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Improving the salt-tolerance of direct-seeding rice at the seed germination stage is a
major goal of breeders. Efficiently identifying salt tolerance loci will help researchers
develop effective rice breeding strategies. In this study, six multi-locus genome-
wide association studies (GWAS) methods (mrMLM, FASTmrMLM, FASTmrEMMA,
pLARmEB, pKWmEB, and ISIS EM-BLASSO) were applied to identify quantitative trait
nucleotides (QTNs) for the salt tolerance traits of 478 rice accessions with 162,529
SNPs at the seed germination stage. Among the 371 QTNs detected by the six
methods, 56 were identified by at least three methods. Among these 56 QTNs, 12,
6, 7, 4, 13, 12, and 12 were found to be associated with SSI-GI, SSI-VI, SSI-MGT,
SSI-IR-24h, SSI-IR-48h, SSI-GR-5d, and SSI-GR-10d, respectively. Additionally, 66
candidate genes were identified in the vicinity of the 56 QTNs, and two of these
genes (LOC_Os01g45760 and LOC_Os10g04860) are involved in auxin biosynthesis
according to the enriched GO terms and KEGG pathways. This information will be
useful for identifying the genes responsible for rice salt tolerance. A comparison of
the six methods revealed that ISIS EM-BLASSO identified the most co-detected QTNs
and performed best, with the smallest residual errors and highest computing speed,
followed by FASTmrMLM, pLARmEB, mrMLM, pKWmEB, and FASTmrEMMA. Although
multi-locus GWAS methods are superior to single-locus GWAS methods, their utility
for identifying QTNs may be enhanced by adding a bin analysis to the models or by
developing a hybrid method that merges the results from different methods.

Keywords: multi-locus, GWAS, QTNs, salt tolerance, rice

INTRODUCTION

A genome-wide association studies (GWAS) represents a powerful option for the genetic
characterization of quantitative traits, and has been widely used for analyzing agronomic traits
related to plants. Numerous genetic variants for complex traits have been identified based on
single-locus GWAS methods, such as empirical Bayes, efficient mixed model association (EMMA),
genome-wide efficient mixed linear model association (GEMMA), settlement of mixed linear

Abbreviations: GI, germination index; GR-10d, germination rate at the 10th day; GR-5d, germination rate at 5th day; IR-
24h, imbibition rate at 24 h; IR-48h, imbibition rate at 48 h; MGT, mean germination time; N, normal condition; S, salt stress
condition; SSI, stress-susceptibility index; VI, vigor index.
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model under progressively exclusive relationship (SUPER), and
mixed linear model (MLM) (Kang et al., 2008; Zhou and
Stephens, 2012; Wang et al., 2014, 2016a). Although the statistical
power of quantitative trait nucleotide (QTN) detection improves
after controlling the polygenic background, most of the small
effects associated with complex traits are still not captured by
single-locus GWAS methods.

In a single-locus GWAS model, markers are tested individually
in a one-dimensional genome scan. Moreover, the multiple test
correction for the critical value of a significance test should be
considered. Bonferroni correction is widely used to modify the
threshold value to control the false positive rate (FPR). However,
this type of correction method is so conservative that true QTNs
may be eliminated. Therefore, the best way to solve this problem
is to develop a multi-locus GWAS method that does not require
a multiple test correction. Multi-locus GWAS methods involve
a multi-dimensional genome scan, in which the effects of all
markers are simultaneously estimated. Many penalized multi-
locus GWAS methods have been developed, including the least
absolute shrinkage and selection operator (LASSO), empirical
Bayes LASSO, and adaptive mixed LASSO (Yi and Xu, 2008;
Cho et al., 2009, 2010; Wu et al., 2009; Ayers and Cordell, 2010;
Wang et al., 2010; Giglio and Brown, 2018). These methods
can minimize some marker effects to zero when the number of
single nucleotide polymorphisms (SNPs) is not much larger than
the sample size. However, the rapid development of sequencing
technologies has enabled the detection of many SNPs (i.e., the
number of SNPs is hundreds of times larger than the sample
size). Thus, the available methods for minimizing marker effects
are ineffective. One option for addressing this issue involves
decreasing the number of SNPs. Dr. Zhang’ lab developed an R
package called mrMLM, which includes the following six multi-
locus GWAS methods: mrMLM, FASTmrMLM, FASTmrEMMA,
pLARmEB, pKWmEB, and ISIS EM-BLASSO. All of these
methods involve two-step algorithms. During the first step, a
single-locus GWAS method is applied to scan the entire genome,
and putative QTNs are detected according to a less stringent
critical value, such as P < 0.005 or P < 1/m, where m is the
number of markers. During the second step, all selected putative
QTNs are examined by a multi-locus GWAS model to detect true
QTNs (Wang et al., 2016a,b; Tamba et al., 2017; Zhang et al.,
2017; Ren et al., 2018; Wen et al., 2018a,b; Zhang and Tamba,
2018). The mrMLM package solves the problem associated with
co-factor selection in the multi-locus GWAS model when there
are many markers.

