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Closed soilless cultivation systems (SCS) support high productivity and optimized year-
round production of standardized quality. Efficiency and precision in modulating nutrient
solution composition, in addition to controlling temperature, light, and atmospheric
composition, renders protected SCS instrumental for augmenting organoleptic and
bioactive components of quality. Effective application of eustress (positive stress), such
as moderate salinity or nutritional stress, can elicit tailored plant responses involving the
activation of physiological and molecular mechanisms and the strategic accumulation
of bioactive compounds necessary for adaptation to suboptimal environments. For
instance, it has been demonstrated that the application of salinity eustress increases
non-structural carbohydrates and health-promoting phytochemicals such as lycopene,
β-carotene, vitamin C, and the overall phenolic content of tomato fruits. Salinity eustress
can also reduce the concentration of anti-nutrient compounds such as nitrate due to
antagonism between nitrate and chloride for the same anion channel. Furthermore,
SCS can be instrumental for the biofortification of vegetables with micronutrients
essential or beneficial to human health, such as iodine, iron, selenium, silicon, and zinc.
Accurate control of microelement concentrations and constant exposure of roots to the
fortified nutrient solution without soil interaction can maximize their uptake, translocation,
and accumulation in the edible plant parts; however, biofortification remains highly
dependent on microelement forms and concentrations present in the nutrient solution,
the time of application and the accumulation capacity of the selected species. The
present article provides an updated overview and future perspective on scientific
advances in SCS aimed at enhancing the sensory and bioactive value of vegetables.

Keywords: anti-nutrients, chemical eustressor, functional quality, floating system, micronutrients, mild salt stress,
nutrient solution management, stress response

SOILLESS MEANS FOR IMPROVING SENSORY AND
FUNCTIONAL QUALITY OF VEGETABLES

The productivity of agricultural production systems is unprecedentedly challenged by projections
for global population increase, by climate change and by shortage of the fundamental natural
resources of water and arable land. In the case of vegetable crops, which contribute significant
nutritive and bioactive value to the human diet, maximal productivity is attained under controlled
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environments where production may expand vertically
and temperature, light, nutrient supply, and atmospheric
composition are controlled (Gruda, 2005, 2009). In particular,
the technological advancement of closed soilless (hydroponic)
cultivation systems (SCS; e.g., nutrient film, floating, and pot-
and sacs-systems) based on recirculating nutrient solutions has
maximized productivity per unit area and notably in terms
of water use efficiency, by maximizing root contact with the
nutrient source while minimizing evaporation and nutrient
runoff (Treftz and Omaye, 2016). Despite the high capital
investment and technological proficiency required for managing
soilless systems, their expansion is propelled by the efficacy of
optimized year-round production and standardized product
quality irrespective of locality.

Besides the pressing issue of global food security, demand
for high quality horticultural products is also on the rise,
driven by the growing interest of society in fresh products
of high organoleptic, nutritional, and functional quality. The
quality of fresh horticultural commodities has been recently
defined as “a dynamic composite of their physicochemical
properties and evolving consumer perception, which embraces
organoleptic, nutritional and bioactive components” (Kyriacou
and Rouphael, 2018). Extrinsic characteristics of product quality
are strongly influenced by socioeconomic and marketing factors
which formulate consumer perception and generate quality
prototypes. Despite the continued growth of the hydroponic
industry consumers at large hold a negative bias toward SCS
products which they consider artificial, less tasty, and of
lower nutritional quality (Schnitzler and Gruda, 2002), just as
organically grown fruits and vegetables are generally hailed
as healthier and safer (Orsini et al., 2016). Nevertheless, it
is apparent that key secondary metabolites which form the
basis of functional quality in horticultural products can be
modulated by appropriate management of SCS components.
Exposure to biotic and abiotic stress underlies the superior
nutritional quality often observed in organically grown products,
since stress response entails the activation of physiological and
molecular mechanisms necessary for adaptation to suboptimal
environments, such as the biosynthesis of secondary metabolites
(e.g., ascorbate, tocopherols, carotenoids, and glucosinolates;
Orsini et al., 2016). Soilless systems can facilitate the precise
application of an eustress (positive stress), such as moderate
salinity or nutritional stress, through precise management
of the concentration and composition (cationic and anionic
proportions or single ions) of the nutrient solution, and thus
may constitute a practical and effective means for improving
the nutritional value of vegetables and for reducing the
accumulation of anti-nutrient compounds, such as nitrates
(Colla et al., 2018; Rouphael and Kyriacou, 2018; Rouphael
et al., 2018a,b). Soilless culture can also be instrumental in the
biofortification of edible plant portions with essential and/or
beneficial micronutrients to human health. Biofortification with
essential or beneficial micronutrients may constitute an effective
means for supplying the human diet with iodine (I), selenium
(Se), zinc (Zn), and silicon (Si) (White and Broadley, 2005).
The present article provides an updated overview and future
perspective on scientific advances in soilless cultivation aimed

