone species (stable component) plus
OTUs identified at specific-site orchid populations (dynamic
component). This indicates that the structure of the dynamic
component of the OMF communities is determined by local
environmental conditions and host’s evolutionary history and
that keystone species occur irrespective of the orchid species
or site. Likewise, in temperate regions, significant differences in
OMF communities were reported across orchid species (Esposito
et al., 2016) and through temporal variation (Oja et al., 2015) with
a core of generalist and overlapped OMF communities.

A number of biotic (i.e., orchid species) and abiotic (i.e.,
site, temporal variation) factors have been reported to impact
the structure of OMF communities (Jacquemyn et al., 2012;
Ercole et al., 2015; Esposito et al., 2016; Cevallos et al., 2017).
However, it is often difficult to generalize the ecological premises
to all orchid species or geographic regions, mainly because
particular combinations of environmental factors may markedly
influence the local OMF community structure (Peay et al.,
2010). Most data on the orchid-fungi assemblages come from
in vitro experiments (Těšitelová et al., 2012; Fracchia et al.,
2016) and orchid roots sampled from their natural habitats at
a specific spatial or temporal scale (Oja et al., 2015; Mujica
et al., 2016). In contrast, field experiments to study the orchid-
fungal symbiosis are less numerous, probably because of the
morphological and biological characteristics of orchids (i.e.,
minute seeds, nutritional requirements) that make it difficult to
conduct in situ investigations (Bayman et al., 2002). Compared
to in vitro studies, it seems obvious that field experiments could
provide more realistic insights into the ecology and evolutionary
patterns of orchid-fungal interactions (Bidartondo and Read,
2008; Phillips et al., 2011; Waterman et al., 2011; McCormick
et al., 2012; Těšitelová et al., 2012).

The evolutionary history of orchids is considered one of the
key factors that shape the structure of the OMF community.
With more closely related orchid species, more similar OMF
communities are predicted (Těšitelová et al., 2015; Cevallos et al.,
2017). In co-existence, related orchid species tend to be associated

with similar mycorrhizal fungi (Suárez et al., 2016), although the
entire OMF community structure could be different (McCormick
and Jacquemyn, 2014). In addition, the site (where each orchid
population is present) has also been considered as a driver
of the composition of OMF communities. Depending of the
spatial scales, the combination of fungal dispersal limitations,
biogeographic history and adaptive evolution create a unique
fungal assemblage (Peay et al., 2010). Elevation also affects the
OMF communities. Although little information is available, it
has been reported that OMF communities change with increasing
elevation and that the peak of OMF richness occurs at the mid-
elevation in montane forest (Jacquemyn et al., 2005; Geml, 2017).
On a temporal scale, OMF communities change because of the
orchid nutritional demands across the life cycle (Smith and Read,
2008; Ercole et al., 2015). Temporal dynamics of the orchid-fungi
symbiosis have been evaluated across seasonal and environmental
conditions as well as orchid developmental stages (i.e., fruiting,
flowering) (Rasmussen and Whigham, 2002; Shefferson et al.,
2005; Ercole et al., 2015). However, it remains unclear whether
the temporal shifts of OMF partners are a consequence of the
succession or represent opportunistic associations due to the
extrinsic conditions (Otero et al., 2007; Oja et al., 2015). The
evidence available thus far shows that it is unlikely that a single
factor is responsible for the structure and composition of OMF
communities (McCormick and Jacquemyn, 2014).

In natural orchid populations, the evaluation of the influence
of multiple biotic or abiotic factors (i.e., orchid species, temporal
variation) on OMF communities is not always possible, in
consideration of the particular distribution and life cycle
that each orchid species has. When orchids are more widely
distributed in specific areas, the implementation of field
experiments provides opportunities to study the effect of multiple
environmental factors on the communities of OMF (Phillips
et al., 2011). Here, a field experiment was conducted using
in vitro seedlings of Cyrtochilum retusum (Lindl.) Kraenzl. and
Epidendrum macrum Dressler, two epiphytic orchids present
in southern Ecuador. The orchid species were established
along an elevational gradient in two sites of the Podocarpus
National Park (southern Ecuador). The OMF communities of the
in vitro seedlings were determined by Illumina MiSeq amplicon
sequencing analysis. This provided a unique opportunity to
elucidate whether co-existing orchid species, site, elevational
level and temporal variation have an effect on the assembly and
structure of mycorrhizal communities in situ.