Rice (Oryza sativa L.), which is one of the most important
cereal crops worldwide, is sensitive to salt stress. With the
increasing salinization of soils, salt stress is becoming a key
abiotic factor limiting rice production that rice breeders must
overcome (Hu et al., 2012). Developing salt-tolerant rice cultivars
is an efficient way to minimize crop loss. Over the past several
years, high density SNPs have been used to detect variants with
GWAS methods to improve rice varieties (Han and Huang, 2013;
Chen et al., 2014; Yang et al., 2014; Wei et al., 2017). However,
most traits related to abiotic stress tolerance are controlled by
several polygenes that are undetectable in single-locus GWAS
models (Lee et al., 2003; Cui et al., 2015). Therefore, we should

apply multi-locus GWAS methods to identify loci related to salt
tolerance. In this study, 478 rice accessions, each with seven salt
stress susceptibility index (SSI)-related traits, and 162,529 SNPs
were used to conduct a multi-locus GWAS. Our objectives were
to identify the significant QTNs related to salt tolerance and
provide recommendations regarding the selection of a multi-
locus GWAS method by comparing the differences among the six
multi-locus methods included in the mrMLM package.

MATERIALS AND METHODS

Rice Phenotypic Data Related to Salt
Tolerance
We analyzed 478 rice accessions from 46 countries and
regions regarding seven salt tolerance-related traits at the seed
germination stage in a multi-locus GWAS. Phenotypic data were
collected for control and stress-treated plants incubated in a
growth chamber, with two independent experiments conducted
for the control and stress treatments. Each independent
experiment involved a randomized block design with two
replicates. The dataset was published by Shi et al. (2017), and
the seven salt tolerance-related traits were VI, GI, germination
rate (GR) at days 5 and 10, MGT, and imbibition rate (IR) at
24 and 48 h. All salt tolerance-related traits were measured for
plants treated with 60 mM NaCl or water (control) as follows:
IR (mg/g) was calculated as IR = (W2 −W1)/W1 × 1000 at 24
and 48 h after starting the incubation, where W1 represents the
dry seed weight and W2 represents the imbibed seed weight;
GR was calculated as GR = Nt/N0 × 100% at days 5 and 10,
where Nt is the number of germinated seeds at day t and N0 is
the total number of seeds; GI was calculated as GI =

∑
(Gt/Tt),

where Gt is the accumulated number of germinated seeds at day
t and Tt is the time (in days); MGT was calculated as MGT =∑

TiNi/
∑

Ni, where Ni is the number of newly germinated
seeds at day t and Ti is the time (in days); VI was calculated
as VI = GI × SL, where SL is the average shoot length of 10
germinated seeds at day 10. The salt tolerance level of rice
during the germination stage was estimated with the following
equation: SSI = (1− Ys/Yp)/D, where Ys is the performance of
an individual under the stress condition, Yp is the performance
of an individual under the normal condition, and D is the
stress intensity, which was calculated as D = 1− (

∑
Ys/

∑
Yp).

Finally, 21 traits were included in this study. The abbreviated
names of these 21 traits are provided in the abbreviations list.

Genotyping and Multi-Locus GWAS
The 478 rice accessions analyzed in this study were from the
3K rice genome project. The 3K rice genome project 404K
coreSNP dataset from the Rice-Seek Database was downloaded
from http://snp-seek.irri.org/_download.zul (Alexandrov et al.,
2015). We used the PLINK program (version 1.9) (Purcell et al.,
2007) to obtain a subset of 162,529 SNPs with a minor allele
frequency > 5% and a missing data ratio < 0.1 for association
analyses. The kinship matrix (K matrix) was calculated based
on the genotype marker information described by Xu (2013).
The mrMLM package, including six multi-locus GWAS methods,
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was downloaded from http://cran.r-project.org/web/packages/
mrMLM/index.html. Default values were used for all parameters.

Annotation of Candidate Genes and
Pathway Enrichment Analysis
Synonymous and non-synonymous SNPs and SNPs associated
with large-effect changes were annotated using the snpEff
program (version 4.0) (Cingolani et al., 2012) based on the gene
models of the annotated Nipponbare reference genome (IRGSP
1.0) (Kawahara et al., 2013). All putative SNPs located within
genes and annotation details have been published (Kawahara
et al., 2013). Enriched gene ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
identified using the agriGO (version 2.0) (Tian et al., 2017) and
EXPath 2.0 (Chien et al., 2015) programs, respectively.

