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Cotton (Gossypium spp.) is a leading natural fiber crop and an important source

of vegetable protein and oil for humans and livestock. To investigate the genetic

architecture of seed nutrients in upland cotton, a genome-wide association study (GWAS)

was conducted in a panel of 196 germplasm resources under three environments

using a CottonSNP80K chip of 77,774 loci. Relatively high genetic diversity (average

gene diversity being 0.331) and phenotypic variation (coefficient of variation, CV,

exceeding 3.9%) were detected in this panel. Correlation analysis revealed that the

well-documented negative association between seed protein (PR) and oil may be

to some extent attributable to the negative correlation between oleic acid (OA) and

PR. Linkage disequilibrium (LD) was unevenly distributed among chromosomes and

subgenomes. It ranged from 0.10–0.20Mb (Chr19) to 5.65–5.75Mb (Chr25) among

the chromosomes and the range of Dt-subgenomes LD decay distances was smaller

than At-subgenomes. This panel was divided into two subpopulations based on the

information of 41,815 polymorphic single-nucleotide polymorphism (SNP) markers.

The mixed linear model considering both Q-matrix and K-matrix [MLM(Q+K)] was

employed to estimate the association between the SNP markers and the seed nutrients,

considering the false positives caused by population structure and the kinship. A total

of 47 SNP markers and 28 candidate quantitative trait loci (QTLs) regions were found to

be significantly associated with seven cottonseed nutrients, including protein, total fatty

acid, and five main fatty acid compositions. In addition, the candidate genes in these

regions were analyzed, which included three genes, Gh_D12G1161, Gh_D12G1162,

and Gh_D12G1165 that were most likely involved in the control of cottonseed protein

concentration. These results improved our understanding of the genetic control of

cottonseed nutrients and provided potential molecular tools to develop cultivars with

high protein and improved fatty acid compositions in cotton breeding programs through

marker-assisted selection.
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INTRODUCTION

Cotton (Gossypium spp.) is the leading natural fiber crop for
the manufacture of textiles and an important source of vegetable
oil and protein for humans and livestock (Yu et al., 2012; Gore
et al., 2014; Liu et al., 2017a), as well as renewable raw materials
for various industrial products such as biofuels, lubricants,
and hydraulic oils (Jiao et al., 2013; Sinha and Murugavelh,
2016). Cottonseed oil and protein account for 17–27% and 12–
32% of seed weight, respectively, and vary with cotton species,
varieties, and measuring methods (Wu et al., 2009; Yu et al.,
2012). The fatty acids of cottonseed oil generally contain 22%
saturated fatty acids and 74% unsaturated fatty acids (15%
monounsaturated fatty acids and 59% polyunsaturated fatty
acids) (Stewart et al., 2010). Cottonseed protein content, oil
content, and its composition determine its nutritional values and
physicochemical properties (Stewart et al., 2010; Lu et al., 2011).
Therefore, improving the seed nutrients and its composition is
an important cotton breeding target to increase the total output
of cotton production.

Oil and protein content in cottonseeds are complex
quantitative traits that are controlled by a series of genes
with small effects and influenced by the environment (Hanny
et al., 1978; Wu et al., 2009; Yu et al., 2012; Liu et al., 2015b).
For cottonseed oil and protein content, in some studies, general
and special combining abilities, maternal effects, and both
additive and non-additive (including dominance) effects have
been reported (Kohel, 1980; Dani and Kohel, 1989; Wu et al.,
2009, 2010), whereas only additive effects were detected in
other studies (Wu et al., 2009, 2010), indicating the complicated
genetic architecture underlying these traits. Previous reports have
shown a significant negative correlation between oil and protein
concentration in cottonseed, thereby limiting the potential to
develop cultivars with high seed oil and protein simultaneously
in conventional breeding programs (Yu et al., 2012; Liu et al.,
2015b).

Molecular markers have been used to explore QTLs
(Quantitative Trait Loci) or chromosome regions conferring seed
nutrients and composition in oilseed crops, including Glycine
max (L.) Merrill (Reinprecht et al., 2006), Brassica napus L. (Javed
et al., 2016), Arachis hypogaea L. (Shasidhar et al., 2017), and
Gossypium hirsutum L. (Song and Zhang, 2007; Yu et al., 2012;
Liu et al., 2015a), through linkage mapping approaches. A total
of 64 significant QTLs for six seed nutrient traits (the crude oil,
crude protein, linolenic acid, stearic acid, oleic acid, and palmitic
acid content) were identified using a high-density upland cotton
genetic map in a G. hirsutum intraspecific RIL population (Liu
et al., 2015a). Additional cottonseed-related QTLs were identified
in interspecific populations partly due to relatively high map
coverage and marker resolution (Song and Zhang, 2007; Yu et al.,
2012). In a G. hirsutum× G. barbadense BC1S1 population, three
major QTLs controlling kernel percentage, kernel oil percentage,
and kernel protein percentage were identified (Song and Zhang,
2007). Through an interspecific hybrid backcross inbred line
population between G. hirsutum and G. barbadense, 42 QTLs (17
QTLs related to oil content, 22 QTLs for protein content, and
three QTLs for gossypol content) were detected (Yu et al., 2012).

In cottonseed, 56 QTLs for nine amino acid raw materials of
protein synthesis were detected in two upland cotton populations
(Liu et al., 2017b). However, among these cottonseed QTLs, only
a few were identified in multi-environments or multiple genetic-
background, and none have been widely used in marker-assisted
selection (MAS) strategy of cotton breeding programs for high
protein and/or oil. This might be caused by QTL population
specificity, large QTL confidence intervals, QTL × genetic
background, and QTL× environment interactions, which hinder
the application of QTL in practical breeding (Mackay and Powell,
2007; Cavanagh et al., 2008; Qi et al., 2011). Thus, more loci for
cottonseed nutrient traits need to be explored in diverse genetic
backgrounds with different methods.

Association mapping, which is a complementary approach
for setting up the genetic basis of quantitative traits, identifies
QTLs on the basis of recombination events that occurred during
the evolution of a panel of diverse germplasms and therefore
provides the advantage of dissecting larger numbers of alleles
than linkage mapping (Yu and Buckler, 2006; Rafalski, 2010;
Tian et al., 2011; Saïdou et al., 2014). Genome-wide association
studies (GWAS) have been widely adopted to analyze the genetic
architecture of seed protein, oil, and fatty acid composition in
oil crops, including soybean (Cao et al., 2017), rapeseed (Gacek
et al., 2017), and sesame (Li et al., 2014a), and other plants such as
maize (Tian et al., 2011; Li et al., 2013a) and Arabidopsis thaliana
(Branham et al., 2015). For cotton, an association analysis using
228 simple sequence repeats (SSR) markers in a panel of 180
elite upland cotton cultivars and breeding lines detected 86
marker-trait (seed oil and protein content) associations in six
environments (Liu et al., 2015b). Twenty-one QTLs for seed
quality traits (protein, oil, and fiber content) were detected
through GWAS in a panel of 75 upland genotypes with 234
polymorphic amplified fragment length polymorphisms (AFLPs)
(Badigannavar and Myers, 2015). With the release of complete
whole-genome sequences of the tetraploid cottons,G. barbadense
(Liu et al., 2015c; Yuan et al., 2015) and G. hirsutum, (Li et al.,
2015; Zhang et al., 2015) and the diploid cottons,G. arboreum (Li
et al., 2014b) and G. raimondii (Paterson et al., 2012), GWAS
using SNP data obtained by genotyping-by-sequencing (GBS)
and genotyping array technologies has been undertaken to dissect
the genetic regulation of complex traits in cotton, such as fiber
quality, fiber yield, agronomy traits, salt, and verticillium wilt
resistance (Islam et al., 2016; Cai et al., 2017; Fang et al., 2017;
Huang et al., 2017a; Li et al., 2017; Sun et al., 2017; Wang et al.,
2017). However, to our knowledge, no GWAS on cottonseed
protein, oil, and fatty acid composition has been reported to date.

