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Hydrogen sulfide (H2S) has been postulated to be the third gasotransmitter in both
animals and plants after nitric oxide (NO) and carbon monoxide (CO). In this review, the
physiological roles of H2S in plant growth, development and responses to biotic, and
abiotic stresses are summarized. The enzymes which generate H2S are subjected to
tight regulation to produce H2S when needed, contributing to delicate responses of H2S
to environmental stimuli. H2S occupies a central position in plant sulfur metabolism as it
is the link of inorganic sulfur to the first organic sulfur-containing compound cysteine
which is the starting point for the synthesis of methionine, coenzyme A, vitamins,
etc. In sulfur assimilation, adenosine 5′-phosphosulfate reductase (APR) is the rate-
limiting enzyme with the greatest control over the pathway and probably the generation
of H2S which is an essential component in this process. APR is an evolutionarily
conserved protein among plants, and two conserved domains PAPS_reductase and
Thioredoxin are found in APR. Sulfate reduction including the APR-catalyzing step
is carried out in chloroplasts. APR, the key enzyme in sulfur assimilation, is mainly
regulated at transcription level by transcription factors in response to sulfur availability
and environmental stimuli. The cis-acting elements in the promoter region of all the
three APR genes in Solanum lycopersicum suggest that multiple factors such as sulfur
starvation, cytokinins, CO2, and pathogens may regulate the expression of SlAPRs. In
conclusion, as a critical enzyme in regulating sulfur assimilation, APR is probably critical
for H2S generation during plants’ response to diverse environmental factors.

Keywords: hydrogen sulfide (H2S), adenosine 5′-phosphosulfate reductase (APR), sulfur assimilation,
transcription factors, gene expression

INTRODUCTION

Over centuries, hydrogen sulfide (H2S) has only been well-known for its unpleasant smell and
fierce toxicity. After the gaseous signals nitric oxide (NO) and carbon monoxide (CO), H2S is
recently emerging as a multifunctional signaling molecule in animals, and plants. Endogenous H2S
production has been observed in mammalian cells and shown to control a variety of physiological
processes and play important roles in the regulation of the pathogenesis of various diseases (Wang,
2012). In plants, sulfur is an essential macronutrient for growth and development, participating
in the synthesis of cysteine, methionine and in many other essential cellular constituents, such
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as reduced glutathione (GSH) and coenzyme A (Romero
et al., 2014). Endogenous H2S in plant is generated through
the pathway of sulfur assimilation or the decomposition of
L-/D-cysteine. L-cysteine desulfhydrase (LCD) catalyzes the
production of H2S, ammonia and pyruvate with L-cysteine
as the substrate, while DCD degrades D-cysteine to generate
H2S in mitochondria (Rausch and Wachter, 2005). Besides, an
O-acetylserine(thiol)lyase homolog DES1 also shows L-Cysteine
desulfhydrase activity in Arabidopsis (Álvarez et al., 2010).
In sulfur assimilation, sulfite is reduced by sulfite reductase
(SiR) to produce H2S in chloroplast (Rausch and Wachter,
2005). Adenosine 5′-phosphosulfate reductase (APR) is a rate-
limiting enzyme in sulfur assimilation, which controls the flow
of inorganic sulfur into cysteine and probably the endogenous
production of H2S. In recent decades, we have witnessed
significant progresses in the functional study of H2S and here we
reviewed the physiological role of H2S in plant, the central role of
APR in sulfur assimilation and proposed the future perspectives
of APR research.