RESULTS

Heritability and Variance
The heritability and residual errors estimated by the six multi-
locus GWAS methods are presented in Table 1. The narrow sense
heritability ranged from 0.17 for S_MGT and 0.57 for S_IR_48h.
A comparison of the residual errors among the six multi-locus
GWAS models revealed that the residual error estimated by
FASTmrEMMA was the largest under the normal condition
when the phenotypic variation was larger than 10. Under
the salt stress condition, the largest residual errors for traits
S_IR_24h and S_IR_48h were observed from FASTmrEMMA.
Regarding the SSI-related traits, the largest residual error was
estimated by FASTmrEMMA. The salt tolerance level was
evaluated according to the SSI-related traits. Lower SSI values
indicated a higher tolerance to salt stress. The results of the
correlation analyses of the seven SSI-related traits are presented
in Figure 1A. There were significant positive correlations among
SSI_VI, SSI_GR_5d, SSI _GR_10d, and SSI_GI. The correlation
coefficients between SSI-VI and the other three SSI-related traits,
namely SSI_GR_5d, SSI_GR_10d, and SSI_GI, were 0.91, 0.91,
and 0.96, respectively. Meanwhile, the correlation coefficients for
SSI_GR_5d, SSI_GR_10d, and SSI_GI were 0.89, 0.95, and 0.96,
respectively. The high correlation among the four SSI-related
traits implied that some novel loci might be simultaneously
detected for different traits.

QTNs Associated With Salt Tolerance at
the Germination Stage Identified by a
Multi-Locus GWAS
Using the six multi-locus GWAS methods in the mrMLM
package (Supplementary Table S1), we identified 371 significant
QTNs for the salt tolerance-related traits (SSI-VI, SSI-GR,
SSI-IR, SSI-MGT, and SSI-GI) based on a logarithm of odds
(LOD) threshold of ≥3. Of these QTNs, 41, 41, 27, 63, 56,
41, and 151 were found to be associated with SSI-GI, SSI-VI,
SSI-MGT, SSI-IR-24h, SSI-IR-48h, SSI-GR-5d, and SSI-GR-10d,
respectively, with the QTNs explaining 0.57 ∼ 9.80, 0.54 ∼ 8.97,
0.64 ∼ 8.21, 0.01 ∼ 4.94, 0.37 ∼ 8.93, 0.9 ∼ 6.72, and 0.7 ∼ 6.08

(%) of the phenotypic variations, respectively [i.e., phenotypic
variation explained (PVE) values] (Supplementary Table S1 and
Supplementary Figure S1). Additionally, 3, 9, and 22 QTNs were
associated with four, three, and two salt tolerance-related traits,
respectively, which explained the high correlation among SSI_VI,
SSI_GR_5d, SSI _GR_10d, and SSI_GI (Figure 1B).