In this study, GWAS for seed protein, oil, and fatty acid
composition was performed in a panel of 196 upland cotton
accessions under three environments using genotypic data of
41,815 SNP markers from the Illumina CottonSNP80K (Cai
et al., 2017). The objectives of this study were (i) to evaluate
variations in seed protein, oil, and fatty acid composition in this
panel of upland cotton accessions; (ii) to explore the genetic
structure and linkage disequilibrium (LD) level in this panel;
and (iii) to identify candidate QTL regions and genes conferring
cottonseed oil and protein to facilitate the dissection of the
genetic architecture of these important traits in upland cotton.
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MATERIALS AND METHODS

Plant Materials and Field Experiments
A panel of 196 diverse upland cotton accessions was selected for
this GWAS, which originated from 11 countries in five continents
(Table S1). This panel contained 169 accessions cultivated in
China and 27 exotic accessions. The accessions cultivated in
China were selected from the five cotton-growing regions in
China: 139 genotypes from the Yellow River Region (YRR),
16 from the Northwestern Inland Region (NIR), six from the
Yangtze River Region (YtRR), six from the Northern Special Early
Maturation Region (NSEMR), and two from Southern China
Region (SCR). The 27 exotic accessions were provided by the
Germplasm Repository of Institute of Cotton Research, Chinese
Academy of Agricultural Sciences (Anyang, Henan province,
China) and were authorized for scientific research purposes only.
All the accessions were inbred for at least 3 years before use in
this study.

The field experiments were conducted at the Crop Research
Station of Shandong Agricultural University (CRS/SDAU), Taian,
China in 2014 and 2016, and in Ling County, Dezhou, China in
2015. The 196 cotton accessions were planted at two experiment
sites in a randomized complete block design with three replicates.
Each replicate had one row that was 8-m long. The row space was
80 cm, and the average plant space was 33 cm. The planting date
was April 24 in 2014 and 2015 and April 28 in 2016. Cultural
practices followed local recommendations.

Seed Fatty Acid and Protein Determination
and Statistical Analysis
Thirty normally opened bolls were collected from each plot at
maturity stage, air-dried, and ginned with a laboratory cotton
ginning machine. In each replicate, equal number of seeds
of the same genotype were bulked. Then, seed coats were
manually removed, and the resulting kernels were ground into
powder for seed nutrients assay with three replicates. The total
fatty acids (TA) (mg/g) in seed kernels and five fatty acids,
including myristic acid (MA), palmitic acid (PA), stearic acid
(SA), oleic acid (OA), and linoleic acid (LA), as percentages of
TAwere determined by gas chromatography (GC2010, Shimadzu
Corporation, Kyoto, Japan) according to Lian et al. (2017). In this
GC analysis, a DB-FFAP column (30m length × 0.25µm liquid
membrane thickness × 0.32mm inner diameter) was equipped.
A total of 0.2 g seed kernel powder was loaded into a 10-mL glass
tube with 2mL of an ether-petroleum ether (1:1) solution. After
mixing and shaking, the solution was left to stand overnight.
Then, 2mL of KOH in methanol (0.4 mol/L) solution and 4mL
of distilled water were added to the mixture. Next, the mixture
was allowed to precipitate for 1–2 h, the supernatant and pellet
were separated, and then 0.2 g of sodium sulfate anhydrous was
added into the supernatant. Finally, 1mL of the supernatant
was absorbed into the GC tube for analysis. The temperature
of the detector and gasification room was maintained at 250◦C
and 230◦C, respectively, and the temperature of the column was
maintained at 190◦C during the first 9min and then increased
to 230◦C for the next 8min, while the flow rates of air carrier,
hydrogen, and gas (nitrogen) were maintained at 400, 40, and

30 mL/min, respectively. The results were determined by the
chromatographic peak area normalization method, and the mass
percentage (m/%) of each component as a proportion of the
total FA was calculated. The total protein (PR) content was
measured using the Rapid N Exceed: N/Protein Analyzer of
Elementar, Langenselbold, Germany (http://www.elementar.de/
en/products/nprotein-analysis/rapid-n-exceed.html). The mean
value of three replicates was used for further analysis. Phenotypic
traits across multiple environments were estimated using the best
linear unbiased predictions (BLUPs) based on a linear model (de
et al., 2013; Huang et al., 2017a).

Statistical analysis of phenotypic data was performed using
SPSS Statistics 21.0 (RRID:SCR_002865). Descriptive statistics
was performed using the BLUPed traits values (Merk et al., 2012;
Sun et al., 2016). The frequency distribution of each trait was
calculated using R (R Core Team, Vienna, Austria).

SNP Genotyping
Genomic DNA was extracted from young leaf tissue with
the Qiagen DNeasy Plant Kit. The DNA quantity and
quality were measured with NanoDrop 2000 and agarose
gel electrophoresis. Genotyping was conducted at the Beijing
Compass Biotechnology Co., Ltd. using the CottonSNP80K array
(Illumina) (Cai et al., 2017), which was developed by State
Key Laboratory of Crop Genetics & Germplasm Enhancement,
Hybrid Cotton R & D Engineering Research Center, Ministry
of Education, Nanjing Agricultural University, Nanjing, China.
Of all the 77,774 SNP loci on the array, 55,660 (71.57%) were
polymorphic. Quality check for the SNP markers was performed
using TASSEL v5.2.40 (RRID:SCR_012837) to remove the SNPs
with a call rate of <90% and a minor allele frequency (MAF) <

0.05. A final set of 41,815 SNP markers was retained for further
analysis.

Population Structure, Kinship (K), and LD
Analyses
The software PowerMarker version 3.25 (RRID:SCR_009332)
was used to calculate the polymorphic information content (PIC)
of the SNP markers, gene diversity and genetic distances among
accessions, and to plot the unweighted pair group method with
arithmeticmeans (UPGMA) phylogenetic tree usingNei’s genetic
distance method (Sneath and Sokal, 1973).