MATERIALS AND METHODS

Study Site
The study was conducted in the Reserva Biológica San Francisco
(RBSF), a well-known biodiversity hotspot, located in the eastern
Andes of southern Ecuador (Myers et al., 2000) and classified
as tropical montane forest (Beck et al., 2008). The vegetation is
characterized by an exceptional richness of plant families such as
Orchidaceae (337 spp.) and Lauraceae (40 spp.) (Homeier et al.,
2008). The mean annual rainfall and temperature are 2000 mm
and 15.5◦C, respectively. The rainy season extends from April to
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August and the dry season from September to March (Table 8.7
in Beck et al., 2008). The seedling-trap experiment was set up in
the lower area of the RBSF, between 1850 and 2150 m.a.s.l. in two
sites known as T2 a ridge forest (3◦58.415′S, 79◦04.516′W) and
Q5 a ravine forest (3◦58.399′S, 79◦04.243′W) (Bussmann, 2003).
The distance between T2 and Q5 is about 1 km. The transects
were selected because of the data available on the environment
(i.e., climate, flora) (Beck et al., 2008).

The seedling-trap experiment was established from May 2014
to April 2015 using in vitro-produced seedlings of Cyrtochilum
retusum (Lindl.) Kraenzl. (identified as C in the treatments
coding) and Epidendrum macrum Dressler (identified as E in
the treatments coding) (tribes Cymbidieae and Epidendreae,
respectively) obtained from a private seller (Ecuagenera, Azuay-
Ecuador). Individuals of C. retusum have been observed in Loja
and Zamora-Chinchipe provinces between 1700 and 3150 m.a.s.l.
(Dodson, 2002; Telenius and Shah, 2016) and individuals of
E. macrum in Zamora-Chinchipe province between 1000 and
1100 m.a.s.l. (Magill et al., 2016). Both species are naturally
distributed in southern Ecuador but thus far have never been
recorded in the RBSF.

Seedling-Trap Experiment
Seedling-trap systems consisted of a polyvinyl chloride cylinder
(20 cm diameter and 15 cm height) with 10 orchid seedlings
inside (same species) and covered with a 0.02 µm pore size
sun bag (Sigma-Aldrich, St. Louis, Missouri, United States)

to avoid herbivory and litter input (Figure 1). The seedling-
trap systems were placed in direct contact with tree branches
(Figure 2). Only tree branches supporting at least one orchid
naturally established were selected. No particular attention
was given to the height of the tree branches. In both
transects (T2 and Q5), seedling-traps were installed along 10
elevational points, separated by ∼30 m.a.s.l. along a range
between 1850 m.a.s.l. and 2150 m.a.s.l. (assigned as A1 to
A10). For each elevational point, one seedling-trap from
C. retusum and one from E. macrum were established. All
seedling-traps installed along one transect and harboring the
same orchid species were considered as one treatment that
evaluated a factor, resulting in four treatments. The four
treatments included the evaluation of the effect of factors
such as orchid species, site, altitude and temporal variation
on the composition of mycorrhizal communities. In total, 40
seedling-trap systems (2 transect × 10 elevational levels × 2
orchid species) were established that included 10 replicates per
treatment.

Seedling-trap systems were sampled 3 (S1) and 12 (S2)
months after their installation. The number of seedlings collected
from each seedling-trap at 3 and 12 months varied between
1 and 4, depending on the number of surviving seedlings per
system. In both samplings, all the roots collected from the plants
in each seedling-trap system were pooled as a single sample
and stored in 70% ethanol for molecular analysis. To confirm
mycorrhizal colonization, cross-sections of three randomly

FIGURE 1 | Photo and schematic illustration of the seedling-trap systems. Seedling-traps included polyvinyl chloride cylinder, 10 seedlings, covered with a sun bag
adjusted with a rubber band and a paperclip foldback.
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selected samples were stained with methyl blue solution (0.05%,
Merck, Darmstadt, Germany) for 3 min. and microscopically
checked for the presence of pelotons.