In this study, 110 and 56 QTNs were co-detected by at
least two and three methods, respectively (Supplementary
Table S2 and Table 2). Among the 56 QTNs, 12 that
were located on chromosomes 1, 2, 3, 6, 8, 9, 11, and
12 were identified to be associated with SSI-GI, of which
11 were identified by ISIS EM-BLASSO, while 10, 9, 8, 7,
and 3 were detected by FASTmrMLM, mrMLM, pKWmEB,
pLARmEB, and FASTmrEMMA, respectively. Four of the 12
QTNs were simultaneously detected by five methods. Of these
four QTNs, rs3_29294598, rs6_30827714, and rs8_24915626,
were simultaneously detected by mrMLM, FASTmrMLM,
pLARmEB, pKWmEB, and ISIS EM-BLASSO, with PVE values
of 2.45 ∼ 5.01, 1.19 ∼ 2.82, and 1.44 ∼ 4.48 (%), respectively.
Meanwhile, rs8_27233581 was simultaneously detected by
mrMLM, FASTmrMLM, FASTmrEMMA, pKWmEB, and ISIS
EM-BLASSO, with a PVE value of 2.28 ∼ 6.28 (%). Six QTNs
related to SSI-VI were detected on chromosomes 5, 6, 8, 10,
and 11, five of which were identified by mrMLM and pKWmEB,
with LOD values of 3.22 ∼ 7.16 and 3.11 ∼ 7.11, respectively.
Only one QTN was detected by ISIS EM-BLASSO, with an
LOD value of 8.59. Seven QTNs located on chromosomes
1, 2, 4, 6, 9, and 11 were correlated with SSI-MGT. All
seven of these QTNs were detected by ISIS EM-BLASSO and
pKWmEB, with LOD values of 3.18 ∼ 7.97 and 3.54 ∼ 6.62,
respectively. The mrMLM, FASTmrMLM, FASTmrEMMA, and
pLARmEB methods detected 3, 5, 1, and 2 QTNs related to SSI-
MGT, respectively. Among the seven QTNs, rs1_15357371 was
identified by all methods, except for mrMLM, with a PVE value
of 2.95 ∼ 5.64 (%). For SSI-IR-24h, four significant QTNs were
detected on chromosomes 4, 6, and 9 by mrMLM, pKWmEB,
and ISIS EM-BLASSO, with LOD values of 6.97 ∼ 18.97,
3.42 ∼ 7.16, and 3.90 ∼ 10.18, respectively. Two of these QTNs
were identified by FASTmrMLM, while none of the QTNs were
detected by FASTmrEMMA and pLARmEB. Thirteen QTNs
located on chromosomes 1, 2, 3, 4, 6, 7, 10, 11, and 12 were
associated with SSI-IR-48h, including 10 that were detected by
ISIS EM-BLASSO, with LOD values of 3.54 ∼ 10.0, and nine
QTNs that were identified by FASTmrMLM, pLARmEB, and
pKWmEB, with LOD values of 3.29 ∼ 6.51, 3.58 ∼ 6.1, and
5.04 ∼ 9.04, respectively. The mrMLM and FASTmrEMMA
methods separately detected eight and six QTNs, with LOD
values of 3.14 ∼ 6.68 and 3.39 ∼ 6.97, respectively. Of the
13 QTNs, rs1_5453364, rs11_28865880, and rs12_19111880
were identified by all six methods, with PVE values of
0.86 ∼ 2.16, 1.38 ∼ 4.83, and 0.62 ∼ 2.97 (%), respectively.
Moreover, 12 QTNs associated with SSI-GR-5d were detected
on chromosomes 1, 3, 5, 7, 8, 9, 10, and 11. Of these QTNs,
nine, eight, seven, six, six, and four QTNs were separately
detected by pLARmEB, FASTmrMLM, mrMLM, pKWmEB,
FASTmrEMMA, and ISIS EM-BLASSO, respectively, with LOD
values of 3.26 ∼ 7.57, 3.61 ∼ 5.96, 3.03 ∼ 6.43, 3.34 ∼ 6.13,
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TABLE 1 | Phenotypic variance, estimated residual error, and heritability of 21 rice traits.

Trait PV Heritability (%) Residual error

FASTmrEMMA FASTmrMLM ISIS EM-BLASSO mrMLM pKWmEB pLARmEB

S_GI 0.17 42 0.13 0.13 0.11 0.10 0.12 0.13

S_VI 2.64 41 2.11 1.63 1.39 1.55 1.48 1.70

S_MGT 1.03 17 0.85 0.74 0.72 0.86 0.66 0.85

S_IR_24h 53351.6322 51 36552.52 23546.99 22673.23 26406.72 21410.21 24658.42

S_IR_48h 52655.13 56 32734.46 24011.68 21900.10 23275.70 24914.75 19703.57

S_GR_5d 1158.11 34 900.85 935.09 690.32 765.26 746.93 815.23

S_GR_10d 1233.41 35 844.53 961.70 893.90 796.73 719.22 907.11

N_GI 0.07 43 0.05 0.04 0.04 0.04 0.04 0.04

N_VI 5.84 34 3.72 3.10 3.00 3.86 2.72 3.18

N_MGT 0.82 50 0.57 0.48 0.36 0.41 0.43 0.49

N_IR_24h 63786.10 55 41714.56 30057.04 26812.22 28640.95 30489.47 31072.55

N_IR_48h 66260.99 48 44506.99 30736.87 23802.86 34238.02 32400.73 26220.37

N_GR_5d 452.67 27 326.57 307.38 233.09 330.44 267.86 285.44

N_GR_10d 86.61 31 66.58 58.11 48.46 59.51 51.38 52.48

SSI_GI 0.41 33 0.31 0.25 0.22 0.27 0.25 0.28

SSI_VI 0.10 22 0.08 0.06 0.05 0.08 0.06 0.07

SSI_MGT 4.07 32 3.61 3.02 2.57 2.75 2.66 3.22

SSI_IR_24h 199.2613 15 176.41 164.03 143.96 23.17 121.67 173.06

SSI_IR_48h 13.76 42 10.59 8.46 6.62 7.95 7.18 8.67

SSI_GR_5d 0.54 27 0.44 0.40 0.32 0.39 0.30 0.38

SSI_GR_10d 0.4509 34 0.34 0.31 0.23 0.30 0.24 0.28

FIGURE 1 | Correlation among SSI-related traits (A) and a Venn diagram of the QTNs for four SSI-related traits (B) estimated by a multi-locus GWAS.

