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Diverse mixtures of plant natural products play an important role in

plant-herbivore-parasitoid interactions. In the pursuit of understanding these chemically-

mediated interactions, we are often faced with the challenge of determining ecologically

and biologically relevant compounds present in complex phytochemical mixtures. Using

a network-based approach, we analyzed binned 1H-NMR data from 196 prepared

mixtures of commonly studied secondary metabolites including alkaloids, amides,

terpenes, iridoid glycosides, saponins, phenylpropanoids, flavonoids and phytosterols.

The mixtures included multiple dimensions of chemical diversity, including molecular

complexity, mixture complexity and differences in relative compound concentrations.

This approach yielded modules of co-occurring chemical shifts that were correlated

with specific compounds or common structural features shared across compounds.

This approach was then applied to crude phytochemical extracts of 31 species in the

phytochemically diverse tropical plant genus Piper (Piperaceae). Combining the activity

of crude plant extracts in an array of bioassays with our 1H-NMR network approach, we

identified a potential prenylated benzoic acid from these mixtures that exhibits antifungal

properties and identified small structural differences that were potentially responsible for

antifungal activity. In an intraspecific analysis of individual Piper kelleyi plants, we also

found ontogenetic differences in chemistry that may affect natural plant enemies. In sum,

this approach allowed us to characterize mixtures as useful network modules and to

combine chemical and ecological datasets to identify biologically important compounds

from crude extracts.
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INTRODUCTION

Over evolutionary time, selective forces have shaped the unique
secondary metabolite profile in every plant species on Earth.
These complex chemical mixtures function as defenses against
multiple natural enemies, including herbivores and pathogens
(Fraenkel, 1959), and as the specifics of ecological communities
that affect plant species differ, so does the defensive chemistry.
Since Ehrlich and Raven’s (Ehrlich and Raven, 1964) influential
study proposing a coevolutionary arms race between plant
and herbivore taxa linked to codiversification and increased
specialization, many studies have focused on understanding
the causes and consequences of phytochemical composition on
plant-insect interactions. Due to the limitations in methods
used to chemically profile plant secondary metabolites, most
of these studies have focused on a few well-studied plant
species and specific classes of compounds. While these studies
have contributed to our understanding of specific interactions
mechanisms, we are still limited in our ability to address larger
hypotheses that describe patterns found across taxa.

The traditional approach of natural products isolation
is time intensive and often results in inactive or redundant
compounds. This is not surprising considering the increasing
number of studies demonstrating that natural products
often act synergistically (Richards et al., 2016), additively, or
antagonistically (Diawara et al., 1993). Therefore, quantifying
patterns of phytochemical variation is a fundamental goal of
natural products chemistry as well as chemical ecology. The
ability to link specific phytochemical features to a biological or
ecological response can be a useful method for streamlining
the identification of relevant compounds and can be used as
an approach to dereplication (Kurita et al., 2015). With the
recent development of metabolomics approaches, the process of
characterizing complex natural product mixtures has become
more efficient. These established approaches are well suited
for identifying phytochemical differences between individuals
of the same species, where there are many shared metabolites
across samples, but there are still limitations when metabolomics
comparisons are made between different species with limited
overlap in their chemical composition. Additionally, statistical
analysis of spectral data from complex mixtures have focused on
extracts of well-defined systems such as E. coli (Koek et al., 2006;
Winder et al., 2008), urine (Weljie et al., 2006), blood (Zelena
et al., 2009), and crops (Catchpole et al., 2005; Dixon et al., 2006;
Witt et al., 2012), but there are additional challenges to studying
non-model organisms that have not been thoroughly chemically
characterized.

Metabolomics based approaches use two main spectroscopic
methods for chemical analysis; mass spectrometry (MS) and
nuclear magnetic resonance (NMR) (Sumner et al., 2003;
Barding et al., 2012). Arguably, utilizing a combination of
both spectroscopic techniques will provide complementary
information on the full metabolic profile (Barding et al., 2013;
Wolfender et al., 2015). While MS is the most commonly
used, due to the coupling with chromatography, accessibility
to instruments, and sensitivity, NMR has several advantages
over MS analyses that are important when comparing multiple

