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Significant advances have been made in our understanding of the regulation of
cold hardiness. The existence of numerous biophysical and biochemical adaptive
mechanisms in perennial woody plants and the complexity their regulation has made the
development of methods for managing and improving cold hardiness in perennial woody
plants has been very difficult. This may be partially attributed to viewing cold hardiness
as a single dimensional response, rather than as a complex phenomenon, involving
different mechanisms (avoidance and tolerance), different stages (mid-winter vs. late
winter), and having an intimate overlap with the genetic regulation of dormancy. In
particular separating the molecular regulation of cold hardiness from growth processes
has been challenging. ICE and C-repeat binding factor (CBF), transcription factors
(Inducer of CBF expression and CRT-binding factor) have been shown to be an
important aspect in the regulation of cold-induced gene expression. Evidence has
emerged, however, that they are also intimately involved in the regulation of growth,
flowering, dormancy, and stomatal development. This evidence includes the presence of
CBF binding motifs in genes regulating these processes, or through cross-talk between
the pathways that regulate them. Recent changes in climate that have resulted in
erratic episodes of unseasonal warming followed by more seasonal patterns of low
temperatures has also highlighted the need to better understand the genetic and
molecular regulation of deacclimation, a topic of research that is only more recently
being addressed. Environmentally-induced epigenetic regulation of stress responses
and seasonal processes such as cold acclimation, deacclimation, and dormancy have
been documented but are still poorly understood. Advances in the ability to efficiently
generate large DNA and RNA datasets and genetic transformation technologies have
greatly increased our ability to explore the regulation of gene expression and explore
genetic diversity. Greater knowledge of the interplay between epigenetic and genetic
regulation of cold hardiness, along with the application of advanced genetic analyses,
such as genome-wide-association-studies (GWAS), are needed to develop strategies
for addressing the complex processes associated with cold hardiness in woody plants.
A cautionary note is also indicated regarding the time-scale needed to examine and
interpret plant response to freezing temperatures if progress is to be made in developing
effective approaches for manipulating and improving cold hardiness.

Keywords: freezing tolerance, ice nucleation, cold acclimation, deacclimation, dormancy, C-repeat binding factor
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INTRODUCTION

Ever since the first microscopic observations of the freezing
response of cells were made in the latter part of the 19th century
and early 20th century (Molisch, 1897; Wiegand, 1906), and
it was discovered that plant cells undergo cytorrhysis rather
than plasmolysis in response to freezing, an elusive search
has been conducted to develop a complete and integrated
understanding of cold hardiness and freezing tolerance in
plants (Wisniewski et al., 2003; Gusta and Wisniewski, 2013;
Arora, 2018). Despite thousands of reports and countless
reviews, reliable approaches to improving freezing tolerance,
without affecting other aspects of plant development, have
yet to be developed, either at the molecular/genetic level or
the physiological level. New technologies have allowed us to
understand plant response to low temperatures in greater
and greater detail, but the picture has greatly increased in
complexity.

The lack of progress may be partially attributable to
two factors. One factor is interpreting cold hardiness as
a singular on/off response rather than a combination of
many diverse mechanisms that involve significant structural,
biochemical, and genetic adjustments, as well as the complexity
of manipulating cold hardiness without having a negative impact
on other plant developmental processes. The characteristics of
these components are species-specific (often genotype-specific),
potentially under separate genetic control. Therefore, it is
essential when investigating plant cold hardiness to be cognizant
of what aspect of the process is being studied and its potential
impact on the aspect of cold hardiness that is deemed to be
critical for survival. The second factor, is related to the difficulty
of studying the biology of organisms at low temperatures, where
the kinetics of reactions, and the time required for processes
to reach an equilibrium can be problematic when conducting
experiments. As noted in Gusta and Wisniewski (2013), the
admonition made by Felix Franks in his book on the biophysics
of water at low temperature (Franks, 1985), is very relevant.
“Too frequently experimental observations on highly complex
systems are based on measurements performed under non-
equilibrium conditions and rationalized in terms of elementary
textbook science. The degree of undercooling (mostly presented
using the incorrect terminology, supercooling), the mechanism
of ice nucleation, the growth and type of crystals, their size and
distribution, the flow properties of the unfrozen matrix, and long-
term effects of aging, all need to be taken into account.” The book
published by Franks, 1985 still serves as an invaluable primer on
the low temperature biology.