3.26 ∼ 6.57, and 3.09 ∼ 5.76, respectively. Three of the 12
QTNs, rs3_4264086, rs5_29609065, and rs11_27392033, were
detected by five methods, with PVE values of 1.42 ∼ 4.47,
1.07 ∼ 4.65, and 0.96 ∼ 3.86 (%), respectively. For SSI-
GR-10d, 12 QTNs were detected on chromosomes 1, 2, 4,
6, 7, 8, 9, 10, and 11. Of these 12 QTNs, rs10_22754603
and rs11_27380577 were identified by five methods, with

PVE values of 0.93 ∼ 3.08 and 1.11 ∼ 4.4 (%), respectively
(Table 2).

Validation of the Common QTNs
Among the 56 QTNs, 14 were identified by at least five
methods, of which four, three, two, four, and one were
associated with SSI_GI, SSI_GR_5d, SSI_GR_10d, SSI_IR_48h,
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TABLE 2 | Significant QTNs for SSI-related traits in rice co-detected by at least three multi-locus GWAS methods.

Trait SNPs1 Chromosome Position QTN effect LOD score PVE (%)2 Method3

SSI_GI rs1_11882948 1 11882948 0.1 ∼ 0.11 3.67 ∼ 4.68 0.98 ∼ 1.55 2,3,5

rs2_22250136 2 22250136 −0.16 ∼ −0.09 3.27 ∼ 4.43 0.61 ∼ 2.19 1,2,3,4

rs2_24480757 2 24480757 0.08 ∼ 0.08 3.66 ∼ 4.01 0.98 ∼ 1.5 2,3,6

rs3_29294598 3 29294598 0.08 ∼ 0.17 3.97 ∼ 6.21 2.45 ∼ 5.01 1,2,3,5,6

rs6_30827714 6 30827714 −0.13 ∼ −0.09 3.15 ∼ 6.15 1.19 ∼ 2.82 1,2,3,5,6

rs8_7832802 8 7832802 0.1 ∼ 0.21 3.48 ∼ 4.94 2.17 ∼ 4.69 1,3,4,6

rs8_24915626 8 24915626 0.09 ∼ 0.16 3.12 ∼ 7.04 1.44 ∼ 4.48 1,2,3,5,6

rs8_25014297 8 25014297 −0.35 ∼ −0.21 5.31 ∼ 10.4 4.56 ∼ 8.91 1,2,3,6

rs8_27233581 8 27233581 0.1∼0.29 3.71 ∼ 7.67 2.28 ∼ 6.28 1,2,3,4,6

rs9_5893568 9 5893568 0.05 ∼ 0.08 3.17 ∼ 3.43 0.57 ∼ 1.09 2,3,5

rs11_17680260 11 17680260 0.19 ∼ 0.26 6.74 ∼ 10.53 4.9 ∼ 9.8 1,3,5,6

rs12_21121298 12 21121298 −0.13 ∼ −0.09 3.04 ∼ 4.35 1.03 ∼ 2.06 1,2,5

SSI_VI rs5_29590002 5 29590002 −0.1 ∼ 0.09 3.5 ∼ 4.36 1.26 ∼ 5.77 1,2,4,5

rs6_26952785 6 26952785 0.1 ∼ 0.11 3.89 ∼ 8.59 3.22 ∼ 3.57 1,3,6

rs8_27233581 8 27233581 0.06 ∼ 0.13 5.12 ∼ 5.45 2.38 ∼ 5.17 1,4,5,6

rs10_2806159 10 2806159 0.08 ∼ 0.12 3.16 ∼ 5.42 1.85 ∼ 3.55 1,2,6

rs10_11718859 10 11718859 −0.13 ∼ 3.56 4.28 ∼ 6.36 1.74 ∼ 3.2 2,4,5,6

rs11_17680260 11 17680260 0.07 ∼ 0.1 3.12 ∼ 5.68 3.03 ∼7.16 1,5,6

SSI_MGT rs1_15357371 1 15357371 0.43 ∼ 1.37 4.07 ∼ 6.54 2.95 ∼ 5.64 2,3,4,5,6

rs2_23991498 2 23991498 0.26 ∼ 0.33 3.06 ∼ 6.62 1.61 ∼ 3.48 2,3,5,6