at enhancing the sensory and bioactive quality of vegetables
through nutrient solution management and applications aimed
at biofortification.

SALINITY EUSTRESS AND
MACRONUTRIENT MANAGEMENT FOR
ENHANCING NUTRITIONAL QUALITY OF
HYDROPONICALLY GROWN
VEGETABLES

Excessive concentration of sodium chloride (NaCl) in irrigation
water and agricultural soils disturbs physiological processes in
vegetable crops, leading to stunted growth and yield decline
(Rouphael et al., 2017, 2018b). However, recent scientific reviews
have indicated that vegetable crops may exhibit tailored responses
to the application of eustress, such as mild to moderate salinity,
as a result of stress-induced reshuffling of plant metabolism
and strategic accumulation of bioactive compounds against
suboptimal conditions (Kyriacou and Rouphael, 2018). Vegetable
crops can synthesize a broad range of secondary metabolites to
counteract oxidative damage and to scavenge reactive oxygen
species (ROS) elicited by environmental stressors (Orsini et al.,
2016). These health-promoting phytochemicals, abundant in
stressed plants, can enrich the functional quality of fresh
vegetables to the benefit of human diet (Khanam et al., 2012;
Kyriacou and Rouphael, 2018).

Multiple studies have reported increase in the bioactive
content of vegetables triggered by mild to moderate NaCl
concentrations in the nutrient solution (Tzortzakis, 2009, 2010;
Rouphael et al., 2018a,b). Although under soil conditions this
technique for improving product quality poses a high risk
of plant overstress (Hidaka et al., 2008), soilless culture may
be an effective tool for modulating secondary metabolites
without curbing growth and yield, through proper management
of the nutrient solution’s composition (Schwarz et al., 2009;
Tomasi et al., 2015). Several studies have demonstrated that
NaCl in the nutrient solution raises the levels of sugars,
organic acids, and amino acids in several vegetable crops,
like tomato (Zushi and Matsuzoe, 2015; Moya et al., 2017),
pepper (Marin et al., 2009), melon (Rouphael et al., 2012b),
watermelon (Colla et al., 2006), eggplant (Savvas and Lenz,
1996), lettuce (Sakamoto et al., 2014), and cauliflower (Giuffrida
et al., 2017) thereby improving their organoleptic quality.
The salt-induced osmoregulatory mechanism in hydroponically
grown vegetables involves the biosynthesis of specific osmolytes
(sugars, minerals, and amino acids such as proline and GABA)
believed to function as osmoprotectants by counterbalancing
the increase in vacuolar osmotic potential caused by the toxic
accumulation of sodium and chloride ions (Hasegawa et al.,
2000).