Cold hardiness adaptations in plants have been divided into
two general categories, tolerance and avoidance. The former
involves transcriptomic reprogramming and a host of subsequent
biochemical changes that allow plants to tolerate freezing
temperatures and the presence of ice in their tissues, while
the latter involves mechanisms that allows pockets of water to
remain undercooled (deep supercooling) to very low, sub-zero
temperatures (−20 to −40◦C), so that the supercooled cells are
not exposed to the dehydrative effects associated with a freeze
tolerance response (often referred to as extracellular freezing).

Deep supercooling is characteristic of the dormant buds of many
woody perennials and the xylem parenchyma cells of many
temperate tree species. The terms freeze tolerance and avoidance,
however, are somewhat inaccurate, though widely used, as in
both cases cells are avoiding freezing. In the case of freezing
tolerance, this is accomplished by the loss of cellular water to
extracellular ice, which then decreases the freezing point of the
cytoplasm. In the second case, water is not relocated to sites
of extracellular ice, even though extracellular ice is present,
but instead remains in a metastable condition, and prone to
“flash” intracellular freezing (Fujikawa et al., 2009; Wisniewski
et al., 2014b). Processes relevant to these strategies are ice
nucleation and propagation (Wisniewski et al., 2009, 2014b), the
ability to specifically determine where ice crystals are initiated in
plant tissues and what shape they form as they grow (McCully
et al., 2004), and the formation of cryoprotective and antifreeze
compounds (Duman and Wisniewski, 2014).

Despite the complexity of plant cold hardiness, considerable
progress has been made in understanding the various
components that comprise cold hardiness (Gusta and
Wisniewski, 2013). This mini-review highlights one area
where considerable progress has been made in understanding
the genetic regulation of cold acclimation, and another topic,
deacclimation, that is deserving of considerable more focus due
to the erratic patterns of warming and cooling temperatures that
have developed in the context of climate change. These highly
variable weather patterns have had a major impact on dormancy,
cold acclimation, and chilling requirements.

THE MOLECULAR REGULATION OF
PLANT COLD HARDINESS

Plants cannot move but rather must adapt to a stressful
environment. Genes encoding transcription factors in the model
plant Arabidopsis constitute 6–10% of their genome, compared
to 5% in humans, and it is therefore not surprising that
adaptation to stresses in plants includes a dramatic change
in transcriptional cascades (Pireyre and Burow, 2015). The
C-repeat binding factor (CBF), transcription factor pathway has
been demonstrated to play an exceptionally important role in
plant cold acclimation, a process in which low temperatures
lead to biochemical and physiological changes that confer
freezing tolerance. These changes are largely associated with
the expression of so-called Cold Responsive (COR) genes. In
Arabidopsis, two or three CBFs co-regulate, often with other
transcription factors, more than two-thirds of COR genes (Shi
et al., 2017). The increase in frost tolerance under ambient
conditions that has been demonstrated to occur in many plants
as a result of CBF overexpression, and the decrease in frost
tolerance in CBF triple mutants (Jia et al., 2016; Zhao et al.,
2016), further underscores the importance of CBF genes. CBF
overexpression in herbaceous and tree species, however, can also
reduce growth and induce dormancy (Wisniewski et al., 2011,
2014a), thus it is not surprising that CBF activity is tightly
regulated and exhibits only short periods of elevated presence in
an active form. This regulation occurs at various levels, including
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transcriptional (transcript quantity and variant), translational
(protein quantity), and post-translational (protein activity), and
can have an immediate effect, because many changes are made
to pre-existing molecules. Detailed insights into the regulation of
the CBF pathway in Arabidopsis has only recently been emerging
(Figure 1), while limited information for other plant species
suggests they have similar but unique regulatory processes of
their own. An overview of the information on Arabidopsis, and
woody plants when available, is presented in the current mini-
review.