DNA Sequencing
Total DNA from seedling roots was extracted using the
PureLink R© Genomic Plant DNA Purification Kit (Invitrogen)
according to the manufacturer’s protocol. To analyze the internal
transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA
(nrDNA), two primer pairs were used for PCR amplification
(see Waud et al., 2014): ITS86F (Turenne et al., 1999) combined
with ITS4 (White et al., 1990); and ITS3 (White et al., 1990)
combined with ITS4 (White et al., 1990). PCR amplifications
were performed in 20 µl reaction volume containing 4 µl of
5X Phusion HF Buffer, 0.4 µl of dNTPs (10 mM), 0.4 µl
of each primer, 0.8 µl BSA 10%, 0.2 µl of Phusion DNA
polymerase (Thermo Fisher Scientific), 11.8 µl of ultrapure
water and 2 µl of total DNA. PCR conditions for both
primers combinations were as follows: initial denaturation
at 98◦C for 30 s followed by 35 cycles of denaturation at
98◦C for 10 s, annealing at 60◦C for 20 s, extension at
72◦C for 30 s and a final extension at 72◦C for 10 min.
After resolving the amplicons by agarose gel electrophoresis,
only amplicons within the expected size range (∼250–350 bp)
were kept. Amplicons obtained from the same DNA template
with different primer pairs were mixed as a single sample
and purified using the Wizard R© SV Gel and PCR Clean-Up
System (Promega, United States). The quality of the purified
DNA amplicons was determined through the evaluation of
the AD260/280 ratio calculated using the Spectrophotometer
NanoDrop R© 2000c (Thermo Scientific, Wilmington, Delaware,
United States). Finally, sequencing was performed using
the MiSeq Illumina platform at IMGM Laboratories GmbH
(Martinsried, Germany).

Sequence Analysis
Raw Illumina sequence data were processed using the UPARSE
software (Edgar, 2013). First, the overlapping paired reads were
assembled into single sequences with the “fastq_mergepairs”
command. In addition, the –fastq_nostagger option was
used to discard staggered pairs. Next, quality filter was
applied using the “fastq_filter” command with a maximum
expected error threshold of 0.3 for single sequences. To
discard sequences of short length, the truncation length
was set to 240 bp. Singletons were discarded with the
“derep_fulllength” command. Operational taxonomic units
(OTUs) were determined using the “cluster_otus” command, and
the sequences displaying 97% homology were classified in the
same OTU. The OTUs were further assigned taxonomic identities
to the highest taxonomic rank possible with the BLASTN
algorithm implemented in UNITE database1; (Abarenkov et al.,
2010a) through the PlutoF (Abarenkov et al., 2010b) web-
based sequence management workbench (2017-09-09 release),
including uncultured/environmental entries. Finally, OTUs with
taxonomic identity attributed to a member of OMF (Suárez

1http://unite.ut.ee

FIGURE 2 | Set-up of a seedling-trap system on a tree branch.

et al., 2006, 2008; Kottke et al., 2010; Valadares et al., 2015)
were retained for further analyses. Sequences were submitted to
GenBank under the accession number PRJNA396957.

Statistical Analysis
The OMF-OTUs frequency of occurrence was transformed into
binary matrix on a per-sample basis as input data to make
inferences on OMF richness and community composition as
a function of the orchid host, sites, elevational levels or the
temporal variation. In the matrix, the columns corresponding
to each of the recovered seedling-trap systems were codified
as follows: transect name, orchid species, sampling time and
elevational level (T2 = transect T2, Q5 = transect Q5;
C = C. retusum, E = E. macrum; S1 = first sampling
and S2 = second sampling and A1 – A10 = elevational
levels) i.e., T2CS1_A1, T2ES1_A1, Q5CS1_A1, Q5ES1_A1 and
so on. To evaluate the entire OMF richness per treatment,
the presence/absence matrix was used as input data for the
construction of accumulation curves (Jiménez-Valverde and
Hortal, 2003) applying a sample-based rarefaction method with
100 permutations, implemented in EstimateS 9.1.1 (Colwell,
2013; Orgiazzi et al., 2013; Senés-Guerrero et al., 2014).
The seedling-trap systems from Q5ES1 and Q5CS2 were not
considered for statistical analysis due to low number of samples
recovered (two seedling-traps each).
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To test differences in OMF communities among co-existing
orchid species (T2CS1 vs. T2ES1) and temporal variation (T2CS1
vs. T2CS2), individually per each elevational level, beta diversity
determined as the ratio of the number of OMF-OTUs shared
and the total number of OTUs in samples (Orgiazzi et al.,
2013) was calculated by similarity indices of Chao-Jaccard
and Chao-Sørensen using Estimates 9.1.1 software (Colwell,
2013). Samples from each elevational level were considered as
a replicate. Similarly, to evaluate the effect of the elevation
on the mycorrhizal community per treatment (T2CS1, T2ES1,
T2CS2, and Q5CS1), the similarity was calculated by pairwise
comparison between elevational levels of the same treatment.