species that do not have similar chemical profiles (Richards
et al., 2015). For example, NMR is less dependent upon the
chemical properties of specific compound classes and can
detect a broader range of compounds (i.e., volatiles, non-
volatiles, and a range in polarity) (Kim et al., 2011; Leiss
et al., 2011) in a single analysis. In addition, NMR data
are highly reproducible, quantitative, and provide structural
resolution as well as facile peak alignment across spectra.
Complementary to these spectroscopic techniques, appropriate
multivariate analyses can expedite the process of data-mining
from metabolomics datasets, for which ordination techniques
such as PCA (Principal Component Analysis), PLS-DA (Partial
Least Squares Discriminant Analysis) and NMDS (Non-metric
Multidimensional Scaling) have been primarily used. These
techniques focus on identifying the smallest number of variables
(peaks, chemical shifts in NMR and retention times/molarmasses
in MS) that account for the largest proportion of variation
between spectra. These methods are well suited for quantifying
dramatic variation between chemically similar samples, such
as plants of different cultivars, but do not perform well when
identifying the subtle differences necessary for applications
in quantitative interspecies comparisons where the number
of distinguishing variables is far more expansive (Covington
et al., 2017). Recent developments in MS data analysis provided
a powerful means to build molecular networks that connect
samples based on chemotypic similarity (Garg et al., 2015). These
networks can be used in combination with pure compound
libraries or seed molecules to facilitate compound dereplication
and identify novel compounds in a profile (Watrous et al., 2012).
With a similar innovative approach, we tested the application of
weighted network analysis to identify compounds in mixtures
of secondary metabolites from 1H-NMR data and link chemical
composition to bioactivity. In a weighted network the connection
between two nodes (edge) is quantified as a number between
0 and 1. In a weighted network of 1H-NMR data, the nodes
represent proton resonances and the weight of the edge is
calculated as an adjacency value based on the correlation
of resonances across the spectra. Modules, groups of highly
correlated nodes, are identified by hierarchical clustering. We
predicted that these modules would be comprised of resonances
of a single compound or of resonances representing shared
structural elements across multiple compounds, as a single
molecule is represented by multiple resonances. One of the
important features of the approach presented here is the ability
to calculate the weight of the module (collection of resonances)
for each spectra. This continuous variable provides a relative
weight of each module on each individual spectra and can then
be used to correlate modules to the biological or ecological
data of the sample. As this was the first application of this
approach to 1H-NMR data, we first set out to establish that
the modules identified correspond to protons related to the
same compound or shared chemical structure. Therefore, we
utilized a controlled experiment with prepared mixtures of
natural products, manipulated mixture complexity and then
validated the results. We then applied the analysis to crude
extracts of plants in the phytochemically diverse genus Piper
(Piperaceae).
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MATERIALS AND METHODS

Prepared Mixture Application
Samples
We selected 29 pure natural product compounds, either from
commercial sources or isolated from plant extracts (Table 1), to
simulate the chemical complexity of the Piper genus. Although
this set of compounds includes only a small portion of the
thousands of known natural products produced by plants, it
represents the major groups of small molecules implicated in
plant defense (Rosenthal, 1991), including terpenoids, flavonoids,
phenylpropanoids, furanocoumarins, amides, and alkaloids
(Table 1). The compounds were initially dissolved in CD3OD
(Cambridge Isotope Laboratories, Inc.), (99.8%) containing
0.05% TMS to prepare stock solutions at a concentration of 10
mg/mL. While methanol is not an ideal solvent for 1H-NMR
analysis due to the two wide residual peaks in regions that can
overlap with sample peaks, it offered the best solubility to the
set of compounds and is a practical solvent used to extract a
broad range of metabolites in untargeted experiments (Martin
et al., 2014). The prepared solutions were then combined into
mixtures consisting of three to four different compounds to a
total of 1mL per mixture. These combinations were designed
to capture multiple attributes of crude phytochemical extracts
found in nature: “Intraclass” mixtures included 21 combinations
of three compounds within same metabolic group at a mass
ratio of 3:1:1; “Interclass” mixtures included 97 combinations
of three compounds from two different metabolic groups at a
mass ratio of 3:1:1; and 78 “4-component” mixtures included four
compounds from three different compound classes at amass ratio
of 2:1:1:1, yielding a combination for which themajor component
was at a lower relative concentration and compound diversity was
higher. Both interclass and 4-component mixtures contained two
compounds of the same metabolic group in order to simulate the
general observation from natural plant extracts that compounds
of the same biosynthetic pathway tend to co-occur (Gershenzon
et al., 2012). In addition to compounds of specific metabolic
groups, some of the interclass and 4-component mixtures also
contained eicosanol, which simulates the effect of long chain fatty
acids or other aliphatic compounds commonly present in plant
extracts and yields an increase in peak overlap in the upfield
region of the 1H-NMR spectrum (δ 0.5–2).