rs4_13696726 4 13696726 −0.98 ∼ −0.44 3.54 ∼ 6.03 1.79 ∼ 4.88 1,3,6

rs6_27962052 6 27962052 −0.43 ∼ −0.26 3.75 ∼ 4.55 1.06 ∼ 4.81 1,2,3,6

rs9_4258702 9 4258702 −0.53 ∼ −0.41 5.71 ∼ 7.96 2.76 ∼ 3.35 2,3,6

rs9_11450011 9 11450011 −0.36 ∼ −0.31 3.18 ∼ 5.53 1.94 ∼ 3.55 2,3,6

rs11_24660808 11 24660808 −0.79 ∼ −0.44 3.3 ∼ 4.19 2.47 ∼ 2.88 1,3,6

SSI_IR_24h rs4_31794832 4 31794832 2.59 ∼ 3.07 3.9 ∼ 6.97 0.11 ∼ 2.65 1,3,6

rs6_5699431 6 5699431 2.33 ∼ 4.08 3.42 ∼ 10.18 0.09 ∼ 6.9 1,2,3,6

rs9_12353804 9 12353804 −4.57 ∼ −3.5 4.95 ∼ 18.97 0.3 ∼ 5.3 1,3,6

rs9_6746183 9 6746183 −10.84 ∼ −4.22 3.29 ∼ 16.12 0.97 ∼ 5.91 1,2,3,6

SSI_IR_48h rs1_2103242 1 2103242 0.64 ∼ 0.96 3.39 ∼ 6.24 1.46 ∼ 3.92 1,2,4

rs1_5453364 1 5453364 −1.26 ∼ 0.48 3.23 ∼ 6.79 0.86 ∼ 3.51 1,2,3,4,5,6

rs1_31748567 1 31748567 −0.83 ∼ −0.56 4.04 ∼ 6.43 0.98 ∼ 3.55 1,3,5,6

rs2_24073194 2 24073194 −0.62 ∼ 0.72 3.58 ∼ 5.04 0.62 ∼ 2.2 3,5,6

rs3_20204466 3 20204466 0.89 ∼ 1.02 3.81 ∼ 6.73 0.82 ∼ 2.76 3,5,6

rs4_4695323 4 4695323 −1.5 ∼ −0.78 3.29 ∼ 5.61 1.48 ∼ 1.9 2,3,6

rs4_31202952 4 31202952 −0.67 ∼ −0.52 3.43 ∼ 5.63 1.61 ∼ 2.37 1,2,3

rs6_1459330 6 1459330 0.62 ∼ 1.1 3.34 ∼ 5.38 1.51 ∼ 1.71 1,2,4

rs7_21649301 7 21649301 1.08 ∼ 1.6 4.4 ∼ 6.08 1 ∼ 3.78 1,2,5

rs10_10209541 10 10209541 0.67 ∼ 1.03 3.54 ∼ 6.61 1.51 ∼ 3.98 3,5,6

rs11_28865880 11 28865880 0.7 ∼ 1.65 5.83 ∼ 10 1.38 ∼ 4.83 1,2,3,4,5,6

rs12_7176832 12 7176832 −1.43 ∼ −0.84 4.43 ∼ 8.64 1.2 ∼ 4.91 2,3,4,5,6

rs12_19111880 12 19111880 −1.66 ∼ −0.66 3.14 ∼ 7.23 0.62 ∼ 2.97 1,2,3,4,5,6

SSI_GR_5d rs1_11882948 1 11882948 0.12 ∼ 0.15 3.03 ∼ 3.94 1.69 ∼ 1.99 1,2,6

rs1_22648607 1 22648607 0.17 ∼ 0.23 4.49 ∼ 6.57 1.36 ∼ 1.85 3,5

rs3_4264086 3 4264086 0.11 ∼ 0.21 3.97 ∼ 6.43 1.42 ∼ 4.47 1,2,4,5,6

rs3_29294598 3 29294598 0.1 ∼ 0.11 3.59 ∼ 3.61 1.34 ∼ 1.72 2,5

rs5_29609065 5 29609065 0.08 ∼ 0.22 3.34 ∼ 5.74 0.96 ∼ 3.86 1,2,4,5,6

rs7_1171356 7 1171356 0.15 ∼ 0.28 4.48 ∼ 4.77 3.26 ∼ 3.58 1,4

rs8_24915626 8 24915626 0.11 ∼ 0.15 3.31 ∼ 4.1 1.5 ∼ 3.01 2,3,5

rs8_27233581 8 27233581 0.09 ∼ 0.28 3.09 ∼ 4.66 1.36 ∼ 3.33 3,4,6

rs9_8174432 9 8174432 0.1 ∼ 0.15 3.26 ∼ 4.23 1.29 ∼ 2.84 1,2,5

rs9_21139613 9 21139613 0.11 ∼ 0.19 3.58 ∼ 5.02 1.61 ∼ 4.79 1,5,6

rs10_11718859 10 11718859 −0.23 ∼ −0.11 4.32 ∼ 5.76 1.17 ∼ 2.5 2,3,4,5

(Continued)
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TABLE 2 | Continued