Permutational analysis of variance (Permanova) was
performed with 999 permutations using the adonis function
in the Vegan package (Oksanen et al., 2016) of R (R Core
Team, 2015) to evaluate whether OMF communities differed
significantly as a function of host phylogeny and the sites of
orchid occurrence. Finally, to visualize the differences among
sites (T2CS1 vs. Q5CS1) and temporal variation (T2CS1
vs. T2CS2) a non-metric multidimensional scaling (NMDS)
was constructed using SPSS 22 (IBM Corp., Somers, NY,
United States). The Jaccard coefficient was used as a distance
measure and each elevational level as a replicate.

In order to evaluate if the sequencing depth differences
between samples impact the statistical findings, the sequence
reads per sample were rarefied to the 10% of the highest sequence
reads per samples using Seqtk software (Supplementary
Materials). The sequence analysis and the statistical analysis were
performed as was mentioned above.

RESULTS

In the first sampling (i.e., at month 3), nine seedling-trap systems
were recovered from each treatment: T2CS1, T2ES1, and Q5CS1.
The two seedling-trap systems recovered from Q5ES1 were not
considered due to low number of samples. In the second sampling
(i.e., at month 12), samples from eight seedling-trap systems were
recovered from T2CS2, and, as in the first sampling, Q5CS2 was
not considered due to low number of samples (Supplementary
Table 1).

Fungal OTUs
In the 35 samples assessed, between 24,385 and up to 249,004
reads per sample were obtained. In total, 865,071 high-
quality sequences of ITS2 (∼300 bp) were retrieved after
chimeric sequences were discarded (11.2% of total number of
sequences). Operational taxonomic unit reconstruction based
on a 97% sequence similarity cutoff resulted in 1757 fungal
OTUs. BLAST analysis of the representative sequences from
reconstructed OTUs showed the presence of sequences matching
both mycorrhizal and non-mycorrhizal fungi; the latter were
not considered in subsequent analyses. Putative mycorrhizal
fungi were ascribed to 83 OTUs belonging to Cantharellales (53
OTUs), Sebacinales (28 OTUs) and Atractiellales (2 OTUs) orders
(Figure 3 and Supplementary Table 2).

FIGURE 3 | Frequency distribution of the identified fungal orders of the orchid
mycorrhizal fungi identified in association with Cyrtochilum retusum and
Epidendrum macrum.

FIGURE 4 | Rarefaction curves of orchid mycorrhizal fungi OTU (operational
taxonomic unit) richness in four treatments of field experiment. T2: transect
T2; Q5: transect Q5; C: Cyrtochilum retusum; E: Epidendrum macrum; S1:
1st sampling and S2: 2nd sampling.

Rarefaction curves of OMF-OTUs did not reach an asymptote
in any of the treatments (Figure 4). In total, 39, 23, 35
and 52 OTUs were found in the T2CS1, T2ES1, Q5CS1, and
T2CS2 treatments, respectively. Six OTUs (OTU19, OTU24,
OTU144, OTU225, OTU358, and OTU4582) were identified
in all treatments in at least one elevational level. Only
OTU138 was identified at all elevational levels in the treatment
T2CS2.

Mycorrhizal Communities as a Function
of the Orchid Species, Site, Elevation
and Temporal Variation
Mycorrhizal communities evaluated as a function of the orchid
species (T2CS1 vs. T2ES1) showed that C. retusum had a greater
number of OMF-OTUs than E. macrum. Chao-Jaccard and Chao-
Sørensen indices revealed low similarity in the composition of
OMF communities between C. retusum and E. macrum (Table 1).
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TABLE 1 | Number of orchid mycorrhizal fungi (OMF) OTUs and the similarity indices for the co-occurring orchids Cyrtochilum retusum and Epidendrum macrum at the
different elevational levels (A1–A10).