PHYSIOLOGICAL ROLE OF H2S IN
PLANT

Accumulating articles show that endogenous H2S is involved
in various physiological activities in animals including human,
such as vasodilation, anti-hypertensive, anti-inflammatory, heart
protection, smooth muscle relaxation, promotion of vascular
endothelial cell proliferation, and brain development (Wang,
2012). Meanwhile, the past decade has witnessed a growing body
of evidence confirming the signaling role of H2S in plants as well.
Although phytotoxic at high concentrations, low dose of H2S
has been shown to play important roles in diverse processes of
plant life, including plant growth, and development, responses to
biotic and abiotic stresses (Zhang et al., 2008; Zhang et al., 2009;
Zhang et al., 2010; Chen et al., 2011; Shen et al., 2012, 2013; Jin
et al., 2013; Xie et al., 2014). H2S improves seed germination and
the yield of multiple crops including bean, corn, wheat, and pea
(Dooley et al., 2013). H2S also interacts with NO, CO and auxin
to modulate root formation, both lateral and adventitious roots
(Zhang et al., 2009; Lin et al., 2012; Fang H. et al., 2014; Fang
T. et al., 2014; Jia et al., 2015). Also, accumulating researches
find that H2S alleviates diverse abiotic stresses including heavy
metal stress, drought and osmotic stresses by improving the
antioxidative capacity in plant (Zhang et al., 2008, 2010; Sun et al.,
2013; Shi et al., 2014). Salicylic acid (SA) induces endogenous
H2S production by increasing LCD activity to tolerate Cd stress,
while the positive effect of SA is diminished in LCD-knockout
A. thaliana, suggesting that H2S acts downstream of SA in
regulating Cd tolerance (Qiao et al., 2015). Stomatal movement
is crucial for plant responses to environmental stimuli, and
H2S is found to interact with ABA in the stomatal regulation
responsible for drought stress in A. thaliana (Jin et al., 2013).
Consistently, Scuffi et al. (2014) observed that ABA failed to
close stomata in des1 mutant which encoding a L-cysteine
desulfhydrase, suggesting that endogenous H2S is essential for
ABA signaling in guard cells. H2S also plays a vital role in

plant response to biotic stress. In A. thaliana, endogenous H2S
increases when plant is infected with Pseudomonas syringae
(Shi et al., 2015). Besides, the activity of DES1 is elevated in
pathogen-infected plants (Bloem et al., 2004). H2S can also
delay flower opening and senescence in cut flowers (Zhang
et al., 2011). Later the senescence-alleviating effect of H2S is
found in diverse postharvest fruits and vegetables including
strawberry, kiwifruit, grape, apple, banana and broccoli, possibly
through improving antioxidative capacity and antagonizing the
production of ethylene, a hormone playing a major role in
plant senescence, and fruit ripening (Hu et al., 2012; Gao et al.,
2013; Li et al., 2014; Ni et al., 2016; Ge et al., 2017). Besides,
H2S generated in cytosol negatively regulates autophagy and
modulates the transcriptional profile of A. thaliana by the study
of des1 mutant, whereas the negative regulation of autophagy
by sulfide is independent of reactive oxygen species (Álvarez
et al., 2012; Laureano-Marín et al., 2016). The multifunctional
role of H2S in plant growth and development highlights the
importance of the regulation of endogenous generation of H2S
in adaption to growth stages and in response to biotic and abiotic
stresses.

ENDOGENOUS PRODUCTION OF H2S IN
PLANT AND THE CENTRAL ROLE OF
5′-ADENYLYLSULFATE REDUCTASE IN
SULFUR ASSIMILATION

Sulfur is essential for all living organisms as a key constituent
of the amino acids cysteine and methionine, as well as
GSH, several group-transfer coenzymes and vitamins (Romero
et al., 2014). Animals require dietary sources of methionine
as their cells are not able to assimilate inorganic sulfur. The
endogenous generating enzymes of H2S in mammals are known
as cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS),
and 3-mercaptopyruvate transsulfatase (3-MST) (Wang, 2012).
In contrary to animals, plants reduce and incorporate inorganic
sulfur, which is almost entirely available as oxidized sulfate, into
cysteine via the reductive sulfate assimilation pathway.