1H-NMR Analysis
The total collection of over 196 prepared mixtures was
analyzed by 1H-NMR spectroscopy using a Varian 400-MR
(400 MHz) spectrometer, with 64 scans per spectrum (Table S1
for experimental details). Additionally, 1H-NMR spectra were
independently acquired for the pure compounds in order to
support the complete compound-peak assignments and validate
the recognition of molecular patterns in the statistical and
network analyses. In cases of severe peak overlap, such as with
glycosylated groups and steroidal compounds, two-dimensional
techniques (COSY, HSQC, and HMBC) were used exclusively to
assist in resolving peak assignments for the pure compounds.
The software MNova (version 10.0, Mestrelab Research, Santiago
de Compostela, Spain) was used in spectral treatment and

TABLE 1 | Relative accuracy of the three analyses used to identify proton

resonances associated with a specific compound.

Relative accuracy

Compounds Intraclass Interclass 4 compounds

Alkaloids Brucine 0.33 0.35 0.35

Boldine 0.58 0.80 0.68

Crotaline 0.32 0.57 –

Caffeine – 0.19 0.19

Amides Alkene amide 0.64 0.56 0.44

Piplartine 0.88 0.63 0.72

Pipleroxide 0.58 0.48 0.38

Iridoid glycosides Aucubin – 0.34 –

Catalposide 0.28 0.28 0.41

Catalpol 0.23 0.36 0.36

Cardiac glycosides Digitoxin – 0.21 0.25

Furanocoumarins Bergapten – 1.00 0.88

Imperatorin – 0.88 –

Xanthotoxin – 0.67 0.83

Flavonoids Rutin 0.54 0.45 0.54

Isoflavonoid Daidzein 0.95 0.95 0.00

Daidzin 0.58 0.78 0.25

Genistein – 0.60 0.80

Terpenoids Carene 0.86 0.86 0.86

Phytol 0.53 0.53 0.72

Nerolidol 0.69 0.94 0.59

Triterpeinoid saponins Escin 0.26 0.17 0.31

Saponin Diosgenin 0.56 0.49 –

Oleanolic acid 0.56 0.46 –

Phenylpropenoids Eugenol 0.43 0.86 0.71

Resveratrol 1.00 0.83 0.83

Prenylated

benzoic acid

0.48 0.33 –

Phytosterols Sitosterol – 0.77 0.44

Stigmasterol – 0.50 0.38

The values shown for each compound represent the highest correlation calculated for a

module. The compound structural features and the specific chemical shifts identified by

each module are listed in the SI (Tables S1–S3).

data extraction. Each spectrum was individually aligned by the
residual methanol peak (septet, δH 3.31), collectively phase-
corrected (global method) and baseline-corrected (polynomial
fit), then binned in 0.04 ppm bins from 12 to 0.5 ppm (bins
integrated by average sum) (Verpoorte et al., 2007). After binning
the data, the solvent peak residuals were removed, the spectra
were normalized to a total area of 100 units, and the resulting
data were exported into a .csv file to be used in network analyses.

Statistical Analysis
Applying a weighted network approach (Zhang and Horvath,
2005; Horvath, 2011), we analyzed spectral data to build a
network in which the nodes were binned chemical shifts
from 1H-NMR and the edges were determined based on the
correlations between the chemical shifts. Therefore, chemical
shifts that co-varied across samples are more connected. We
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organized these highly connected chemical shifts into modules.
All the network analyses were performed in the statistical
software R version 3.2.3 (R Delevopment Core Team, 2015)
using the WGCNA package (Langfelder and Horvath, 2008,
2012). A soft threshold (β) was used in a power transformation
of the correlation coefficient to determine node adjacency, or
connection strength. The software package allows the analysis
of signed or unsigned correlation networks. In an unsigned
network, the adjacency (a) between two nodes is calculated

as aij =
∣

∣cor(xi , xj)
∣

∣

β
, where an adjacency value is

calculated for both positive and negative correlation coefficients.
In comparison, in a signed network, adjacency is calculated as