Elevational level OMF-OTUs from C. retusum OMF-OTUs from E. macrum Shared OMF-OTUs Chao-Jaccard Chao-Sorensen

A1 6 2 0 0 0

A2 7 2 2 0.286 0.444

A4 7 2 1 0.125 0.222

A5 10 3 2 0.182 0.308

A6 18 4 2 0.1 0.182

A8 10 7 1 0.063 0.118

A9 6 5 3 0.375 0.545

A10 2 3 0 0 0

Permanova analysis performed to contrast the richness among
co-existing orchid species showed significant difference in the
OMF communities (P-value = 0.046).

Assessing the influence of the site on OMF communities
(T2CS1 vs. Q5CS1), the NMDS ordination showed different
OMF communities but with a substantial overlap (Figure 5). In
total, 39 and 35 OTUs were identified in treatments T2CS1 and
Q5CS1, respectively, and from these, 17 OMF-OTUs overlapped
at both sites. Analysis by Permanova provided evidence to
confirm that the community composition of OMF associated
with C. retusum was not significantly different among the sites
(P-value = 0.242).

Moreover, along elevational levels the Chao-Sorensen
and Chao-Jaccard indices, calculated independently for each
treatment (T2CS1, T2ES1, and Q5CS1), showed low similarity in
the composition of OMF communities in almost all the pairwise
comparisons. The elevational levels with greater similarity
of the OMF communities were not necessarily the closest
(Supplementary Table 3).

Finally, evaluating the temporal variation (T2CS1 vs. T2CS2),
the number of OMF-OTUs detected per seedling-trap system
varied between 6 and 18 after three months (1st sampling,
T2CS1) and between 5 and 22 after 12 months (2nd sampling,
T2CS2) (Supplementary Table 4). Chao-Sorensen and Chao-
Jaccard indices calculated by contrasting T2CS1 and T2CS2,
independently per each elevational level, showed low similarity
in the OMF communities (Supplementary Table 4), as evident in
the NMDS (Figure 6).

Contrasting the analyses outputs between samples rarefied to
the 10% of the highest sequence reads per sample and samples
non-rarefied, similar patterns of OMF-OTUs richness and
OMF community composition were observed (Supplementary
Materials).

DISCUSSION

Mycorrhizal Fungal Community
Composition
In this study, the OMF communities associated with the epiphytic
orchids C. retusum and E. macrum, established along an elevation
level, were assessed in the RBSF (southern Ecuador) using
a seedling-trap experiment. Although field experiments are
infrequently performed, they represent a more realistic approach

to evaluate the interaction between orchids and fungi. For
instance, with the use of seed packets (field experiments) it
was demonstrated that habitat conditions had little influence
on seed germination of four Epipactis species (Těšitelová et al.,
2012). Moreover, several studies that evaluated OMF associated
with orchids at different developmental stages demonstrated the
occurrence of different OMF communities across orchid lifecycle
(Oja et al., 2017; Waud et al., 2017).

In accordance with previous studies performed in tropical
areas (Kottke et al., 2010; Cevallos et al., 2017), the present results
revealed that epiphytic orchids were associated with a highly
diverse group of mycorrhizal fungi (represented by 83 OTUs),
comprising members of Tulasnellaceae, Ceratobasidiaceae,
Serendipitaceae and Atractiellales. Members of Tulasnellaceae
appear to be globally distributed, as they have been frequently
reported in association with epiphytic orchids in many forests
(Martos et al., 2012; Riofrío et al., 2013; Suárez et al., 2016;
Oberwinkler et al., 2017). Consistently, in the present study
the dominant fungal group associated with C. retusum and
E. macrum was Tulasnellaceae, representing 41% of the entire
mycorrhizal fungi identified. Serendipitaceae was the second
most frequent group identified (35%), supporting earlier studies
that recognized Serendipitaceae as a persistent orchid partner
worldwide (Suárez et al., 2008; Martos et al., 2012). In a recent
study performed in the same geographical location (Cevallos
et al., 2017), fungi putatively assigned to Serendipitaceae were
the most frequent taxa identified in association with epiphytic
adult orchids of the Cymbidieae tribe. However, here we
added a second set of complementary primers (ITS86F/ITS4
combined with ITS3/ITS4) to reduce the biases and reach a
more accurate description of fungal communities (Waud et al.,
2014).