Sulfate from the soil is transported by a proton/sulfate co-
transport mediated by sulfate transporters in root epidermal
cells, which subsequently is loaded into the xylem vessels and
distribute it to the entire plant (Leustek et al., 2000). Then
sulfate is stored into vacuoles or transported to chloroplasts to
start the assimilatory pathway (Gotor et al., 2015). Before sulfate
reduction, sulfate is activated to adenosine 5′-phosphosulfate
(APS) catalyzed by ATP sulfurylase, and in A. thaliana, three
chloroplast, and one cytosolic isoforms are discovered (Hatzfeld
et al., 2000). Through two enzymatic steps located exclusively
in chloroplast or plastid, APS is then reduced to produce H2S
(Figure 1). The first step is the reduction of APS to sulfite by
APS reductase (APR) using GSH as the reducing molecule. In
the second step, sulfite is reduced to sulfide catalyzed by sulfite
reductase in a six-electron reaction using reduced ferredoxin as
reductant. APS can also be phosphorylated to 3′-phospho-APS
(PAPS) by adenosine-5′-phosphosulfae kinase (APSK) to provide
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FIGURE 1 | H2S metabolism in plants. Sulfate absorbed by plant roots
through sulfate transporters is activated to APS (5′-adenylylsulfate) via ATP
sulfurylase. APS can be reduced to sulfite by APR (APS reductase) which is
further reduced to H2S by sulfite reductase. Subsequently, H2S is
incorporated to cysteine (Cys), which is the first organic product of sulfur
assimilation, and the starting point for methionine synthesis. Besides, cysteine
is involved in the biosynthesis of coenzymes and vitamins including coenzyme
A, biotin, thiamine, lipoic acid, and SAM (S-adenosyl-L-methionine) which is
the donor of methylation. Besides the route of S-assimilation, H2S can also be
produced from cysteine via the action of L-cysteine desulfhydrase (LCD),
D-cysteine desulfhydrase (DCD), and DES1 which is member of
O-acetylserine thiol lyase (OASTL) family proteins. Cyanoalanine synthase
(CAS) generates cyanoalanine co-formed with H2S with cyanide and cysteine
as the substrates.

a sulfate donor for the modification of multiple natural products
(Ravilious et al., 2012). Besides the sulfide production in sulfur
assimilation, cysteine (Cys) could be degraded to generate H2S
which is catalyzed by LCD, DCD, an O-acetylserine(thiol)lyase
OASTL family protein DES1 or β-cyanoalanine synthase (an
enzyme catalyzing the conversion of cysteine and cyanide to H2S
and β-cyanoalanine) (Hatzfeld et al., 2000; Álvarez et al., 2010).
Although the contribution of cysteine degradation to H2S has
been highly valued, we propose that the influx of inorganic sulfur
to cysteine is also crucial for H2S generation. The transport of
sulfate into cells and the reduction of APS to sulfite by APR
are the key regulatory steps of sulfate assimilation and APR
is considered as the rate-limiting enzyme. Thus, the activity
of the sulfur assimilation pathway controlled by APR may be
required for animated response to changes in sulfur supply and
to environmental stimuli that alter the need for reduced sulfur.

FUNCTIONAL DOMAINS IN APR
PROTEINS

Two domains of PAPS_reductase (adenosine 3′-phosphate 5′-
phosphosulfate reductase) and Thioredoxin are found in APR
proteins (Kopriva and Koprivova, 2004). The plant APR gene is
believed to originate from a fusion between prokaryotic genes
for APS or PAPS reductase and thioredoxin. The N-terminal
domain (PAPS_reductase) constitutes the active center of APR,
and C-terminal domain Thioredoxin is required for transferring
electrons from GSH to the N-terminal domain (Bick et al.,
1998; Kopriva et al., 2001). Despite that the sequence of the
C-terminal domain of APR is more homologous to thioredoxin
than to glutaredoxin, it functions as an efficient glutaredoxin
(Leustek et al., 2000). Three independent steps are proposed for
the reaction: the transfer of sulfate from APS to the active cysteine
residue, the release of the sulfite by C-terminal domain, and the
recovery of the active enzyme dimer by reaction with thiol. It has
been found that plant APR contains an iron-sulfur cluster that is
bound by the N-terminal domain (Kopriva et al., 2001), which is
a decisive structure in the sulfate reduction pathway.

SUBCELLULAR LOCALIZATION OF APR

Plastid or chloroplast is the only compartment that contains
the enzymes for sulfur assimilation from sulfate to cysteine.
Correspondingly, APR activity is localized in chloroplasts
in spinach and in pea (Schmidt, 1976; Fankhauser and
Brunold, 1978; Prior et al., 1999). Subsequently, the plastid
localization of APR is confirmed in three Flaveria species by
immunolocalization (Koprivova et al., 2001).