The application of salinity eustress may also affect
health-promoting phytochemicals. For instance, increasing
soilless nutrient solution electrical conductivity (EC)
from 3 to 6.5 dS m−1 (Krauss et al., 2006), from 2.4 to
4.5 dS m−1 (Wu et al., 2004), and from 2.2 to 4.5 dS m−1
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(Moya et al., 2017) increased the lycopene, β-carotene, vitamin
C, and total phenolic content of tomato. Giuffrida et al. (2017),
showed that the functional quality of hydroponically grown
cauliflower in response to moderate salt stress may depend
on interactive variables, such as duration of exposure and
plant phenological stage at the time of exposure (e.g., salinity
stress applied constantly throughout the cultivation cycle or at
the onset of flowering), with neoglucobrassicin concentration
found two-fold higher in cauliflower heads supplied with saline
nutrient solution (4 dS m−1) compared to the non-saline
(EC 2 dS m−1) control treatment. Beneficial effects of mild to
moderate salinity on nutritional and bioactive value was also
reported for hydroponically grown leafy greens (Kim et al.,
2008; Colla et al., 2013; Klados and Tzortzakis, 2014; Bonasia
et al., 2017; Ntatsi et al., 2017; Petropoulos et al., 2017). For
instance, Petropoulos and co-workers reported that increasing
the EC from 1.8 to 6.0 dS m−1 increased ascorbic acid as well
as α-tocopherol levels in spiny chicory. Similarly, Colla et al.
(2013) and Bonasia et al. (2017) showed that raising the EC from
2.5 to 3.5 dS m−1 increased antioxidant compounds in wild
rocket, and from 2.0 to 5.8 dS m−1 it improved the antioxidant
activity, chlorogenic acid, cynarin, and luteolin levels in leaves
of artichoke and cardoon grown in a floating system. However,
response to NaCl is cultivar-dependent and the choice of the
cultivar is critical for achieving the desired effects (Borghesi et al.,
2011; Dominguez-Perles et al., 2011; Colla et al., 2013). Several
workers have reported negative effects or no significant effects in
response to NaCl application. Increasing the nutrient solution
EC above 4.4 dS m−1 decreased lycopene and β-carotene content
in tomato (De Pascale et al., 2001). Similarly, Petersen et al.
(1998) and Bonasia et al. (2017) observed a decrease of ascorbic
acid in tomato and wild rocket at EC 9.0 and 4.5 dS m−1,
respectively. Presumably the antioxidant system of salt-stressed
plants does not effectively support ROS scavenging after the
stress threshold for maintaining growth is exceeded (Rouphael
et al., 2018a,b), whereas leaf area reduction in salt-sensitive
cultivars can also modify fruit temperature and halt the synthesis
of bioactive compounds (Dorais et al., 2008). Finally, salinity
eustress can reduce nitrate accumulation in SCS leafy vegetables
due to antagonism between nitrate and chloride for the same
anion channel (Rubinigg et al., 2003). Vegetable nitrate remains
of high interest to regulators due to possible effects on human
health, while it also imparts vegetables a bitter taste (Colla et al.,
2018). Borgognone et al. (2016) reported that minimizing nitrate
supply in floating raft culture by partial substitution of calcium
nitrate with calcium chloride increased phenols and flavonoids
and lowered nitrates in cardoon leaves without affecting yield.

Although most published articles concerning the positive
effects of nutrient solution EC on nutritional, organoleptic, and
functional quality of soilless vegetables were based on greenhouse
experiments in which NaCl was the predominant salt, several
studies have shed light on the effects of salinity induced by
macronutrients. For instance, Fallovo et al. (2009) determined
the effects of macronutrient solution concentration (2, 18, 34,
50, or 66 mequiv L−1, corresponding to an EC of 0.3, 1.2, 2.0,
2.8, and 3.6 dS m−1, respectively) during the spring and summer
seasons on leafy lettuce (Lactuca sativa L. var. acephala) grown

in a floating system. The authors reported a linear decrease
in qualitative characteristics (glucose, fructose, proteins, total
carbohydrates, and starch contents) in response to an increase
in the nutrient solution concentration from 2 to 66 mequiv L−1.
Similarly, Rouphael et al. (2012a) showed that raising the
macronutrient solution concentration from 4 to 68 mequiv L−1