aij =
∣

∣0.5+ 0.5× cor(xi , xj)
∣

∣

β
, where an adjacency value

is only calculated for positive correlation coefficients (Zhang
and Horvath, 2005; Horvath, 2011). While this distinction is
useful for analyzing gene-expression data (Zhang and Horvath,
2005) to identify genes that upregulate together (only positive
correlations between genes) and not combinations of genes
where one gene is expressed when another gene is downregulated
(negative correlation between genes), both signed and unsigned
networks identified the same network modules for all 1H-NMR
datasets presented here, indicating that the nodes were only
positively correlated to each other. This was not surprising due
to the nature of the dataset. We would expect the correlation
between proton resonances of a compound to be positive,
since they are interdependent and the presence one peak does
not limit the potential presence of another. Therefore, all
the networks were analyzed as unsigned. We used the lowest
value for β that produced the most scale-free topology in the
network. For binned spectral data, this ensured separation of
the baseline from meaningful peaks. Next, a correlation network
topological overlap matrix was calculated, and an average linkage
hierarchical cluster analysis was used to identify modules within
the network (defined as clusters of highly connected nodes,
chemical shifts). Applying the blockwiseModules function in
the WGCNA package, a minimum module size was defined as
three chemical shifts and merged modules were correlated by
0.75 (parameter mergeCutHeight = 0.25). The modules were
assigned an arbitrary color code to aid in network visualization.
Through singular value decomposition, an eigenvector for each
module was used to calculate a module eigenvalue for each
spectrum. Calculating an eigenvector, which is analagous to the
first principal component of a Principal Component Analysis,
allowed us to examine correlations between modules and the
individual compound concentrations in the artificial mixtures.
The networks were visualized in Cytoscape (Shannon et al.,
2003).

To validate the efficacy of our NMR-based approach
and verify the appropriateness of compound assignments to
modules, we examined correlations of module eigenvalues
with concentrations of individual compounds in the mixtures,
but considering only module-compound combinations with a
significant Pearson’s correlation (p ≤ 0.05). Chemical shifts in
each module were mapped to the structure of the corresponding
molecules, according to the 1H-NMR spectra of mixtures
and pure compounds (Tables S2–S4). For each compound, we
determined the number of maximum distinguishable signals

based on a visual inspection of their individual spectra, where
peaks within 0.05 ppm are considered part of the same signal. We
then determined what proportion of those signals are recognized
by a module, accordingly to the module’s representative chemical
shifts. Exact chemical shift matches were assigned an accuracy
value of 1, while module chemical shifts within 0.1 ppm of a
recognized compound peak were valued as 0.75. The relative
accuracy of a module to represent a compound was defined as
the ratio of the sum of matches to the maximum number of
distinguishable compound peaks.

Interspecific Piper Application
Samples
We validated the approach with crude plant extracts from
31 species of the phytochemically diverse tropical genus Piper
(Piperaceae) (Dyer and Palmer, 2004). In this cross taxa analysis,
we collected the most recently expanded leaves from 31 different
Piper species at La Selva Biological Station in Costa Rica, Heredia
Province (10◦25′ N, 84◦00′ W, 50m). Leaves from multiple
individuals were pooled for each species. All samples were dried
in an air-conditioned laboratory, ground with mortar and pestle
to a fine powder, and 2 g of this powder was transferred to a
screw cap test tube and combined with 10mL of methanol. The
samples were sonicated for 10min and filtered to separate the leaf
material from the supernatant. This step was repeated a second
time, and the supernatants were combined and transferred to a
pre-weighed 20mL scintillation vials. The solvent was removed
under reduced pressure at 30◦C and prepared for NMR analysis.

1H-NMR Analysis
For each sample, 15mg of plant extract was dissolved in 1ml of
deuterated methanol and analyzed by 1H-NMR spectroscopy as
described for the prepared mixtures, but in this case, 128 scans
were collected per spectrum in order to maximize the detection
of minor compounds in the crude extracts. Spectra treatment
and data organization was performed according to the protocol
previously described for the prepared mixtures.

Bioassays
Extracts from 31 species of Piper were assayed in four different
panels: (1) an insect bioassay using the generalist herbivore
Spodoptera exigua (Noctuidae, Lepidoptera); (2) a bacterial
growth assay using Escherichia coli (Enterobacteriaceae);
(3) a yeast growth assay with Saccharomyces cerevisiae
(Saccharomycetaceae); and (4) a growth assay using the
plant Arabidopsis thaliana (Brassicaceae).