FUNCTIONAL CHARACTERIZATION AND
REGULATION OF APR

As a rate-limiting enzyme, APR possesses a very high control
over the flux through sulfate assimilation. It is reported that
natural variation for sulfate content in A. thaliana is highly
associated with APR2 and a T-DNA insertion in APR2 (apr2-
1) induces more sulfate compared with wild type (Loudet
et al., 2007). Besides, deletion of APR in Physcomitrella patens
caused 50% reduction in the flux through sulfur reduction
(Koprivova et al., 2002). Conversely, Arabidopsis overexpressing
a Pseudomonas APR gene accumulates more sulfite, thiosulfate,
cysteine, γ-glutamylcysteine and GSH, further confirming the
important role of APR in sulfur assimilation (Tsakraklides et al.,
2002). The metabolites in sulfur metabolism such as sulfite, H2S,
cysteine and GSH are highly interconnected, thus interruption
of the reaction from APS to sulfite carried out by APR will
decrease the generation of H2S in plant. Therefore, we propose
that the regulation of APR in sulfur assimilation might be critical
for the dynamic H2S generation in response to environmental
factors.

The uptake of sulfate and the reduction of APS by APR
are controlled by the sulfur nutritional status of the plant. For
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instance, the three isoforms of APR in Arabidopsis are affected
at expression and activity levels by the sulfur status, cysteine,
GSH, O-acetylserine, nitrogen supply, sugars or phytohormones
(Kopriva et al., 1999; Koprivova et al., 2000; Ohkama et al., 2002;
Hesse et al., 2003; Kopriva and Koprivova, 2003). Exogenous
addition of GSH to poplars not only increases GSH content,
but also reduces APR activity and mRNA accumulation. GSH
transport across the plasma membrane is a possible mechanism
of the feedback regulation of sulfate assimilation by GSH.
The postulation of a signaling GSH transporter, similar to
the signaling hexose and sucrose transporters in sugar sensing
(reviewed in Smeekens and Rook, 1997), would explain why APR
is down-regulated only by exogenously added GSH. Also, GSH
has been shown to be a negative signal for the regulation of APR
expression in A. thaliana root cultures (Vauclare et al., 2002).
H2S, an intermediate and also a signal in sulfur assimilation,
induces a rapid increase in thiol compounds in the shoot of
Allium cepa L. and Brassica oleracea L. and results in a down-
regulation of APR activity and its mRNA levels (Durenkamp
et al., 2007). In poplar trees, sulfur limitation induces an increase
in mRNA levels of ATP sulfurylase, APR, and sulfite reductase,
probably as an adaptation mechanism to increase the efficiency
of the sulfate assimilation pathway (Kopriva et al., 2004). When
the seedlings of curly kale (B. oleracea L.) are transferred to
sulfate-deprived conditions, the expression of sulfate transporters
and the activity and expression of APR are induced in roots
and shoots respectively, suggesting that external sulfate status is
the sensing factor for the modulation of sulfate uptake and its
reduction (Koralewska et al., 2009).

Sulfur-containing compounds especially GSH play vital roles
in plant response to stress conditions. Thus APR, a rate-limiting
enzyme in cysteine synthesis, is closely related to GSH synthesis
which is primarily dependent on the availability of the constituent
amino acids. NaCl stress increases APR activity and its mRNA
levels by 3-fold of all three isoforms in A. thaliana, but the
response of APR to salt stress is independent of abscisic acid
(ABA) and the induction of APR activity is not essential for the
increase of GSH synthesis after salt stress (Koprivova et al., 2008).
APR also plays a key role in plant response to selenate toxicity.
A mutant Arabidopsis line (apr2-1) shows decreased selenate
tolerance and photosynthetic efficiency, accompanied with an
increase in total sulfur and sulfate and a 2-fold decrease in GSH
concentration (Grant et al., 2011).