The population structure of the 196 accessions was estimated
by STRUCTURE 2.3.4 software (Evanno et al., 2005) with the
Bayesian Markov Chain Monte Carlo (MCMC) model. K value
was set from 1 to 20, with iterations and burn-in length both set
to 100,000 under the admixture and correlated allele frequencies
model, and seven independent runs for each K were performed
(Wan et al., 2017). The natural logarithms of probability
data [LnP(K)] and the ad hoc statistic 1K were calculated
using STRUCTURE HARVESTER (http://taylor0.biology.ucla.
edu/structureHarvester/), which is a program for visualizing the
STRUCTURE output and implementing the Evanno method
(Earl and Vonholdt, 2012; Huang et al., 2017a). The 1K was
considered as the determinant factor for deducing the optimal
value of K (Mezmouk et al., 2011). Using CLUMPP software
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(Jakobsson and Rosenberg, 2007), the Q-matrix was obtained
through integrating seven replicate runs.

Principal component analysis (PCA) and the K matrix
calculated with TASSEL v5.2.40 (RRID:SCR_012837) were also
used to adjust the population structure. TASSEL v5.2.40
(RRID:SCR_012837) was also used to calculate the parameter r2

(the correlation in frequency among pairs of alleles across a pair
of SNP loci).

Genome-Wide Association Analysis
Genotypic and phenotypic data were jointly analyzed for
determining the marker-trait associations. For this purpose,
the software package TASSEL v5.2.40 (RRID:SCR_012837) was
employed and the genome-wide association mapping was
performed implementing six models: the naive general linear
model (GLM), the general linear model considering the Q-matrix
[GLM (Q)], the general linear model considering the PCA-matrix
[the top six principal components, GLM (PCA)], themixed linear
model considering the K-matrix [MLM (K)], the mixed linear
model considering both Q-matrix and K-matrix [MLM (Q+K)],
and the mixed linear model considering both PCA-matrix and K-
matrix [MLM (PCA + K)]. The threshold to define a significant
association between the marker and trait was set at a probability
level of –log(p) ≥ 3.8.

The LD decay distances among diverse chromosomes were set
as confidence intervals for candidate-QTL regions in different
chromosomes. The LD map based on the physical location
was plotted using Haploview 4.2 (Calati et al., 2011). Putative
candidate genes were put forward for each locus using the
Cottongen JBrowse - Gossypium hirsutum AD1 genome NAU-
NBI assembly v1.1 (annot v1.1) (https://www.cottongen.org/
tools/jbrowse). Moreover, the identification of the specific
expressed genes in relevant tissues of the candidate regions was
based on the G. hirsutum (TM-1) gene expression database
(Zhang et al., 2015).

RESULTS

Phenotypic Statistical Analysis
The results of ANOVA of the traits for 3 years (2014–2016) are
listed in Table 1. The results showed that there was significant (P
< 0.01) variation among the five fatty acids (MA, myristic acid;
PA, palmitic acid; SA, stearic acid; OA, oleic acid; and TA, total
fatty acids) during the 3 years, whereas the observed variations
in LA (linoleic acid) and PR (total protein) were not significant.
The results also indicated that the environment was responsible
for a sizeable portion of the observed total variations in oil and
the fatty acids levels, and the interaction between the genotype
and the environment for oil concentration was larger than that
for the total protein content.

The BLUPed phenotypic values of MA, PA, SA, OA, LA,
TA, and PR followed a normal distribution (Figure S1), with
mean values of 0.70%, 22.46%, 2.49%, 15.49%, 58.86%, 220.67
mg/g, and 44.27%, with the coefficient of variation (CV)
of 3.99, 3.97, 8.55, 4.65, 1.58, 3.99, and 4.65%, respectively
(Table 2). Correlation analysis (Table 3) found a strong negative
relationship between total protein (PR) and oil (TA). Significant

negative correlations were found between PA and SA and
between OA and LA, whereas positive correlations were detected
between MA and PA and between SA and OA. Of the five
fatty acid compositions measured, only OA showed a significant
negative correlation with PR, SA had significant positive
correlation with PR, and the rest of the three fatty acids, namely,
PA, MA, and LA, showed a very weak non-significant association
with PR.

SNP Genotyping and Genetic Diversity
All the 196 accessions were genotyped using the CottonSNP80K
chip with 77,774 SNPs. Of the 77,774 SNP loci, 55,660 (71.57%)
were polymorphic. After the removal of SNPs with a call rate
of <90% or with minor allele frequencies (MAFs) < 5%,
41,815 (53.76%) polymorphic SNP markers were finally screened
out and used to assess the population structure (Q), relative
kinship (K), and GWAS analysis. These filtered SNPs provided
a whole genome-wide (1,934.65Mb) coverage, with a mean
distance of 46.26 kb (Figure 1). The average SNP distance of each
chromosome ranged from 26.25 kb (Chr16) to 81.97 kb (Chr02).
The PIC varied from 0.227 (Chr17) to 0.303 (Chr24), with an
average of 0.267 for all SNP markers. Thus, the average gene
diversity of the whole genome was 0.331, varying from 0.274
(Chr17) to 0.384 (Chr24) (Table 4).

LD Decay, Population Structure, and
Kinship
The value of r2 between all the SNP markers genotypes in the
196 accessions, as the indicator of pairwise LD, was estimated
using TASSEL v5.2.40. In this study, the average r2 at each
0.1Mb was set as a function for inter-marker distance and
used to estimate the LD decay in the upland cotton population,
and the cut-off value of r2 was set to 0.1. The LD decay
distance in the 196 accessions among all the SNP markers was
3.20–3.30Mb (Figure 2). Furthermore, the LD decays occurred
unevenly among different chromosomes (Table 4; Figure S2),
ranging from 0.10–0.20Mb (Chr19) to 5.65–5.75Mb (Chr25).
The Dt-subgenome chromosomes showed a smaller LD decay
range than the At-subgenome chromosomes. Similar LD decays
were detected between homoeologous chromosomes, such as
Chr04-Chr22 (0.30–0.45Mb) and Chr11-Chr21 (0.25–0.40Mb),
whereas distinct LD decay differences (>1.45Mb) were observed
in some other homologous chromosomes, e.g., Chr03-Chr17,
Chr05-Chr19, Chr06-Chr25, Chr08-Chr24, and Chr09-Chr23.

Three methods were adopted to estimate the number of
subpopulations of the 196 accessions basing the genotypic
data, seeing that population structure affects the authenticity
of QTL mapping. First, the UPGMA phylogeny tree based
on Nei’s genetic distances grouped 196 accessions into two
major clusters (Figure 3A). Second, the Bayesian clustering was
performed forK = 1–20 with seven repetitions using the software
STRUCTURE. There was no an obvious inflection point in the
curve of LnP(D)∼K (from K = 1 to K = 20) (Figure S3A).
However, a distinct spike value of the Evanno’s DK was shown
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TABLE 1 | ANOVA of seven cottonseed nutrient traits in three environments (Taian 2014, 2015 and Ling country 2016).