Low temperature-induced chromatin modification provides
physical access to certain genes and allows their transcription.
This apparently includes access to and activation of COR
genes by CBFs (Park et al., 2018). CBF gene expression
itself is regulated by a large number of transcription factors
(Shi et al., 2018). Transcriptional activators include ICE1
and 2 (Inducer of CBF expression 1 and 2), CAMTA 3
and 5 (Calmodulin binding transcription activator 3 and
5), CESTA, BZR1 (Brassinazole-resistant 1), and CCA1/LHY1
(circadian clock-associated 1/late elongated hypocotyl). In
contrast, CBF transcription repressors include MYB15, EIN3
(Ethylene insensitive 3), PIF3 (phytochrome-interacting factor
3), and PIF4/7. The activity of these transcription factors is
modulated by low temperature, light, and/or a circadian clock in
such a way that it results in CBF expression only at specific times
during constant low-temperature conditions (Figure 1). Each
transduction most likely also involves one or more hormones
(Eremina et al., 2016; Barrero-Gill and Salinas, 2017; Li et al.,
2017b; Zhou et al., 2017), whereby CBFs also affect hormone
levels (Li et al., 2017c), but details are currently relatively sparse.
The fact that a gradual or rapid decrease in temperature has
slightly different effects make the CBF pathway even more
complicated (Kidokoro et al., 2017).

In addition to transcript levels, the type of transcripts can also
be altered in response to a cold period. Approximately 60% of
intron-containing genes in Arabidopsis were reported to undergo
alternative splicing (Marquez et al., 2012), especially under stress
conditions. Recent RNAseq analysis for Arabidopsis identified the
often rapid cold induction of alternative splicing (AS) of over
2,400 genes, with over 1,600 regulated only at the AS level and
therefore not detected in most previous analyses (Calixto et al.,
2018). CBF genes do not have introns, thus AS does not directly
affect them, however, alternatively spliced transcripts have been
detected for PIF7, PHYB, and CAMTA3 (Calixto et al., 2018),
which may alter CBF expression.

Once produced, the stability of CBF1/3 proteins is
downregulated by their interaction with cold-induced CRPK1-
phosphorylated 14-3-3 protein (Liu et al., 2017), and upregulated
by their interaction with cold-induced OST1-phosphorylated
basic transcription factor 3/BTF3-like protein (BTF3/BTF3L;
Ding et al., 2018). While some reports have suggested that
Arabidopsis CBF1-3 are equally important, others suggest that
Arabidopsis CBF2 and CBF3 play a more important role in
directing the cold response (Jia et al., 2016; Zhao et al., 2016;
Shi et al., 2017), and adaptation to low temperature in natural
populations (Gehan et al., 2015). This apparently occurs through
the employment of different regulons. Whereas the main genes

upregulated in CBF2 overexpressing plants were related to lipid
localization, starch metabolic process, light stimulus response,
and regulation of transcription, the genes regulated by CBF3
were mainly related to oxidative stress response (Li et al., 2017c).

The presence of a similar pathway in perennial woody plants,
such as poplar, apple, grape, Prunus sp., and eucalyptus, is
suggested by the identification of usually a larger number of ICE-
and CBF-like genes, increasing the possible further delineation
of functions (Wisniewski et al., 2014a). Investigations into their
regulation found that ICE RNA levels are not much affected
by treatments, suggesting an emphasis on regulation of ICE
by post-translational modifications (Wisniewski et al., 2014a).
CBF expression is often induced by low temperatures and/or
drought or high salt (Wisniewski et al., 2014a), can be affected
by the circadian clock (Artlip et al., 2013), and, for some CBFs,
is induced by a continuous cold treatment later and/or for
a longer time period than reported for the Arabidopsis CBFs
(Xiao et al., 2006, 2008; Artlip et al., 2013; Leyva-Pérez et al.,
2015; Li et al., 2017d). AS was determined to be a prevalent
occurence in the transcription of many genes in apple, orange,
and grape, with genes in grape plants showing the most AS
events (Sablok et al., 2017). Not much is currently known about
AS events, however, in ICE, or COR genes in low temperature
conditions, except for ICE transcripts in grape (Rahman et al.,
2014). AS, however, has been suggested to regulate responses
to environmental stresses in many plants, including Western
poplar (Populus trichocarpa) (Filichkin et al., 2018). Amino acid
motifs thought to be involved in post-translational modifications
have been identified in predicted sequences for ICE and CBF
proteins, and functional studies suggest that they are important
(Feng et al., 2012; Nguyen et al., 2016; Carlow et al., 2017), but
much more studies are needed to determine when and how they
regulate ICE and CBF activity. Together the collective studies
suggest that woody perennial plants have a CBF-like pathway
similar to Arabidopsis (Benedict et al., 2006), even including a
trade-off between growth and cold stress tolerance (Ibanez et al.,
2010; Tillett et al., 2011; Nguyen et al., 2016) but details of CBF
regulation in woody plants is still very limited.