Phytohormones also affect sulfate uptake and assimilation.
The key enzyme APR is regulated by ethylene, ABA, NO and
other hormones (Koprivova and Kopriva, 2016). Ethylene
synthesis and sulfur metabolism are closely connected through
S-adenosyl-L-methionine (SAM) and methionine salvage
cycle. Feeding of ethylene precursor 1-aminocyclopropane-1-
carboxylic acid (ACC) can up-regulate APR activity by increasing
mRNA levels of APR1 and APR3 in Arabidopsis (Koprivova
et al., 2008). Zeatin is found to increase transcript accumulation
of APR1 and SULTR2;2, as a general effect on sulfate assimilation
(Ohkama et al., 2002). Salicylate also induces the expression
of all three APR isoforms and enzyme activity in Arabidopsis
(Koprivova et al., 2008). Moreover, APR2 expression is regulated
by light/dark cycles and sucrose feeding (Kopriva et al., 1999).

Previous researches show a strict correlation between APR
mRNA levels, protein accumulation and enzyme activity,
suggesting that APR is primarily regulated at the transcriptional
level (Kopriva et al., 1999; Kopriva and Koprivova, 2004). APR
expression is activated by the MYB transcription factors MYB28
and MYB51 in Arabidopsis (Yatusevich et al., 2010). The bZIP
transcription factor LONG HYPOCOTYL 5 (HY5) is also found
to regulate the expression of APR1 and APR2 instead of APR3
in response to dark adaption and sulfur status in Arabidopsis
(Lee et al., 2011). Thus, the coordinated expression of APR by
HY5 and MYB transcription factors links the regulation of sulfate
assimilation to plant responses to environmental stimuli such as
light, sulfur availability, and stress conditions.

Besides, modulation of APR activity via posttranslational
redox regulation has been demonstrated in Arabidopsis subjected
to oxidative stress, which provides a rapidly responding, self-
regulating mechanism to control GSH synthesis (Bick et al.,
2001). Salt stress is found to induce APR mRNA levels, whereas
its protein accumulation is not observed, suggesting a likely
translational regulation to control APR activity (Koprivova et al.,
2008). The activity of APR is also regulated by the reduced form
of sulfur through the transition from active dimer to inactive
monomers (Kopriva and Koprivova, 2004). MicroRNA miR395
is found to target sulfate assimilation pathway by recognizing a
low affinity sulfate transporter SULTR2;1 and three ATPS genes
ATPS1, 3 and 4, whereas APR is not targeted by miR395 (Jones-
Rhoades and Bartel, 2004; Allen et al., 2005). Whether there are
other microRNAs regulating APR apart of miR395 or whether
APR is subjected to protein modification such as phosphorylation
is still unclear and needs further research.

FUTURE PERSPECTIVES

The regulation of APR in sulfur assimilation and H2S generation
is complex which involving many signals and effectors.
The sulfur-responsive cis-element SURECOREATSULTR11
is sufficient and necessary for sulfur deficiency responsive
expression of the high-affinity sulfate transporter gene SULTR1;1
in Arabidopsis roots, which could be reversed when supplied
with cysteine and GSH (Maruyama-Nakashita et al., 2005). APR3
(At4g21990) in Arabidopsis containing SURECOREATSULTR11
cis-acting element also shows response to sulfur deficiency
conditions (Maruyama-Nakashita et al., 2005; Henríquez-
Valencia et al., 2018). However, although APR is highly regulated
in plants, transcription factors responsible for this regulation are
still not fully understood. Bioinformatic approaches predict that
gene expression response to sulfur deficiency is regulated by a
limited number of transcription factors including MYBs, bZIPs,
and NF-YAs, indicating that these transcription factors may
play important roles in the sulfur status response (Henríquez-
Valencia et al., 2018). Besides, other cis-regulatory elements
are found in the promoter region of SlAPR genes, which may
response to distinct plant hormones, such as cytokinins, and
several environmental factors, as well as CO2, light, and abiotic
and biotic stresses. Thus, considering the central role of APR
in sulfur assimilation and possibly in H2S generation, how it
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is regulated by environmental signals and phytohormones still
needs further research.
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