Trait Sum of square Mean square P-value One-way ANOVA

G E G × E G E G×E G E G×E

MA 10.588 5.298 13.966 0.054 2.649 0.036 * * * 0.0000

PA 2102.459 151.905 1026.511 10.782 75.952 2.632 * * * 0.0006

SA 199.353 25.218 150.663 1.022 12.609 0.386 * * * 0.0001

OA 1899.448 163.702 1270.46 9.741 81.851 3.258 * * * 0.0007

LA 2662.865 55.526 1534.865 13.656 27.763 3.936 * * * 0.1490

TA 451209.94 359334.456 346481.482 2313.897 179667.228 888.414 * * * 0.0000

PR 6138.913 22.532 270.019 31.482 11.266 0.692 * * * 0.3962

G, genotype; E, environment; G × E, Interaction of genotype and environment. *, significant at P < 0.001.

TABLE 2 | Descriptive statistics of the observed phenotypic variations in seven traits.

Trait Environment MA (%) PA (%) SA (%) OA (%) LA (%) TA (mg/g) PR (%)

Mean 14T 0.73 22.56 2.41 15.33 58.97 241.78 44.10

15D 0.77 21.98 2.69 16.01 58.55 199.33 44.46

16T 0.61 22.85 2.36 15.13 59.05 209.14 44.27

BLUP 0.70 22.46 2.49 15.49 58.86 220.67 44.27

Min 14T 0.53 19.36 1.55 13.08 54.89 202.22 37.34

15D 0.56 18.22 1.71 13.56 53.74 165.88 37.59

16T 0.53 20.36 1.81 13.28 56.28 173.73 37.46

BLUP 0.62 19.86 1.88 13.78 55.99 201.90 37.71

Max 14T 0.95 29.42 4.25 18.64 61.97 286.03 48.34

15D 1.19 28.95 4.70 21.94 63.49 259.52 48.37

16T 0.77 27.66 3.16 18.04 61.70 242.12 48.35

BLUP 0.81 27.77 3.49 18.62 61.46 252.76 48.21

Std. Deviation 14T 0.05 1.13 0.33 0.84 1.12 14.54 2.15

15D 0.10 1.23 0.36 1.26 1.45 14.71 2.12

16T 0.03 0.89 0.19 0.73 0.93 10.79 2.14

BLUP 0.03 0.89 0.21 0.72 0.93 8.81 2.06

CV (%) 14T 7.05 4.99 13.86 5.49 1.90 6.01 4.86

15D 12.69 5.58 13.42 7.88 2.48 7.38 4.76

16T 5.56 3.89 8.04 4.86 1.58 5.16 4.83

BLUP 3.99 3.97 8.55 4.65 1.58 3.99 4.65

h2 Multi-env 0.28 0.70 0.56 0.60 0.65 0.56 0.97

at K = 2 (Figure S3B), suggesting that the population could be
divided into two subgroups (Figure 3C). Third, the genotypic
PCA showed that the front three eigenvectors occupied only
15.84% of the observed genetic variations, with PC1, PC2,
and PC3 accounting for 7.45, 4.53, and 3.85%, respectively.
The PCA spatial distribution map showed that the population
was divided into two subgroups with few overlapping regions
(Figure 3B). The K matrix, another important factor for GWAS,
was visualized using a heatmap (Figure S4), in which the two
subpopulations were clearly separated. Overall, the results of
the phylogeny tree, structure, PCA, and K matrix proved that
the 196 accessions consisted of two subpopulations, containing
133 genotypes (Sub1) and 63 genotypes (Sub2), respectively
(Table S1).

Marker-Trait Associations
To determine the most appropriate model for association
analysis, six common models, namely, the GLM model, the
GLM (Q) model, the GLM(PCA) model, the MLM (K) model,
the MLM (PCA + K) model, and the MLM (Q + K) model,
were compared and shown using a quantile-quantile (Q-Q) plot
(Figures 4B–10B). In the Q–Q plot of the seven seed nutrients,
the scatter-lines based on the naive GLM, Q models, and PCA
models clearly deviated from expectation, and hence the mixed
linear models (MLM (K), MLM (PCA + K), and MLM (Q
+ K)) performed significantly better than the general linear
models (naive GLM, GLM+Q, and GLM+PCA). The mixed
linear model [MLM (K)] only reduced the errors in K compared
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to the MLM (Q + K) and MLM (PCA + K) models, which
controlled both population structure (Q) and kinship (K). To
make the most efficient use of the phenotypic and genotypic
data in this study, the MLM (Q + K) model was finally selected
for GWAS analysis, considering that the top two eigenvectors
of PCA only accounted for 11.98% of the observed genetic
variation.

The BLUPed traits and 41,815 SNP markers were used in
the association analysis. With the Q+K model, 47 significantly
associated SNP markers (–log(p) > 3.80) were identified for
seven cottonseed nutrient traits (Table S2, Table 5; Figures 4A–
10A). In addition, 40, 44, 39, 36, and 30 of the 47 SNP
markers were verified in the GLM, GLM (Q), GLM (PCA),
MLM (K), andMLM (PCA+ K) models, respectively, suggesting
the repeatability and reliability of the MLM (Q + K) model
(Table S2). Furthermore, most of the significant SNP markers
associated with the BLUPed traits were also detected in a single

TABLE 3 | Correlation coefficients of seven cottonseed nutrient traits.

MA PA SA OA LA TA

PA 0.450**

SA 0.06 −0.214**

OA −0.263** −0.476** 0.409**

LA −0.261** −0.427** −0.461** −0.550**

TA −0.09 −0.07 −0.05 0.08 0.02

PR 0.02 0.03 0.180* −0.179* 0.08 −0.555**

*, ** Correlation is significant at the 0.05, 0.01 level, respectively.

environment (Table 6), thereby suggesting the reliability of the
marker-BLUPed trait associations. Among the 47 significant SNP
markers, 2, 4, 8, 4, 4, 8, and 17 SNP markers were associated with
MA, OA, SA, PA, LA, TA, and PR, respectively. The phenotypic
variation explained by these SNP markers (R2) ranged from 7.3
to 13.3%, with an average of 9.5%.

If the distance between the lead SNP and following SNP
markers was less than the LD decay distance among each
chromosome or the pairwise r2 (the LD statistic) between
the lead SNP and the following SNP markers was >0.1,
then these SNP markers were set as a confidence interval for
a QTL. Consequently, from the 47 associated SNP markers
(Table 5;Table S3), 28 QTLs were identified on 13 chromosomes,
including four pairs of homologous chromosomes (A03-D03,
A07-D07, A12-D12, and A13-D13) containing 19 QTLs (67.9%).
For PR, six QTLs were located on six chromosomes, explaining
7.78–12.50% of the observed phenotypic variation (PV). Four
QTLs conferring TA, located on three chromosomes (A03, A12,
and A13) explained 8.37–10.34% of the PV. As for fatty acid
composition, six QTLs for SA were mapped to six chromosomes
and accounted for 7.78–13.33% of the PV. The number of QTLs
controlling LA, MA, OA, and PA was 3, 2, 3, and 4, and the
PV explained was 9.52–10.45%, 9.70–10.64%, 7.64–9.94%, and
7.29–10.34%, respectively (Table 5; Table S3).