Trait SNPs1 Chromosome Position QTN effect LOD score PVE (%)2 Method3

rs11_27392033 11 27392033 −0.31 ∼ 0.12 3.93 ∼ 6.37 1.07 ∼ 4.65 1,2,4,5,6

SSI_GR_10d rs1_3401561 1 3401561 −0.24 ∼ −0.14 3.21 ∼ 4.65 2.29 ∼ 6.08 1,3,5

rs1_11882948 1 11882948 0.1 ∼ 0.12 3.35 ∼ 4.56 1.31 ∼ 1.72 2,3,6

rs2_8009453 2 8009453 0.08 ∼ 0.15 3.34 ∼ 4.96 1.18 ∼ 3.31 1,2,3

rs2_22247315 2 22247315 −0.17 ∼ −0.12 3.54 ∼ 6.51 0.95 ∼ 3.19 3,5,6

rs4_19568498 4 19568498 0.16 ∼ 0.21 5.39 ∼ 6.37 1.9 ∼ 2.96 2,3,6

rs6_26597879 6 26597879 0.11 ∼ 0.13 3.83 ∼ 5.41 2.44 ∼ 2.82 2,3,5

rs7_3788168 7 3788168 0.22 ∼ 0.23 5.46 ∼ 7.54 2.54 ∼ 3.59 2,3,6

rs7_22276671 7 22276671 0.09 ∼ 0.1 3.65 ∼ 4.66 1.57 ∼ 2.33 2,3,6

rs8_24915626 8 24915626 0.13 ∼ 0.14 3.88 ∼ 5.8 2.07 ∼ 3.16 1,2,3

rs9_21139613 9 21139613 0.1 ∼ 0.18 3.55 ∼ 8.69 1.92 ∼ 4.59 1,2,5,6

rs10_22754603 10 22754603 0.08 ∼ 0.17 3.46 ∼ 5.94 0.93 ∼ 3.08 1,2,3,5,6

rs11_27380577 11 27380577 −0.21 ∼ −0.13 3.24 ∼ 7.31 1.11 ∼ 4.4 1,2,3,5,6

1SNPs in bold font are pleiotropic QTNs which were detected associate with multiple traits.
2PVE: Phenotypic variation explained.
31:mrMLM; 2:FASTmrMLM; 3:ISIS EM-BLASSO; 4:FASTmrEMMA; 5:pLARmEB; 6:pKWmEB.

and SSI_MGT, respectively. We divided the population into two
groups according to allelic genotypes to test whether the mean
phenotypes of the two groups were significantly different. The
mean value of the group carrying the favorable allele was less than
that of the other group (Figure 2).

GO and KEGG Pathway Enrichment
Analyses
According to the Nipponbare reference genome, the 371
identified QTNs for traits related to salt tolerance were part of
or were adjacent to 581 genes (Supplementary Table S1). These
genes were significantly enriched for GO biological processes
related to the plant lipid metabolic process and transmembrane
transport process (Supplementary Table S3). They were also
significantly enriched for the plant tryptophan metabolism
pathway (P < 0.03). Moreover, two genes (LOC_Os01g45760
and LOC_Os10g04860) were associated with auxin biosynthesis.
A total of 66 genes were identified around the 56 QTNs
based on the enriched GO terms and KEGG pathways as
well as the functional annotations (Supplementary Table S4).
This information may be very useful for identifying the genes
responsible for salt tolerance in rice.

DISCUSSION

Multi-locus GWAS models, which are relatively close to the true
genetic models of plants and animals, are superior to single-
locus GWAS models because of their higher statistical power
and lower FPR (Segura et al., 2012; Wang et al., 2016a). These
models were developed by geneticists, who added the polygenic
effect and population structure to the single-locus GWAS model
to decrease the bias in effect estimations by controlling the
genetic background (Zhang et al., 2005; Yu et al., 2006; Zhang
et al., 2010). Although advancements in the single-locus GWAS
models have improved the detection accuracy to some extent, the
multiple test correction for the threshold value of the significance

test in single-locus models (e.g., Bonferroni correction) is too
stringent to capture all true QTNs. Another unavoidable problem
is that single-locus GWAS methods are inappropriate when the
target traits are controlled by a series of polygenes. In this study,
478 rice accessions with 162,529 SNPs were used to identify
QTNs for traits related to salt tolerance based on six multi-locus
GWAS methods. We compared the QTNs identified by the multi-
locus GWAS methods in our study with the previously reported
QTNs detected by the efficient mixed-model EMMA eXpedited
(EMMAX) program comprising a single-locus GWAS method.
The comparison revealed that four of the previously reported
six QTNs related to SSI-VI were detected by a multi-locus
GWAS, and two QTNs associated with SSI-MGT overlapped
with the previously reported QTNs. Additionally, 12, 4, 13,
12, and 12 QTNs separately associated with SSI-GI, SSI-IR-
24h, SSI-IR-48h, SSI-GR-5d, and SSI-GR-10d, respectively, were
simultaneously detected by at least three multi-locus GWAS
methods. In contrast, none of the QTNs associated with the five
traits were identified by a single-locus GWAS method. These
observations were as expected, and can be explained by the
following two points: (i) salt tolerance is a quantitative genetic
characteristic that is controlled by multiple genes with small
effects, which are difficult to detect in a single-locus GWAS model
(Wang et al., 2011; Kumar et al., 2015); (ii) some true QTNs
for traits related to salt tolerance are missed by a single-locus
GWAS model because of an overly conservative critical value.
Furthermore, our results suggest that a multi-locus GWAS model
may be useful for detecting loci with small effects.