Six OMF-OTUs (OTU19, OTU24, OTU144, OTU225,
OTU358, and OTU4582) were detected in all treatments. Among
these, OTU19 (Ceratobasidiaceae), OTU24 (Serendipitaceae)
and OTU144 (Serendipitaceae) were phylogenetically
congruent (≥ 97%) with OTU33 (Ceratobasidium), OTU2
(Serendipitaceae) and OTU13 (Serendipitaceae), respectively,
reported by Cevallos et al. (2017). These OTUs identified by
Cevallos et al. (2017) were broadly identified in two populations
of Cyrtochilum flexuosum, C. myanthum and Maxillaria
calantha, distributed in the surrounding areas of Podocarpus
National Park. This finding supports the hypothesis that a core
of generalist fungi with wide distribution could be an essential
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FIGURE 5 | Non-multidimensional scaling (NMDS) plot of orchid mycorrhizal fungal communities associated with Cyrtochilum retusum at T2 (black dots) and Q5
(white squares) sites (stress value = 0.070).

component of the OMF communities (Pandey et al., 2013; Xing
et al., 2017).

Effect of Orchid Species, Site, Elevation
and Temporal Variation on Mycorrhizal
Fungal Community Composition
The exact factors driving variation in the composition and
structure of OMF communities are still unclear (Jacquemyn et al.,
2016). There is growing evidence that mycorrhizal variation is
influenced by such factors as seasonal dynamics (Oja et al.,
2015), biotope (Han et al., 2016), orchid species (Jacquemyn
et al., 2010) or orchid life cycle (Bidartondo and Read, 2008).
The present results seem to confirm these observations because
clear differences in OMF communities were noticed between co-
existing orchid species, along an elevational gradient and during
a temporal variation.

The different OMF communities observed between co-
existing orchid species strongly support previous results showing
divergent mycorrhizal communities associated with terrestrial
orchids from the genera Anacamptis, Neotinea, Orchis, Ophrys
and Serapias co-occurring at a given site (Jacquemyn et al., 2014).
Theoretically, two species are not able to co-exist when they are
using the same resources (Tilman, 1982) unless there is small-
scale habitat heterogeneity that allows niche differentiation,
for instance, segregation of mycorrhizal fungi (Jacquemyn
et al., 2014; Voyron et al., 2017). The preference for different
mycorrhizal fungal communities might represent a niche
partition that contributes to orchid co-existence (McCormick and
Jacquemyn, 2014). More specifically, different OMF communities
potentially shape the realized niche among inhabiting species
and might have considerable implications on the dynamics of
orchid communities as a result of limiting factors of the habitat
(Gerz et al., 2018). The mycorrhizal partners associated with
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FIGURE 6 | Non-multidimensional scaling (NMDS) plot of mycorrhizal fungi detected in Cyrtochilum macrum sampled at two colonization times. The black dots
correspond to samples obtained from the first sampling (T2CS1 treatment) and the white triangles correspond to the second sampling (T2CS2 treatment), after three
months and one year, respectively, of the assay was established (stress value = 0.058).

each orchid species might represent part of an ancestral niche
prevalent throughout co-evolutionary processes (Losos, 2008;
Selosse, 2014). Therefore, it is suggested that although each
orchid species is not associated with a specific set of mycorrhizal
fungi, the niche-partitioning and the orchid-fungi co-evolution
may determine the fungi effectively associated with a particular
orchid species.

Similarly to orchid species, the site of orchid occurrence
has been frequently reported as a determining factor of
OMF communities (Xing et al., 2013; Cevallos et al., 2017).
Here we found no significant differences in OMF community
composition between the two study sites (transect T2 and
Q5). Contrasting results have been reported by Kartzinel et al.
(2013), who identified different mycorrhizal communities across
11 populations of E. firmum, an epiphytic orchid naturally
distributed in Costa Rica. These differences were mostly
attributed to the divergent climatic and geographic conditions

of the study sites. Moreover, different OMF communities have
also been observed in association with the terrestrial orchid
Anacamptis morio, suggesting an effect of the environmental
variation (Voyron et al., 2017). The similarity between the OMF
communities of the two study sites (i.e., T2 vs. Q5) may be due
in part to the similarity of the sites environmental characteristics
(i.e., rainfall, temperature), despite floristic differences between
ridge and ravine forest (Homeier et al., 2008). Identical results
were obtained in a recent study evaluating OMF associated with
epiphytic orchids distributed in four sites of the Cajas National
Park (Herrera et al., in press).