in floating raft culture increased biomass production but
deteriorated leaf functional quality in both cardoon and artichoke
by decreasing key polyphenols such as caffeic acid, chlorogenic
acid, cynarin, and luteolin. Moreover, the management of
the cationic proportions (K/Ca/Mg) in the nutrient solution
facilitated by soilless culture has been also demonstrated as an
effective tool for enhancing nutritional quality of fruit vegetables
(Fanasca et al., 2006a). A high proportion of K in the nutrient
solution caused a significant increase in tomato soluble solids and
lycopene contents irrespective of cultivar (‘Corfu’ or ‘Lunarossa’ –
standard or high-pigment cultivar), whereas high concentration
of Mg improved the hydrophilic antioxidants (caffeic acid) and
the total antioxidant capacity of the high-pigment ‘Lunarossa’
hybrid (Fanasca et al., 2006b). Synthesis and accumulation of
the abovementioned antioxidant compounds in response to
high Mg supply might relate to the increased activity of key
enzymes such as glutamine synthetase that regulate ammonia
assimilation and detoxification of plant tissues (Marschner,
2012).

SOILLESS BIOFORTIFICATION OF
VEGETABLES WITH ESSENTIAL AND
BENEFICIAL MICRONUTRIENTS

Biofortification of vegetables with essential and non-essential
beneficial micronutrients caters to the demand for healthier diet
and the need to address human micronutrient deficiency,
known as “hidden hunger” (White and Broadley, 2005;
Carvalho and Vasconcelos, 2013). However, the window
between biofortification and toxicity effect is often quite
narrow. Applications aiming at the accumulation of health-
supporting micronutrients must be adjusted to avoid
detrimental effects on plant growth (Rouphael et al., 2018a).
Moreover, biofortification may depend upon several interacting
factors, such as genotype, chemical form, application rate,
and environmental and growing conditions (Tomasi et al.,
2015).

Selenium and iodine have been particularly investigated
since they are beneficial though non-essential microelements
for human health. Uptake is higher when supplied in SCS
nutrient solution where Se and I concentrations can be accurately
controlled, as opposed to side-dressing of soil crops or foliar
applications (Wiesner-Reinhold et al., 2017). Constant exposure
of the root system to fortified nutrient solution and absence
of micronutrient–soil interaction make SCS more efficient, thus
maximizing uptake, translocation, and accumulation of these
elements in the edible parts (Wiesner-Reinhold et al., 2017).
However, micronutrient accumulation is highly dependent on
the elemental concentration in the soilless solution, the time
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of application and the accumulation capacity of the selected
species. For instance, Signore et al. (2018) reported that iodine
biofortification of carrots at 50 mg L−1 through the hydroponic
solution reached cumulative levels toxic on the plants compared
to foliar applications both under open-field and greenhouse
conditions at the same rate. On the other hand, low rates
(0.5–1.5 mg L−1) of selenium in the nutrient solution increased
Se concentration in several horticultural commodities such as
spinach, lettuce, and basil without inducing toxic effects (Zhu
et al., 2004; Malorgio et al., 2009; Ramos et al., 2011; Ferrarese
et al., 2012; Puccinelli et al., 2017). Zhu et al. (2003), reported
that biofortification with I in solution culture is easily feasible
both with iodide (I−) and iodate (IO−

3 ), as the application of I
at rates from 0.13 to 12.7 mg L−1 effectively fortified spinach
with iodine. Similarly, Blasco et al. (2008) showed that the most
appropriate rate of I− in lettuce soilless culture is 5.1 mg L−1

or lower, whereas IO−

3 concentration of 1.3 to 30.5 mg L−1

achieved foliar accumulation of I without detriment to yield.
Kiferle et al. (2013); Li et al. (2017), and Smoleń et al. (2018)
indicated that also fruit vegetables and tuber crop such as tomato,
pepper, and potato grown in soilless culture can be targeted for I
and/or Se biofortification. Another important factor influencing
Se and I accumulation in vegetables is their chemical forms.
Vegetable species exposed to selenate (O4Se−2) rather than
selenite (O3Se−2) and to I− rather to IO−