PROSPECTS FOR THE GENERATION OF
PLANTS WITH ENHANCED FREEZING
TOLERANCE

The tight regulation of CBF activity is largely lost in transgenic
plants using a CBF construct driven by a constitutive 35S
promoter, thus the use of natural promoters is preferred. Recent
reports suggest that plants with constitutive brassinosteroid (BR)
response display higher CBF expression but no signs of growth
retardation (Li et al., 2017b). Therefore, it may be possible to
avoid the reduced growth associated with CBF overexpression
(Artlip et al., 2014), if the “correct” CBF or CBF regulators
are utilized. Recently, Dong et al. (2017) conducted a meta-
analysis of the effect of CBF overexpression on temperature
stress tolerance and related responses. In that study data from
75 published articles were analyzed to determine the impact
of a host of factors such as origin of the CBF gene, promoter
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FIGURE 1 | Overview of the regulation of the CBF pathway in Arabidopsis. Low temperatures trigger plasma membrane rigidification which leads, presumably via
COLD1-like protein, to the opening of Ca2+ channels. The resulting higher calcium levels activate CRLK1/2 (calcium/calmodulin-regulated receptor-like kinase; Yang
et al., 2010a,b). In turn, this CRKL1/2 triggers the MEKK1-MMK2-MPK4 cascade to ultimately increase ICE activity, because it inhibits the phosphorylation of ICE1
by MPK3/6 and subsequent ICE1 ubiquitination and degradation (Li et al., 2017a; Zhao et al., 2017). ICE activity is further regulated by low temperatures via OST1
(open stomata 1), induced phosphorylation (Ding et al., 2015), and SIZ1-induced sumoylation (Miura et al., 2007), both of which interfere with HOS1 (high expression
of osmotically responsive protein 1), directed ubiquitination and subsequent degradation of ICE (Dong et al., 2006). The resulting active ICE directs CBF expression.
Low temperature activated phosphorylation of 14-3-3 proteins by CRPK1 cause the degradation of CBF proteins (Liu et al., 2017). In contrast, cold-induced
OST1-directed phosphorylation of BTF3s promotes its binding to CBFs and thereby prevents CBF degradation (Ding et al., 2018). Photoperiod regulates CBF
expression via red light perception by PhyB and subsequent degradation of PIF3 (phytochrome-interacting factor 3), thereby relieving its inhibition of CBF expression
(Jiang et al., 2017), whereas the circadian clock regulates CCA1 and LHY activity (Dong et al., 2011). Interestingly, PIF3 stability is increased by low temperatures,
presumably at a later time to downregulate CBF expression (Jiang et al., 2017). PIF4/7 and EIN3 (Ethylene insensitive 3) downregulate whereas BZR and CESTA
upregulate CBF expression, but how this is triggered is not yet known (Shi et al., 2018). Phosphorylation, sumoylation and ubiquitination events are indicated by P, S
and U, respectively, with activating modifications in green and inhibiting modifications in red.

used to drive expression, the method of stress evaluation, etc.,
on temperature response and associated indicators, such as
electrolyte leakage, growth, chlorophyll fluorescence, sugar and
proline levels, etc., Results indicated that 7 of 8 measured
variables were significantly modulated inCBF (DREB)-transgenic
plants, while two of the eight parameters were only modulated in
non-stressed plants. The measured parameters were modulated
by 32% or more by various experimental variables. The
modulating variables included, acclimated vs. non-acclimated,
type of promoter, duration of stress and its severity, source
of the donor gene, and whether the donor and recipient were
the same genus. CBF overexpression had a consistent negative
impact on plant height, a reduction in electrolyte leakage, and
positive impact on survival. The impact was evident in both

acclimated and non-acclimated plants, although the greatest
impact was observed in acclimated plants. Such analyses may
provide a more comprehensive understanding of how to best
utilize CBF genes with modified promoters to improve freezing
stress tolerance.