The number of significant SNP markers within the QTL
regions varied from 1 to 11. Nine QTL regions contained two
or more significant SNP markers, of which the qGhPR-c26
region contained the maximum of 11 significant SNP markers
(Table 5). According to the physical positions of SNP markers
intervals for QTLs, the 28 QTLs were assigned to physical

FIGURE 1 | Distribution of 41815 SNPs on the 26 chromosomes of upland cotton. The horizontal axis shows chromosome length (Mb); the different colors depict

SNP density (the number of SNPs per window).
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TABLE 4 | Summary of SNPs, PIC, gene diversity, and LD decay.

Linkage group Chr length #SNPs SNP density (Kb/SNP) Gene diversity PIC LD decay (Mb) Rsq = 0.1

Chr01 A01 99884.70 1880 53.130 0.368 0.293 1.90–2.00

Chr02 A02 83447.91 1018 81.972 0.339 0.272 0.45–0.55

Chr03 A03 100263.05 1380 72.654 0.350 0.280 0.40–0.50

Chr04 A04 62913.77 793 79.336 0.352 0.282 0.30–0.40

Chr05 A05 92047.02 2019 45.590 0.335 0.271 1.55–1.65

Chr06 A06 103170.44 2054 50.229 0.291 0.238 4.00–4.10

Chr07 A07 78251.02 1727 45.310 0.338 0.271 1.85–1.95

Chr08 A08 103626.34 3279 31.603 0.285 0.233 3.25–3.35

Chr09 A09 74999.93 1815 41.322 0.335 0.270 1.95–2.05

Chr10 A10 100866.60 1611 62.611 0.326 0.265 1.45–1.55

Chr11 A11 93316.19 1393 66.989 0.332 0.268 0.30–0.40

Chr12 A12 87484.87 1694 51.644 0.349 0.279 0.20–0.30

Chr13 A13 79961.12 2226 35.921 0.353 0.283 1.90–2.00

Chr14 D02 67284.55 1890 35.600 0.354 0.283 1.40–1.50

Chr15 D01 61456.01 1453 42.296 0.369 0.294 1.00–1.10

Chr16 D07 55312.61 2107 26.252 0.334 0.272 2.45–2.55

Chr17 D03 46690.66 982 47.546 0.274 0.227 5.50–5.60

Chr18 D13 60534.30 1216 49.781 0.316 0.258 1.45–1.55

Chr19 D05 61933.05 1202 51.525 0.341 0.274 0.10–0.20

Chr20 D10 63374.67 1310 48.378 0.338 0.272 0.50–0.60

Chr21 D11 66087.77 1095 60.354 0.339 0.273 0.25–0.35

Chr22 D04 51454.13 769 66.910 0.341 0.273 0.35–0.45

Chr23 D09 50995.44 1638 31.133 0.293 0.239 4.30–4.40

Chr24 D08 65894.14 1849 35.638 0.384 0.303 1.10–1.20

Chr25 D06 64294.64 2199 29.238 0.283 0.232 5.65–5.75

Chr26 D12 59109.84 1216 48.610 0.344 0.274 0.60–0.70

Total 1934654.76 41815 46.267 0.331 0.267 3.20–3.30

FIGURE 2 | LD decay determined according to squared correlations of allele frequencies (r2).
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FIGURE 3 | Population structure of the 196 accessions. (A) UPGMA tree based on Nei’s genetic distances. (B) Principal component analysis of 196 accessions

based on genotype. (C) Population structure of the 196 accessions based on STRUCTURE when K = 2.

FIGURE 4 | Summary of GWAS results for MA. (A) Manhattan plot for MA GWAS results. The threshold value was set at –log(p) > 3.80. (B) Q-Q plots for FP using

GLM, GLM (Q), GLM (PCA), MLM (K), MLM (PCA+K), and MLM (Q+K).
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FIGURE 5 | Summary of GWAS results for PA. (A) Manhattan plot for PA GWAS results. The threshold value was set at –log(p) > 3.80. (B) Q-Q plots for FP using

GLM, GLM (Q), GLM (PCA), MLM (K), MLM (PCA+K), and MLM (Q+K).

FIGURE 6 | Summary of GWAS results for SA. (A) Manhattan plot for SA GWAS results. The threshold value was set at –log(p) > 3.80. (B) Q-Q plots for FP using

GLM, GLM (Q), GLM (PCA), MLM (K), MLM (PCA+K), and MLM (Q+K).

FIGURE 7 | Summary of GWAS results for OA. (A) Manhattan plot for OA GWAS results. The threshold value was set at –log(p) > 3.80. (B) Q-Q plots for FP using

GLM, GLM (Q), GLM (PCA), MLM (K), MLM (PCA+K), and MLM (Q+K).

regions on the G. hirsutum (TM-1) genome, and a total of 1,789
genes were localized to these riveted regions (Table 5). Each
QTL region contained 1 to 274 genes, with an average of 64
genes.

Candidate Gene Approach
There was only one QTL, qGhPR-c26, which encompassed
more than five significant SNPs. Thus, the LD decay distance
of that QTL was narrow and less than 1Mb at r2 <
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FIGURE 8 | Summary of GWAS results for LA. (A) Manhattan plot for TA GWAS results. The threshold value was set at –log(p) > 3.80. (B) Q-Q plots for FP using

GLM, GLM (Q), GLM (PCA), MLM (K), MLM (PCA+K), and MLM (Q+K).

FIGURE 9 | Summary of GWAS results for TA. (A) Manhattan plot for LA GWAS results. The threshold value was set at –log(p) > 3.80. (B) Q-Q plots for FP using

GLM, GLM (Q), GLM (PCA), MLM (K), MLM (PCA+K), and MLM (Q+K).

FIGURE 10 | Summary of GWAS results for PR. (A) Manhattan plot for PR GWAS results. The threshold value was set at –log(p) > 3.80. (B) Q-Q plots for FP using

GLM, GLM (Q), GLM (PCA), MLM (K), MLM (PCA+K), and MLM (Q+K).

0.1. The qGhPR-c26 accounted for 10.09% of the PR (total
protein) variation, and the minimum P-value was 0.0000167.
Combining the QTL qGhPR-c26 (D12:338644336..0094524) and
the LD heatmap (TM78688_TM78690 – TM78740_TM78747:

D12:38600352..38927683) (Figure 11), the candidate region was
further narrowed down to the region D12:38644336..3892683,
and eight genes were located in this region (Table S4). All the
candidate genes of fatty acid and total protein were already
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TABLE 6 | Significant SNP markers associated with BLUPed traits shared with those markers detected in a single environment.