Spodoptera exigua eggs were purchased through Benzon
Research (Carlisle, PA) and a laboratory colony was maintained
on beet armyworm artificial diet (Southland Products, Lake
Village, AR). Experimental diets were made by replacing the 30%
of the artificial diet dry ingredients with dry ground leaf material
of Piper. Second instar S. exigua larvae where weighed and placed
in individual cups with experimental diet, with a total of 20
larvae per Piper species treatment. Larvae were checked daily to
monitor survival, molting and resupply of diet as needed. We
recorded survival, development time and pupal mass.
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Escherichia coli strain DH5α cells were grown on Luria Broth
(LB) solid media and incubated at 37◦C for 16 hr. Single colonies
were then used to inoculate 10mL LB liquid cultures, which
were incubated at 37◦C for 16 h with shaking. Aliquots of the
saturated cultures were diluted 100-fold in LB liquid medium.
Piper extracts were dissolved in methanol at a standardized
concentration of 80 mg/mL, and test extracts were added to the
diluted E. coli cultures at a concentration of 80µg/mL. Two
hundred microliter samples were arrayed into individual wells
of a sterile 96-well plate and sealed with clear adhesive film.
The plate was placed in a SpectraMax M2e 96-well plate reader
(Molecular Devices, Sunnyvale, CA) equilibrated at 37◦C. The
absorbance at 600 nm (OD600) was measured every 5min for
12 h with an initial shake time of 5 s and 3 s shake prior to each
reading.

Saccharomyces cerevisiae growth curves were measured in a
similar manner. S. cerevisiae S288c cells were plated on YPD
media (2% [w/v] peptone, 1% [w/v] yeast extract, 2% [w/v]
glucose) and incubated for 2 days at 30◦C. A single colony was
used to inoculate a 10mL YPD culture, which was incubated at
30 ◦C for 18 h with shaking. Saturated S. cerevisiae cultures were
diluted 100-fold into liquid YPD, and extracts were diluted into
these cultures as described above. Samples were arrayed into 96-
well plated and sealed with adhesive film. A sterile needle was
used to puncture a small hole in the adhesive film above each
well to prevent gas buildup. The resulting plate was assayed in
a SpectraMax M2e 96-well plate reader as described above with
OD600 readings taken at 5min intervals for 18 h with 30 s of
shaking before each reading.

Arabidopsis thaliana Col-0 seeds were surface sterilized with
seed cleaning solution (3% [v/v] sodium hypochlorite, 0.1% [w/v]
sodium dodecylsulfate) for 20min at 25 ◦C. The seed cleaning
solution was removed and seeds were washed five times in sterile
water. Seeds were resuspended in sterile water, incubated at 4
◦C for 48 h, then plated on MS-agar media (1/2X Murashige
and Skoog salts, MES-KOH pH 5.7, 1% [w/v] sucrose, 1% [w/v]
phytoagar) with or without the addition of Piper extracts at a
final concentration of 80µg/mL. Plants were grown vertically in a
growth chamber at 22◦C with constant light for 7 days. The roots
of each seedling were straightened, and the resulting plants were
imaged on a flatbed scanner. Root lengths were measured using
ImageJ (imageJ.nih.gov/ij/).

Statistical Analysis
To verify the approach using extracts from the cross taxa
samples, we performed a network analysis using 1H-NMR data
of the 31 Piper extracts along with spectra from the prepared
mixtures to seed the analysis with known structures. Piper species
produce many classes of secondary metabolites, therefore we
included a training set of spectra of 71 prepared mixtures in
the analysis which represented 21 different compounds that
varied in concentration. We excluded compound classes that
have not been recorded in Piper, including furanocoumarins,
saponins and irioid glycosides (except catalpol which was in
mixtures with other compounds). After modules of co-occurring
chemical shifts across the extracts were identified, we calculated
the correlations betweenmodule eigenvalues for each sample and

their bioassay values. We then identified the compounds from
the seeded prepared mixtures that had a significant correlation
to specific module eigenvalues, which allowed us to make
assumptions regarding the identity of bioactive molecules in the
extracts.