An alternative, enterprising approach is the modification
of endogenous CBF genes into variants that lead to a
higher frost tolerance using a clustered regularly interspaced
short palindromic repeat (CRISPR)/CRISPR-associated protein 9
nuclease (Cas9)-like system which has recently been optimized
for use in vegetatively propagated perennial plants (Chen et al.,
2018). For example, existing sequences could be modified based
on variants present in more frost tolerant cultivars or species
(Carlow et al., 2017; Li et al., 2017d), and thereby change their
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regulation. Because of the precise change, the resulting plants
may not be considered genetically modified by government
regulatory agencies and may be more acceptable to the general
public.

DEACCLIMATION (DA) RESPONSE,
A CRITICAL FACTOR FOR
WINTER-SURVIVAL

The ability to increase freeze-tolerance in temperate- and boreal-
zone woody perennials (fruit and forest tree species) via autumnal
cold acclimation is undoubtedly the first line of defense against
harsh and long winters. Seasonally induced freeze-tolerance is
lost under relatively warmer conditions in a process called
‘deacclimation’, a process that typically occurs in response to
spring-warming. The maintenance of a sufficient level of cold-
induced freeze-tolerance until the danger of killing frosts is
passed, however, is an imperative to avoid frost-damage. For
example, erratic temperature fluctuations, i.e., sudden winter-
warming or premature spring-like conditions followed by more
“normal” freezing temperatures, could render partially or fully
deacclimated tissues vulnerable to freeze-damage. Indeed, the
frequency of such fluctuations has been increasing (Jentsch
et al., 2007; IPCC, 2014), and some of the most devastating
killer-frosts across North America have been attributed to
such events, e.g., Easter freeze of 2007 (Gu et al., 2008),
Mother’s Day freeze of 2010, killer frost of 2012, and the polar
vortex of 2014. Field simulations of winter-warming events
have also confirmed their damaging effects on overwintering
perennials (Taulavuori et al., 1997; Bokhorst et al., 2009,
2010).

DORMANCY STATUS AND SPRING
PHENOLOGY (BUDBREAK) IN RELATION
TO DA

Temperate trees have evolved the ability to tolerate harsh winters
by undergoing a period of endodormancy (rest), during which
cold-acclimated meristems are less prone to DA when trees are
exposed to unseasonal episodes of warming (Kalberer et al.,
2006, 2007a,b). Buds of native temperate and boreal trees
must satisfy a genetically defined chilling requirement to exit
endodormancy (Richardson et al., 1974). Post-endodormancy,
buds enter an ecodormant state where they must be exposed
to a genetically defined threshold of warming (‘heat units’)
(Charrier et al., 2011), for the resumption of meristematic
activity and growth to occur (budbreak or spring phenology).
Ecodormant buds are substantially more sensitive to warmer
temperatures and DA than endodormant buds (Kalberer et al.,
2007a). This sensitivity increases progressively as the period of
ecodormancy increases, finally culminating in complete DA and
spring budbreak (Kalberer et al., 2006; Arora and Taulavuori,
2016). Any shift in this annual cycle of spring phenology
could potentially increase the risk of trees encountering frost
injury (Vitasse et al., 2014 and references therein). Whether

an increased risk occurs depends on a variety of internal
factors, including species, chilling requirement, the genetic ability
to resist deacclimation in response to transient, unseasonal
episodes of warm temperatures, and the capacity to reacclimate.
External (environmental) mitigating factors include, temperature
fluctuations (intensity and timing), and the region/site (latitude
and altitude) where the trees are located (Pagter and Arora,
2013; Arora and Taulavuori, 2016; Vitasse et al., 2018b). The
sensitivity of ecodormant buds to deacclimating temperatures
has also been reported to increase with increasing photoperiod
in spring in species such as European beech (Fagus sylvatica)
(Vitasse and Basler, 2013). There is ample evidence that warming
trends in recent decades have advanced spring budbreak and
leaf development in many plant species growing in cold
regions (Penuelas and Filella, 2001; Menzel et al., 2006, and
references therein). Some studies have indicated, however, that
the degree of advancement in spring phenology appears to
be declining in the recent years (Yu et al., 2010; Fu et al.,
2015).