3 can accumulate more
Se and I in leaf or fruit tissues. This is because selenate is taken
up actively by the more efficient sulfate transporter compared
to the passive phosphate transporter used for taking up selenite
(Wiesner-Reinhold et al., 2017). Uptake of I− was much higher
than IO−

3 since the latter form should be reduced to I− before
uptake, thus reducing bioavailability to vegetable crops (Blasco
et al., 2008).

According to White and Broadley (2005), concentrations
of 0.1–0.7 mg Zn g−1 dry weight can be achieved in leafy
vegetables with no detriment to yield, making Zn biofortification
of leafy greens a potential tool for enhancing dietary Zn intake
(White et al., 2018). Adequate Zn addition in the nutrient
solution (5.2–6.5 mg L−1) allowed biofortification of Brassica
oleracea coupled with significant synthesis and accumulation of
amino acids (Arg, Asp, Glu, Gln, Hys, Lys, Phe, and Trp) while
maintaining optimal growth (Barrameda-Medina et al., 2017).
In addition, the production of Fe-enriched leafy vegetables such
as lettuce using hydroponics is feasible, since the increase of Fe
concentration in the nutrient solution 6 h before harvest resulted
in significant increase of foliar Fe content without affecting yield
(Inoue et al., 2000). Moreover, effective Si biofortification of
soilless crops of basil, chicory, mizuna, purslane, Swiss chard,
and tatsoi was demonstrated with SiO2 supplementation of the
nutrient solution at 50–100 mg L−1 with no detrimental effect on
crop productivity (D’Imperio et al., 2016).

CONCLUSION AND THE CHALLENGES
AHEAD

The demand for global food security under increasing biotic
and abiotic pressures exacerbated by climate change makes
protected cultivation of vegetable crops an inevitable necessity.
Technological progress in the management of SCS drives
productivity and mitigates high initial infrastructural costs.
Moreover, flexibility and precision in modulating nutrient
solution composition, in addition to controlling temperature,
light, and atmospheric composition, renders SCS systems
instrumental in targeting organoleptic and bioactive components
of quality thus addressing demand for improved vegetable
quality. The effective application of eustress, such as mild
to moderate salinity or nutritional stress, can elicit targeted
plant responses through the activation of physiological and
molecular mechanisms and the strategic accumulation of
bioactive compounds necessary for adaptation to suboptimal
environments. Salinity eustress has been demonstrated to
augment organoleptic components of quality such as soluble
carbohydrates, and health-promoting phytochemicals such as
lycopene, β-carotene, vitamin C, and polyphenols in vegetables;
moreover, it may curb anti-nutrients such as nitrate owing
to nitrate-chloride antagonism for uptake. Understanding the
molecular and physiological mechanisms elicited by controlled
plant eustress and those facilitating micronutrient uptake in
interaction with genotype and environmental conditions will
usher horticultural science into the era of tailoring superior
sensory and functional quality vegetables.

Furthermore, SCS can facilitate the effective biofortification of
vegetables with micronutrients essential or beneficial to human
health, such as iodine, iron, selenium, silicon, and zinc. Accurate
control of microelement concentrations and constant exposure
of roots to the fortified nutrient solution without soil interaction
can maximize their uptake, translocation, and accumulation in
the edible plant parts. Biofortification remains, however, highly
dependent on microelement forms and concentrations present
in the nutrient solution, the duration of targeted applications,
the developmental stage of plants, and the accumulation capacity
of the selected species. These potentially interacting factors
pose future challenges for research before SCS biofortification
applications become effective tools for addressing nutrient
deficiencies in human diet.
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