Intraspecific Piper Application
Samples
For intraspecies analysis, leaf samples were obtained from
multiple individuals of a single species, P. kelleyi, from Yanayacu
Biological Station, Napo Province, Ecuador (0◦36′ S, 77◦53′

W, 2080-m). We collected the most recently expanded leaves,
and when available, young leaves from plants at different
developmental stages. Key morphological features of Piper are
alternate leaves and jointed stems with enlarged nodes; the
number of nodes on an individual plant indicates the total
number of leaves produced, which is correlated with plant age.
Therefore, we collected leaves from three age categories, adult
(>25 nodes, N = 12), “saplings” (<20 nodes, N = 18) and
“seedlings” (or plantlets, < 10 nodes, N = 17). Samples were
then dried and prepared according to the protocol previously
described.

1H-NMR Analysis
The spectroscopic analysis of extracts of P. kelleyi follows that
described for the interspecific study of Piper species.

Statistical Analyses
For validating its applicability to data from within a species,
we performed the network analysis on the 1H-NMR data from
P. kelleyi extracts. We followed the analysis with a Multiple
Analysis of Variance (MANOVA) using module eigenvalues as
dependent variables and developmental stage (adult, seedling,
and sapling) and leaf age (young vs. fully expanded) as predictor
variables. Modules that demonstrated a significant main effect of
developmental stage were analyzed using Tukey’s HSD post-hoc
tests to determine the developmental stage to which that module
was associated. In addition, we compared module variability for
multiple (interspecific) vs. single species (intraspecific) analyses.
For each case, all the modules that weighted positively on a
spectrum were considered, and the total number of modules,
average and standard deviation of eigenvalues were calculated per
spectrum. We used a generalized model to test the differences
between multiple and single species analyses for the calculated
parameters.

RESULTS

Prepared Mixture Application
In all three prepared mixture analyses (intraclass, interclass,
and 4-component), the 1H-NMR network-based approach
identified modules of co-occurring chemical shifts that were
correlated with specific compounds or groups of chemical
shifts that are characteristic of structural features shared by
different compounds (Figure 1). Even with a broader range of
compound combinations, the networks still produced coherent
module-compound associations (Table 1). The Supplementary
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Information includes a table for each analysis (intraclass,
interclass, and 4-component) with specific details on the
proton resonances associated with each module identified, the
compounds highly correlated with each module and the specific
proton resonances indicated on the compounds (Tables S2–S4).
Arbitrary color names were initially assigned to each module,
so for the ease of discussion between analyses, we labeled the
modules based on the consistent structural features identified
across all three analyses (Tables S5–S6).

For intraclass mixtures, the technique was effective at
distinguishing shared chemical features among relatively
homogeneous samples (Figure S1, soft threshold β = 16). Each
module was consistently correlated with compounds sharing
structural features and often relating to compound class. Due
to the high degree of compound co-occurrence in the intraclass
analysis, some modules had a significant positive correlation
with the concentration of compounds that were in the mixtures,
but did not have peaks that were representative of that module.
For example, since PBA (prenylated benzoic acid) was present
in all the mixtures containing eugenol, it was not surprising that
a module in the network was positively correlated with both
compounds. The PHP-3 module was significantly correlated
with PBA concentration, yet did not contain the representative
peaks of PBA (Figure S1). This module had a higher positive
correlation with eugenol and did include peaks specific to that
compound. The analysis also identified chemical features shared
across classes of compounds, such as the prenyl group of PBA
and terpenoids in the STR-2 module.

Due to the increased mixture complexity in the interclass and
the 4-component mixtures, the co-occurrence of compounds
had a lesser influence on module affiliation. This complexity
is a better reflection of naturally occurring mixtures and
facilitated sensitivity tests for compound concentration and
peak overlap found in such mixtures. These networks not
only retained compound class-specificity of the modules, but
they were also characterized by proton resonances particular
to molecular features that were shared by compounds from
distinct biosynthetic pathways. For example, in the interclass
mixture analysis, the module PHP-1 (Table S3 and Figure 1)
was correlated with flavonoids genistein and daidzein, and
the stilbene resveratrol. This correlation was driven by
chemical shifts from a shared aromatic ring derived from
the phenylpropanoid pathway. Flavonoids and iridoids also
shared a module due to their common glycosylated moieties
(Table S3—module GLC-1—and Figure 1).