Advances in spring phenology due to climate change can
occur under two scenarios. In the first scenario, a faster than
normal accumulation of heat-units by ecodormant buds occurs
due to earlier and warmer spring-like temperatures (Cleland
et al., 2007). This could render prematurely deacclimated
buds vulnerable to subsequent spring frosts. The second,
somewhat ignored and paradoxical scenario, involves a more
rapid fulfillment of chilling requirement due to warmer winter
temperatures than has occurred in more typical, historical
winters in certain regions. For example, tree species in northern
latitudes or high elevations could experience a greater level
of ‘dormancy-breaking chill units’ since the warmer winter
temperatures could expose trees to temperatures >0◦C that
are more effective in breaking endodormancy and reduce
exposure to sub-freezing temperatures that do not contribute
to chill unit accumulation (Hanninen, 2006). Based on this
premise, spring phenology could be expected to advance more
rapidly in historically colder areas under warming climate
conditions. This would result in premature deacclimation
and a greater risk of spring freeze-damage. Indeed, Vitasse
et al. (2018a) reported that spring phenology in fruit (apple,
cherry), and forest (Norway spruce and European beech)
trees has advanced at a faster rate during 1975–2016 at
fifty high elevation locations in Switzerland than in other
temperate locations. The authors argued that even if the
frequency and severity of late spring frosts remains unchanged
in the future or changes less than the spring phenology
of plants, deacclimated organs may be more exposed to
a greater number of freeze-damage events (Vitasse et al.,
2018a).

On the other hand, proponents of a possible decline in
the advancement or delay in spring phenology by warming
climate make their case as follows. They suggest that elevated
winter temperature may result in a chilling-deficit, i.e., reduced
duration and/or sum of cold. And since heat unit requirement
for spring phenology is believed to be inversely correlated with
the chill accumulation during dormancy (Harrington et al., 2010;
Laube et al., 2014), any reduction in accumulated chilling would
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result in higher heat-unit requirement, thus slowing down the
advance in, or delaying, the spring leaf-unfolding (Yu et al., 2010;
Fu et al., 2015). One of these studies (Fu et al., 2015) noted
that while spring phenology for seven deciduous forest tree
species had advanced by ∼4 d during 1980–1994 in Europe,
this response has decreased by ∼40% (to 2.3 d) during 1999–
2013 (Pan European Phenology Network). A caveat that must
be added for such an observation to be practically and widely
applicable, however, is that the temperatures during warmer
winters have to be high enough to cause real chilling deficit, i.e.,
either negate accumulated chilling or be ineffective to meet the
chilling requirement.

Although the focus of this mini-review is not on bud
dormancy, it is relevant to note that several studies have
associated the genetic regulation of chilling requirement and
dormancy with Dormancy Associated MADs-box (DAM) genes in
peach (Bielenberg et al., 2008; Li et al., 2009) apple (Wu et al.,
2017a), pear (Saito et al., 2013), apricot (Sasaki et al., 2011), leafy
spurge (Euphorbia esula) (Horvath et al., 2010), kiwifruit (Wu
et al., 2011, 2017b), and tea plant (Camellia sinensis) (Hao et al.,
2017). Bud-dormancy associated candidate genes have also been
identified in blackcurrant (Ribes nigrum) by Hedley et al. (2010)
and Yordanov et al. (2014) identified an early budbreak (EBB)
gene in poplar that was an APETALA2/Ethylene responsive
transcription factor responsible for early bud flush.