Trait Marker Chr Pos(bp) Environments –lg(P) Marker R2(%)

LA TM80412 Chr18 7,543,336 BLUP,16T 3.84–3.94 9.95–10.45

LA TM81777 Chr18 52,219,361 BLUP,15D 3.80–4.61 9.52–11.68

LA TM81779 Chr18 52,235,958 BLUP,15D 3.88–4.51 7.84–9.39

LA TM61555 Chr25 41,801,658 BLUP,15D 3.89–4.28 10.11–11.14

MA TM66249 Chr16 44,950,059 BLUP,15D 3.99–4.86 10.64–13.24

MA TM57305 Chr19 15,335,570 BLUP,15D 3.89–4.43 9.7–11.15

OA TM3960 Chr02 3,986,589 BLUP,15D 3.87–4.12 9.94–10.75

OA TM47640 Chr13 77,932,236 BLUP,14T 3.94–3.98 7.96–8.18

OA TM78520 Chr26 34,768,467 BLUP 3.83 7.52

OA TM78525 Chr26 34,848,138 BLUP 3.92 7.64

PA TM18505 Chr07 710,669 BLUP,15D,16T 4.16–5.02 7.99–9.75

PA TM43451 Chr13 5,406,222 BLUP,14T,15D,16T 4.23–4.86 8.5710.16

PA TM45415 Chr13 44,886,205 BLUP,14T,16T 3.85–5.38 8.86–13.11

PA TM61185 Chr25 36,901,571 BLUP 3.82 7.29

PR TM21332 Chr07 72,338,466 BLUP,15D,16T 3.92–4.02 7.97–8.22

PR TM40785 Chr12 15,670,185 BLUP,14T,15D,16T 3.82–3.87 9.60–9.74

PR TM47774 Chr15 746,934 BLUP,15D,16T 3.83–3.94 7.78–8.06

PR TM58723 Chr19 59,003,770 BLUP,14T,15D,16T 4.22–4.33 10.60–10.84

PR TM58736 Chr19 59,093,748 BLUP,14T,15D,16T 3.84–4.19 9.66–10.59

PR TM61525 Chr25 39,635,535 BLUP,14T,15D,16T 4.19–4.50 10.73–11.55

PR TM78699 Chr26 38,662,762 BLUP,14T,15D,16T 3.87–4.06 7.86–8.32

PR TM78714 Chr26 38,746,510 BLUP,15D,16T 3.89–4.05 9.78–10.21

PR TM78716 Chr26 38,752,485 BLUP,15D,16T 3.95–4.09 9.97–10.34

PR TM78728 Chr26 38,818,102 BLUP,14T,15D,16T 3.95–4.34 10.19–11.33

PR TM78729 Chr26 38,824,393 BLUP,14T,15D,16T 4.32–4.43 11.25–11.56

PR TM78734 Chr26 38,854,900 BLUP,14T,15D,16T 4.64–4.85 12.08–12.72

PR TM78739 Chr26 38,878,451 BLUP,14T,15D,16T 3.80–3.97 9.87–10.41

PR TM78747 Chr26 38,927,683 BLUP,14T,15D,16T 3.83–4.16 9.72–10.57

PR TM78755 Chr26 38,977,054 BLUP,15D,16T 3.89–4.04 9.77–10.19

PR TM78763 Chr26 39,024,108 BLUP,14T,15D,16T 4.15–4.32 8.62–8.99

PR TM78772 Chr26 39,394,524 BLUP,14T,15D,16T 4.19–4.55 8.67–9.59

SA TM5908 Chr03 2,256,335 BLUP,14T 3.87–4.67 9.24–9.81

SA TM43574 Chr13 10,045,412 BLUP,15D 3.98–6.08 8.17–13.50

SA TM55186 Chr17 42,621,423 BLUP,15D 3.82–4.72 7.78–9.99

SA TM73133 Chr20 1,415,905 BLUP,15D 3.83–4.37 7.74–9.07

SA TM73142 Chr20 1,492,674 BLUP,15D 4.35–5.16 10.91–13.08

SA TM73143 Chr20 1,495,902 BLUP,15D 4.427–5.37 11.42–13.92

SA TM62122 Chr25 51,051,243 BLUP,14T 5.17–5.87 13.33–17.95

SA TM79132 Chr26 44,288,210 BLUP,15D 4.57–5.79 9.61–12.72

TA TM6258 Chr03 6,104,050 BLUP,15D 3.94–4.12 8.21–8.58

TA TM6260 Chr03 6,121,903 BLUP,15D 4.05–4.25 8.78

TA TM42817 Chr12 78,890,369 BLUP,14T,16T 3.89–4.38 7.83–9.08

TA TM42822 Chr12 78,934,096 BLUP,16T 3.85–3.89 9.67–9.78

TA TM43434 Chr13 5,306,522 BLUP,14T 3.91–4.08 10.34–10.90

TA TM43444 Chr13 5,364,845 BLUP,14T 4.02–4.11 8.77–9.11

TA TM44855 Chr13 40,573,896 BLUP,16T 3.85–4.54 8.22–10.15

TA TM44865 Chr13 40,639,827 BLUP,16T 3.96–4.37 8.73–9.67
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annotated inA. thaliana (Table S5). Of these, Gh_D12G1162 and
Gh_D12G1165 were preferentially expressed in the ovules at 5,
10, and 20 DPA, and Gh_D12G1161 was preferentially expressed
in the ovules at 20, 25, and 35 DPA, based on the TM-1 gene
expression database (Tables S4, S5).

According to the TM-1 gene expression database (Zhang
et al., 2015), a number of genes located in the QTL confidence
intervals in the present study had specific temporal and spatial
expression patterns in the roots, stems, leaves, and ovules (5
DPA, 10 DPA, 20 DPA, 25 DPA, and 35 DPA). Therefore,
these genes are considered to be involved in the corresponding
features. For example, the genes particularly or preferentially
expressed in the ovule may be associated with seed oil content
and protein content. After screening, 89 genes preferentially
expressed in the ovules were found and were considered as the
potential candidate genes for 21 QTLs (Table S6). The number
of genes located in one QTL region ranged from 5 for TA to 26
for SA.

The annotation information of A. thaliana was also used
as a reference for the screening of candidate genes (Table S7).
Several genes coding key enzymes in fatty acid synthesis were
screened out from the fatty acid-related QTL regions. For
example, Gh_D13G1748, located in qGhLA-c18-2 (Table S8),
was annotated to encode the acyl carrier protein 5, which
modulates the fatty acid composition in A. thaliana (Huang
et al., 2017b). SA is the substrate for the synthesis of OA. The
gene, Gh_D12G1429, located in qGhSA-c26, was annotated to
encode fatty acyl-ACP thioesterase B (FATB), which enhances
the quality of cottonseed oil with high OA (Liu et al., 2017a).
The β-ketoacyl-acyl carrier protein synthase III (KAS III) is
one of the main factors affecting the initiation step of the
fatty acid chain, involving a Claisen condensation of the
acetyl-CoA starter unit with the first extender unit, malonyl-
ACP, to form acetoacetyl-ACP (Dawe et al., 2003; Abugrain
et al., 2017). The qGhSA-c17 region contained a KAS III
gene, Gh_D03G1548, implying its involvement in fatty acid
synthesis.