An important case was observed with amides and alkaloid
modules, which were interconnected through specific proton
resonances vicinal to the nitrogen atoms (Figure S2). In the
interclass mixture analysis, the three amides and the alkaloid
brucine were associated with module AMD-1, mostly due to
proton resonances in the α- and β-position of nitrogen atoms. In
the network, this module is strongly linked (the edges are due to
related peaks) to two alkaloid-related modules, and together they
are part of a cluster (or meta-module) of five modules that were
indicative of nitrogen-containing compounds. The amides and
alkaloids used in the analysis also share molecular features with
other classes of compounds accounting for the connections with

other modules. This example illustrates the utility of network
analysis for identifying structural similarities in mixtures due
to related chemical features. Another interesting and useful
result demonstrates that the network analysis provided evidence
of peaks originating from the interactions of compounds.
The phenolic peaks in resveratrol are generally broad and
undetectable, but the almost negligible resonances at δ 9.10
and δ 9.30 from the mixtures containing resveratrol, escin
and oleanic were evident in module PHP-4. Phenolic peaks
are sensitive to intermolecular interactions based on hydrogen
bonding, as they reduce proton exchange and improve peak
sharpness (Charisiadis et al., 2014). We verified experimentally
that these peaks only appear in the presence of escin, suggesting
that resveratrol in solution had hydrogen-bonding interactions
with the glycosylated portion of that compound. This example
demonstrates that the network analysis approach is highly
sensitive to peak intensity and can identify features only present
when specific combinations of compounds are present.

Given that each network generated from the prepared
mixtures resulted in distinct module-peak-compound
associations, we evaluated the efficacy of the approach for
determining the presence of a known compound. This provided
validation of the method consistency across mixtures with
different compositions and complexities, and demonstrated that
the analysis can be reproduced in other sampling designs, such
as extracts from a diversity of field-collected plants or animals.
However, precise validation, via various accuracy parameters
can be challenging, given that not every peak in a spectrum is
relevant in identifying a compound. For that reason, we opted to
calculate accuracy as a simple ratio between peaks identified in
the most correlated compound in a module and the total number
of proton resonances expected from that compound (Table 1).
The average overall accuracy was similar across all analyses (0.56
± 0.05, 0.58± 0.05, and 0.52± 0.05 for intraclass, interclass, and
4 compound mixtures respectively) indicating that about 55%
of the signals were captured in the most representative module
of a compound. There were some modules that had a relatively
low accuracy ratio. In many of these cases, the compounds had
a large number of protons resonances (e.g., escin and digitoxin)
and the protons from specific structural features were identified
in the modules, but they did not represent the majority of all the
protons present on the compound.

Interspecific Piper Application and
Bioactivity
For the networks of plant extracts, seeded by the laboratory
generated mixtures, we set the soft threshold β at 11 and
identified 23 modules. Unlike the networks based on artificial
mixtures, the correlation matrices between modules and the
compound concentrations of the prepared mixtures were more
diffuse (Figure S3), with modules exhibiting positive loadings
from more than one compound. As expected, due to extract
complexity, themodules were characterized by shared compound
moieties rather than capturing the majority of representative
peaks of a specific compound. Nevertheless, network results
were successfully combined with the bioassay data to aid in
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FIGURE 1 | Overview of the network analysis, showing network construction and interpretation for the interclass mixtures set. Co-occurring 1H-NMR peaks are

identified from the array of sample spectra (top) and attributed to a color-coded module. Here we highlight five of these modules that span through three classes of

natural products. In the resulting network (center), the corresponding modules are colored to show complete node composition and module-to-module connectivity.

The modules are properly named according to their compound class identity (bottom). FLV-2 module represents exclusively flavonoids, as it contains chemical shifts

representative of specific molecular features of this class of compounds. It is interconnected to PHP-1, a phenylpropanoid module, due to the p-phenol moiety shared

between flavonoids and the stilbene resveratrol. Another flavonoid module, FLV-1, is characteristic to the structural features of the compound rutin, and is connected

to the module GLC-1, which represents glycosyl moieties. Since this is also a structural feature present in iridoid glycosides, GLC-1 is connected to the iridoid-specific