C-repeat binding factor-binding motifs have been identified
in promoters of several DAM genes and an EBB homolog
in apple (Wisniewski et al., 2015a), as well as other plant
species. A comprehensive analysis of DAM genes in the
ornamental woody plant, P. mume (Chinese plum, Japanese
apricot) demonstrated an interaction between CBFs and DAM
genes, especially PMCBF1 - PMDAM1 (Zhao et al., 2018)
and CBF expression lowered whereas MADS-box gene (1
and 3) expression increased in almond flower buds after bud
break (Barros et al., 2012). Wisniewski et al. (2015a) noted
that overexpression of a peach CBF gene (PpCBF1) in apple
altered the expression of DAM, EBB, and RGL (DELLA)
genes and that some members of each of these gene families
contained C-repeat regions in their promoter regions that
are the target sites for CBF. They provided a model linking
CBF expression with the regulation of dormancy, bud-break,
freezing tolerance, and growth. Interestingly, a subsequent study
indicated that the impact of the apple transgenic rootstock
overexpressing CBF was not graft-transmissible and thus did
not affect the cold hardiness of dormancy of the scion
cultivar grafted to the transgenic ‘M.26’ rootstock, although
growth and flowering were significantly impacted (Artlip et al.,
2016).

Current research has highlighted the impact of dormancy
status and spring phenology on the propensity of trees to
deacclimate. Spring-phenology is an outcome influenced by both
the chilling and heat unit requirements of overwintering tree
species. The fact that chill- and heat-units can be satisfied by
the same temperatures for certain species (Cooke et al., 2012
and references therein) makes their combined effect on spring
phenology even more complex. It is therefore critical to include
dormancy-status and the interactions between chilling and heat

requirements as key parameters in models designed to predict
the relationship between deacclimation response and freezing-
tolerance.

FUTURE DIRECTIONS

The past 50 years of research has provided a wealth of
information on the genetic and molecular regulation of plant cold
hardiness, as well as the regulation of dormancy. These advances
have been fueled by new technologies associated with high-
throughput sequencing, genetic mapping, and transformation
technologies. In particular the regulatory role of CBF genes
in freezing tolerance, and of DAM genes in the regulation
of chilling requirement stand out as major advances. The
discovery that CBF activity is regulated continually and at various
levels, helps explain, at least in part, why slightly different
treatment of plants with respect to light, duration and rate
of low temperature treatment for example, lead to different
outcomes with respect to their frost tolerance. Notable advances
have also been made with the use of high-resolution infrared
thermography in our understanding of ice nucleation and
propagation (Wisniewski et al., 2014b, 2015b), and the properties
of antifreeze proteins (Duman and Wisniewski, 2014). Despite
these advances, significant improvements in plant cold hardiness
have been elusive and problematic due to the complexity of this
trait and its intimate connection to other plant developmental
processes, especially growth and flowering. In addition, the
relatively new field of epigenetics has demonstrated the key role
that the environment can play on imprinting plant response to
abiotic stress (Kumar, 2018).

Future studies will need to better understand the cross-talk
that occurs between different plant developmental processes and
how it can be manipulated in a prescribed manner. A key
question will be whether processes that determine cold hardiness
can be separated from processes that restrict growth. Can CBF
genes be regulated in a manner that removes their negative
impact on growth and reproductive output? What are the
genetic mechanisms that can be used to tease these processes
apart? Which CBF gene or gene variant present in more frost
tolerant species is best targeted for manipulation and how
can epigenetic modifications affecting their activity best be
harnessed?

Although, not as glamorous, a comprehensive understanding
of the underlying biophysical mechanisms responsible for
freeze avoidance, especially in woody plants, is still lacking.
Deep supercooling of xylem parenchyma (Wisniewski, 1995;
Fujikawa et al., 2009) and floral buds (Kuprian et al.,
2016, 2017) is an integral aspect of the cold hardiness of
many temperate tree species, especially fruit trees, however,
few advances have been made on this topic over the past
30 years. What new technologies that can be applied to
better understand how, when, and where ice is initiated
in plants, how it is propagated, and how the size and
shape of ice crystals are regulated. Genetic studies of the
inheritance of avoidance traits, such as supercooling, have yet
to be conducted, but would provide very useful information.
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An integrated approach that takes into account the complexity
of traits that contribute to plant cold hardiness will be needed
to achieve advances that can be translated into practical
solutions that address the challenges of a rapidly changing
climate.
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