In this study, we used six multi-locus GWAS methods
included in the mrMLM package to detect QTNs. The six
methods involve two-step algorithms, and marker effects are
treated as random effects in each method. However, each method
has its own characteristics. We observed that mrMLM detected
the most QTNs (Supplementary Table S1), but this method has
one shortcoming. When the number of putative QTNs is much
larger than the sample size, the multi-locus model in this method
will be over-fitted. The residual error estimated by mrMLM was
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FIGURE 2 | Boxplot for validating 14 co-detected QTNs (A–N). For each QTN, the population was divided into two groups according to allele types. The X-axis
represents the two alleles for each QTN, while the Y-axis corresponds to the phenotype.

much smaller than that estimated by the five other methods
(Table 1). During the first step, 7,588 QTNs with a threshold
value P < 0.01 were selected, which is 16 times larger than the
sample size. Over-fitting may occur when too many variables
are added to a multi-locus model. This issue was solved by
using FASTmrMLM, in which the least angle regression (LARS)
algorithm is implemented between the first single-locus scanning
step and the EM-Empirical Bayes estimation in the second step.
The LARS algorithm (Efron et al., 2004) is a flexible method for
selecting variables, and can be applied in the lars package1. In
this method, n−1 variables (n is the number of samples), which
are most likely associated with the target traits, are added to the
multi-locus model.

The FASTmrEMMA method detected the fewest QTNs.
This method involves an approximation algorithm in
which the covariance matrix of the polygenic matrix K and
environmental noise are whitened by a matrix transformation
to increase the computing speed. In the pLARmEB method,
the same transformed model as that used in FASTmrEMMA is
implemented to control the polygenic background, and the LARS
algorithm is applied to select potential SNPs related to the target
trait for the subsequent multi-locus GWAS detection. Among
the six multi-locus GWAS methods, ISIS-EM-BLASSO had the
shortest running time and the smallest estimated residual errors
(Supplementary Figure S2 and Table 1). In the first step of

1http://cran.r-project.org/web/packages/lars/

this method, an iterative-modified sure independence screening
(ISIS) approach is used to decrease the number of SNPs to
a moderate level, after which the Expectation-Maximization
(EM)-Bayesian least absolute shrinkage and selection operator
(BLASSO) is used to estimate all of the selected SNP effects
to detect true QTNs. The last method, pKWmEB, is a non-
parametric method, in which a Kruskal–Wallis test and the LARS
algorithm are used to identify potential SNPs. All identified
markers are added to the multi-locus model to detect true QTNs.

The two-step multi-locus GWAS methods included in this
study significantly improved the statistical power and decreased
the FPR. Moreover, ISIS EM-BLASSO identified the most co-
detected QTNs, followed by pKWmEB, while FASTmrEMMA
identified the fewest QTNs (Table 2). Additionally, ISIS EM-
BLASSO performed best, with the smallest estimated residual
errors and highest computing speed. However, selecting an
appropriate critical value is still problematic for the two-step
multi-locus GWAS model. A threshold value that is too stringent
will lead to the omission of loci information, whereas a relaxed
threshold value will result in numerous loci being selected, which
may lead to the over-fitting of multi-locus models. A simple
solution to this problem involves developing a hybrid method
that combines the results from different methods. Directly
decreasing the number of SNPs instead of applying a single-locus
GWAS scanning step represents another potential solution. We
are currently developing a new bin analysis method that can be
applied to any type of population. In the bin analysis method,
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the number of markers is decreased, but the information for all
markers is fully retained. Adding a bin analysis to the multi-locus
GWAS model represents a new option.

CONCLUSION

In this study, six multi-locus GWAS methods were used to detect
loci related to rice salt tolerance at the seed germination stage.
A total of 371 QTNs were identified, with 56 QTNs co-detected
by at least three methods. Moreover, 66 genes were identified
in the vicinity of the 56 QTNs based on functional annotations.
Two of these genes (LOC_Os01g45760 and LOC_Os10g04860)
are involved in auxin biosynthesis according to the enriched GO
terms and KEGG pathways. These observations may be useful for
identifying the genes responsible for rice salt tolerance.
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