DISCUSSION

Correlation and Simultaneous
Improvement of Cottonseed Protein and
Oil
Cottonseed, an important by-product of cotton, is produced
in large amounts every year around the world, and has been
used in solving health and starvation problems caused by
the increasing world population (Cai et al., 2010; Liu et al.,
2017b). The improvement of cottonseed through breeding has
been gaining increasing attention in the recent years. However,
the well documented negative correlation between cottonseed
protein and oil and the complex genetic control hinder their
simultaneous improvement in the conventional cotton breeding
programs (Song and Zhang, 2007; Yu et al., 2012; Badigannavar
and Myers, 2015; Liu et al., 2015a,b). We also detected such
negative correlation between cottonseed protein and oil and
found that of the five fatty acid compositions measured, only

FIGURE 11 | qGhPR-c26 on Chr26 (D12: 38644336..40094524) was

associated with protein content in seed. Manhattan plot shown for the D12:

38644336..40094524 region. The green plot in purple region of Manhattan

plot and the bold SNP markers in Block 1 (261kb) were significantly

associated with PR.

OA is negatively correlated to PR. The other four fatty acids,
namely, SA, PA, LA, and MA, showed significant positive or
very weak non-significant correlation with PR (Table 3). These
findings suggest that the TA-PR negative correlation might be
due to, at least to some extent, the OA-PR negative correlation
in this panel. These results implied the possibility to increase
PR together with SA, PA, LA, and MA by maintaining the
OA level in breeding. The strong, negative relationship between
oil and protein could be because of the linked QTLs/SNP
markers that separately regulate their concentrations or due
to the pleiotropic effects of some QTLs/SNP markers (Chung
et al., 2003). In the present study, we detected qGhLA-c25 with
the additive effect to increase LA, and qGhPR-c25 having an
additive effect to reduce PR, within the same region on Chr25.
Thus, this region is difficult to use in improving LA and PR
simultaneously.

Precision in GWAS
GWAS is an alternative approach that makes use of a number of
recombination events that have occurred within the evolutionary
history of natural populations, circumventing the limitations of
linkage map analysis (Rafalski, 2010). GWAS has been widely
used to detect QTLs and to dissect the genetic architecture of
complex quantitative traits in plants (Edwards et al., 2013; Saïdou
et al., 2014). Population genetic diversity levels, phenotyping
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accuracy, marker density, and statistical algorithms are the major
factors influencing the power of GWAS.

Therefore, an association population should cover a large
number of accessions to encompass the genetic diversity as much
as possible. However, working with large populations may be
prone to errors because of the differences in field environments
and management measures, especially for the cotton being a
large-plant crop, which could decrease the detection accuracy
of association analysis (Liu et al., 2015b). Hence, core or mini-
core collection is a useful choice. In addition, adding exotic
germplasm to increase the level of geographical distribution and
phenotypic variation of the population is a common practice. The
upland cotton panel was a sub collection from 274 accessions and
covered a large geographical distribution, with a relatively high
average PIC of 0.267 and a high phenotypic variation (Table 2).

For cottonseed oil and protein content, both additive and
non-additive (including dominance) effects have been reported
(Kohel, 1980; Dani and Kohel, 1989; Wu et al., 2009, 2010).
Recently, significant epistatic effects on the oil and protein
content were also detected in the study of Du et al. (2018). They
also detected a significant interaction effect between epistasis
and environment only for the oil content. In our study, the
environment was also responsible for a sizeable portion of the
observed total variations in oil and protein content, and the
interaction between the genotype and the environment in oil
concentration was larger than that for total protein content.
Due to strong genotype × environment interactions in complex
quantitative traits, phenotyping under multi-environments is
usually adopted to eliminate/minimize the environment effect in
GWAS. Despite such an approach, a significant proportion of
the genetic variation is still unaccounted for, and the accuracy
of prediction is usually low. Evidence shows that the accuracy of
prediction can be improved when the phenotypes are regressed
on hundreds of thousands of variants simultaneously using
whole-genome regression (WGR) models (de et al., 2013). The
BLUP, which is a commonly adopted WGR method with high
prediction accuracy in plant and animal breeding populations
(de et al., 2013; Huang et al., 2017a), was used to estimate the
phenotypic performance in the present study.

Marker density is another important factor influencing the
power of GWAS. On cotton chromosomes, the distribution
of recombination rate and genes/markers showed a close
association (Shen et al., 2017). Only with enough marker density,
the true LD distribution and decay distance, which influence
the resolution and capacity of the QTLs in GWAS, could be
detected. With the release of the whole genome sequence of
G. hirsutum (Li et al., 2015; Zhang et al., 2015), a high-density
SNP chip, CottonSNP80K, was developed and verified to be
a reliable, efficient, and high-throughput tool for genotyping
G. hirsutum accessions and genome analysis (Cai et al., 2017).
This SNP chip was used for genotyping of the association
panel in this study and resulted in an average polymorphic
marker density of 1SNP/46.267Kb genome-widely, varying from
1SNP/81.972Kb (Chr02) to 1SNP/26.252Kb (Chr16), which
fulfilled the requirement for GWAmapping.

The use of appropriate statistical algorithms is also essential
for GWAS. To reduce the errors related to population structure

and kinship, the optimal model, MLM(Q+K) was selected
by comparing six models using the quantile–quantile analysis.
The results indicated that this strategy was effective. The 196
accessions were assigned to two subpopulations based on the
peak of 1k. The sub2 contained accessions mostly from YRR,
whereas the sub1 possessed genotypes with wide geographic
origins (Figure 3A). These results indicated that extensive exotic
introductions or use in crosses of parents originating from
diverse geographic regions in China and other cotton-growing
countries contributed to gene exchange among cotton accessions
(Zhao et al., 2015; Nie et al., 2016; Huang et al., 2017a).
This is in general agreement with the common practice of
cultivating breeding populations obtained by crossing parents
with different genetic relationships and backgrounds to achieve
on-going improvements in targeted traits (Hao et al., 2017).
Finally, 47 significant SNPs located in 28 QTLs were identified
for seven seed nutrient traits, of which 40, 44, 39, 36, and 30
loci were shared with GLM, GLM(Q), GLM(PCA), MLM(K), and
MLM(PCA+K), respectively.