The OMF communities associated with C. retusum and
E. macrum consisted of a stable component that include
keystone species recorded in both site and a dynamic component
comprising a number of fungi exclusively identified at specific
site. Similar results were observed in two populations of
Dendrobium officinale, in which the OMF communities included
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a set of fungi widely identified across orchid populations and
a set of fungi specifically identified at one of the two orchid
populations but not both (Xing et al., 2013). Overall, these
findings support the hypothesis that OMF communities are
site-adjusted around keystone fungal species that are widely
distributed, as was observed in the OMF communities associated
with C. flexuosum, C. myanthum and M. calantha (Cevallos et al.,
2017). However, further analyses that include more sites are
needed to confirm this hypothesis.

It is generally accepted that elevation is a factor that drives
the structure of communities (i.e., plants and animals) (McCain,
2005; Grytnes and Beaman, 2006). However, the effect of
elevation on OMF communities is virtually unknown. Suárez
et al. (2006) reported a decrease of the OMF richness with
increasing elevation but in the present study, the fungal richness
did not always decrease with increasing elevation. Although
C. retusum and E. macrum have not been recorded in our study
sites (but reported in southern Ecuador), we suggest that the
identified fungi could represent a potential mycorrhizal niche.
The contrast between orchid mycorrhizal communities showed
significant differences along the elevational level, however, there
was not a clear pattern of the mycorrhizal fungi communities at
the elevation level and moreover the limited number of replicates
per elevational level made it impossible to make further ecological
inferences. It still remains to be elucidated whether the changes
in the OMF detected along the elevational gradient are due to
an opportunistic association (Dearnaley et al., 2012) or if the
elevation induced changes in the OMF community.

In addition, the present results clearly show a significant
temporal variation in the composition of OMF communities.
Indeed, OTUs-OMF richness increased across time. Changes
on mycorrhizal communities have been observed in relation to
the development stages of hosts and season (Bidartondo and
Read, 2008; Kohout et al., 2013; Ercole et al., 2015; Oja et al.,
2015). For instance, Bidartondo and Read (2008) reported that
Cephalanthera damasonium and Cephalanthera longifolia had
different OMF communities across orchid development but with
a subset of fungi identified at all orchid life stages. Further long-
term studies are necessary to validate if these differences in OMF
communities are due to the orchid developmental stage and the
concomitant changes in physiological processes (i.e., distinctive
nutrient uptake) (Rasmussen and Rasmussen, 2009; Kohout et al.,
2013).

We suggest that OMF communities experience a successional
process of colonization along the development stages of the
plant, as the results show that the OMF communities were
structured by keystone species (OMF identified either after three
or 12 months) and a dynamic component (OMF changing over
time). In vitro experiments have demonstrated that keystone

species of OMF that were isolated from adult plants were able
to promote orchid seed germination (Fracchia et al., 2013).
Furthermore, in field experiments, orchids at early developmental
stages were abled to form associations with a set of available
OMF (Bidartondo and Read, 2008), but these OMF may not
necessarily be present in the roots of the orchid throughout
its entire life cycle (Shimura et al., 2009). Information on the
temporal dynamics of OMF communities is currently limited
(Ercole et al., 2015), and periodic samplings across the entire
orchid life cycle is required to determine if keystone OMF remain
throughout orchid development. It is proposed that the OMF
keystone species identified here represent a permanent core of
OMF, as they were found across sampling sites and orchid species
(Cevallos et al., 2017).

CONCLUSION

The present study shows that the combination of orchid seedling-
trap experiments and Illumina MiSeq ITS2 sequencing analysis is
an adequate approach for determining the composition of OMF
communities and the biotic and abiotic factors that structure
those communities. The results support the observation that
OMF communities are composed of a dynamic and a core set of
keystone species and that the orchid-fungi symbiosis is a dynamic
interaction governed by temporal variations, environmental
filtering and co-evolutionary history.
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