LD Decay in Upland Cotton
The previous studies showed that the LD decay influenced the
resolution and capacity of GWAS, and varied among different
species and populations. In Zea mays, Glycine max, Oryza
sativa, and Brassica napus, the LD decay distances were <100 kb,
<600 kb, <1Mb, and <6Mb, respectively (Hyten et al., 2007;
Huang et al., 2017a). The LD decay distance also varied in
upland cotton populations from 3.4 to 25 cM (Abdurakhmonov
et al., 2008; Fang et al., 2013; Saeed et al., 2014). Different
subpopulations showed variable LD decay speed (Cai et al., 2017;
Li et al., 2017). A previous study showed that subpopulations
with a rapid LD decay experience higher selective pressure during
evolution (Cai et al., 2017). With the approximate ratio of 1.75
cM/Mb (Wang et al., 2015), the LD decay distance in this study
would be 5.60∼5.78 cM (3.20∼3.30Mb) when r2 = 0.1 in the
whole genome. This result showed a slower LD decay in upland
cotton, which agrees with the findings of Huang et al. (2017a).
This slower LD decay may be caused mainly by the short cotton
breeding history in China and the low rate of outcrossing, and
possibly by the loss of genetic variation due to inbreeding and
founder effect (Mackay and Powell, 2007; Li et al., 2013b; Huang
et al., 2017a).

Furthermore, the estimates of LD provide insights into the
haplotype block structure of the various chromosomes, providing
researchers with a way to efficiently select markers and infer
genotypes based on nearby loci (Reddy et al., 2017). In the study
of Reddy et al. (2017), adjacent and pairwise measurements of
LD were calculated and the average LD decay in G. hirsutum was
117Kb, which was shorter than that calculated using multi-locus
LD with 200 step windows in our study. The shorter LD decays
were useful for identifying the QTL intervals that resulted in
identifying less spurious candidate genes in GWAS experiments.
However, we used the longer LD decay in this study in order to
cover more candidate genes possibly related to the traits, which
would be identified with the TM-1 gene expression database and
candidate gene function or annotation analysis in future studies.
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In addition, LD decays varied among chromosomes from
0.2 to 5.75Mb in this study (Table 4; Figure S2). LD decays
in Chr02, Chr03, Chr04, Chr11, Chr12, Chr19, Chr20, Chr21,
Chr22, and Chr26 were relatively lower (<1.00Mb), whereas
those in Chr06, Chr08, Chr17, Chr23, and Chr25 were higher
(>3.00Mb). The chromosomes with slower LD decay might
be involved in the domestication process (Li et al., 2013b),
whereas the chromosomes with higher LD decay underwent
frequent selection and intensive utilization in breeding (Huang
et al., 2017a). In the present study, 22 of all 28 QTLs were
on chromosomes with relative lower LD decay (<2.00Mb),
which agreed with the fact that less attention had been
paid to cottonseed nutrient traits compared to yield and
fiber-related traits in cotton breeding practices. Homologous
chromosomes Chr04 (A04) - Chr22 (D04) and Chr11 (A11)
- Chr21 (D11) had similar lower levels of LD, implying that
these experienced parallel evolution during the domestication
process. Besides, the LD distances among the rest of the
homologous chromosomes were different, indicating that a pair
of homologous chromosomes had evolved differently.

Stable and New QTLs Conferring
Cottonseed Oil and Protein Content
Stability of QTLs/markers across populations, environments, and
genetic backgrounds is essential for MAS in breeding practices.
GWAS is an efficient method to identify QTLs and dissect the
genetic control of complex quantitative traits (Saeed et al., 2014;
Islam et al., 2016; Cai et al., 2017; Huang et al., 2017a; Du et al.,
2018). Compared to the agronomic and quality traits of cotton,
very few reports in linkage mapping (Song and Zhang, 2007; Yu
et al., 2012; Liu et al., 2015a), even less in GWAS (Badigannavar
andMyers, 2015; Liu et al., 2015b) have been previously reported.
In addition, fewer stable QTLs have been verified in earlier
investigations (Yu et al., 2012; Liu et al., 2015a,b). Through
comparing the physical position of the associated/linked markers
aligned to TM-1 physical map using the automated batch
BLASTN search with E ≤1e−10, the QTLs were detected herein
and in previous reports (Song and Zhang, 2007; Yu et al., 2012;
Badigannavar and Myers, 2015; Liu et al., 2015a,b). Of the 28
QTLs detected in this study, four QTLs (Table S8) were also
detected in the previous studies (Yu et al., 2012; Liu et al., 2015a).
Briefly, in the co-confidence interval of qGhLA-c25 and qGhPA-
c25 detected herein, a seed crude oil QTL, qOil-c25-1 (linked to
SSR BNL3103), was detected (Yu et al., 2012). The qGhTA-c12 for
TA in this work shared a confidence interval with a previously
mapped QTL qOil2-c12-1 (BNL4059-BNL2717) for cottonseed
oil (Yu et al., 2012). The qGhSA-c3 for SA of the present work
located about 2Kb away from the SSR NAU3016 associated with
SA (Liu et al., 2015a).

In addition to the four stable QTLs mentioned above,
some new QTLs including 18 for seed oil and fatty acid
composition and six for seed protein were also identified in
this work and their stability needs to be verified. Besides
comparison of QTLs identified in different works, candidate
gene function or annotation analysis is an alternative method
widely used in preliminary verification of the detected QTLs.

The annotation information of the candidate genes in the
QTL regions (Table S7) will no doubt contribute to the
further verification of these QTLs/genes. Particularly, the
candidate region of qGhPR-c26 for PR (total protein) contained
8 genes (Gh_D12G1160 - Gh_D12G1167) annotated with
Arabidopsis thaliana, SwissProt, InterProtscan, and GO function
(Table S4). The candidate gene Gh_D12G1162 (GIF1: GRF1-
interacting factor 3), which plays an important role in
the governing of cell proliferation by means of cell cycle
regulation and in other developmental characteristics associated
with the function of shoot apical meristem, was identified
in A. thaliana (Lee et al., 2014; Table S4). Gh_D12G1163
(KCS1), which is considered as the rate-limiting key enzyme
by which the substrate and tissue specificities of fatty acid
elongation are also decided in higher plants (Xiao et al.,
2016), may affect the ratio of oil and protein in cottonseed.
The genes, Gh_D12G1160 and Gh_D12G1161, coding the
basic helix-loop-helix (bHLH) DNA-binding family proteins,
which have been identified and characterized functionally
in many plants with a critical role in the control of
various biological processes including growth, development, and
responses to various stresses (Gangappa and Chattopadhyay,
2013; Yastreb et al., 2016), may be related to the development
of ovule and even to the protein accumulation during the
development of seed. The genes, Gh_D12G1164, Gh_D12G1166,
and Gh_D12G1167 (D-arabinono-1,4-lactone oxidase family
protein), are related to oxidoreductase activity, D-arabinono-
1,4-lactone oxidase activity, FAD binding, and catalytic activity
in sperm cells and hypocotyls. Gh_D12G1165 encodes a plant
invertase/pectin methylesterase inhibitor superfamily protein. In
addition, the TM-1 gene expression database showed that three
genes, Gh_D12G1162, Gh_D12G1165, and Gh_D12G1161, were
expressed preferentially in the ovules (Table S4; Zhang et al.,
2015). Therefore, these three genes were very likely to be involved
in the protein synthesis and accumulation in cottonseeds.

In future verification studies, these candidate genes might
be identified by detecting the expression of these genes during
the different development stages of target regions and/or by
inhibiting or overexpressing these genes.
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