module IRG-2.
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the identification of potential bioactive molecules. Most notably,
we found that yeast growth was negatively correlated with the
presence of peaks identified by the graymodule (δ 1.74, 1.78, 1.82,
5.33). From the laboratory mixture networks, we determined
that PBA was strongly correlated to this gray module, and more
generally, these chemical shifts were representative of protons
from a prenylated phenol. Based on the module eigenvalues,
we identified five species that had these resonances (Figure 2,
P. peracuminatum, P. psuedobumbratum, P. friedrichsthalii,
P. phytolaccifolium, P. trigonum). The eigenvalues of other
modules associated with these species revealed that the salmon
module was positively associated with all species but one,
P. peracuminatum, which was the source of the most active
extract against yeast growth. In the prepared mixtures, the
salmon module (δ 1.66, 1.70, 2.02, 2.06, 2.10, 2.14, and 5.13)
was characterized by PBA and the terpenoids phytol and
nerolidol (Figure S1), compounds whose spectra are strongly
influenced by unsaturated aliphatic chains (prenyl groups).
The spectra of the more toxic extracts of P. peracuminatum
had an eigenvalue associated with the dark red module (δ
2.86, 4.25, and 4.29) which in the prepared mixtures network
featured protons on the oxygenated moieties of digitoxin and
pipleroxide. We hypothesize that these differences represent
an analog compound of PBA that contains a more oxidized
prenyl moiety, and this could be an influential factor in the
increased antifungal activity of P. peracuminatum extracts.
Furthermore, we identified small structural differences of related
structures that may have a large effect on bioactivity. Additional
research is necessary for isolation, structure determination, and
bioactivity confirmation, nevertheless, this result exemplifies
how the network approach outlined here can link spectral
features to biological activity and, potentially, ecological
interactions.

Intraspecific Piper Application and
Ontogeny
While the laboratory mixtures and interspecific Piper extracts
exhibited a high degree of dissimilarity between spectra and
yielded networks based on shared structural moieties, the
P. kelleyi extracts were utilized to analyze similar spectra typically
encountered in intraspecific comparisons. We identified 19
modules (soft threshold β = 6) in P. kelleyi that corresponded
mostly to the representative protons of specific compounds.
To determine the utility of the network for categorizing
ontogeny, which is a very important factor generating plasticity
in secondary metabolism (Koricheva, 2012) we utilized a
hierarchical cluster analysis of the module eigenvalues, which
clustered the modules into three main groups (Figure 3a). While
somemodules were not associated with a specific leaf age or plant
stage, half of the modules identified were significantly associated
with specific life stages (MANOVA, Wilks λ = 0.42 and 0.10
for leaf age and plant stage respectively p < 0.001). A cluster of
six modules were specific to seedlings (Tukey’s HSD p < 0.05),
which according to the 1H-NMR spectra, are characterized by
the amide piplartine and structurally similar amides in crude
extracts. Piplartine was essentially absent in mature plants, where
the peaks for a previously reported chromene (Jeffrey et al.,
2014) are dominant (Figure 3b). The distinction between sapling
and mature plants was not evident, as both contain peaks for
chromene and its benzopyran dimer. Since these two compounds
have a high degree of peak overlap, the modules related to
these two stages were determined by a combination of the peaks
for these two compounds. However, based on the resonances
identified in the aromatic/alkene region of the spectrum, it is
apparent that the sapling-related module are more influenced
by peaks characteristic to the chromene, while the adult related
modules were determined by the dimeric compound. This

FIGURE 2 | A correlation heatmap of module eigenvalue and bioactivity of E. coli, A. thaliana, S. cerevisiae (OD600 inset) and S. exigua. We identified compounds

containing prenylated phenols across multiple Piper species with different side chains and different bioactivity.
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FIGURE 3 | Intraspecific analysis of Piper kelleyi identified compounds present across life stages and compounds unique to seedlings and young leaves. A subset of

the 1H-NMR spectra demonstrates the peaks associated with a chromene compound (a) and piplartine amide (b).

observation is consistent with the proposed biosynthetic origin
of the dimeric chromane and photochemical studies of the
relationship between the chromene and the dimeric chromane
(Jeffrey et al., 2014)

Interspecific vs. Intraspecific Module
Variation
Specifics of how modules were identified and weighted on all
spectra differed between the multi vs. single species approaches
(Table S7). In the analysis with multiple Piper species, spectra
for each sample had more representative modules (10.45±0.51,
t-value= −4.66, p < 0.001) with lower average eigenvalues
(0.082 ± 0.006, t-value = 3.36, p = 0.001) across samples.
In comparison, each sample in the single species analysis had
fewer represented modules (7.84 ± 0.43) with higher average
eigenvalues (0.110 ± 0.005). There was no significant difference
in the variation of the eigenvalues between the analyses (0.097
± 0.006, 0.085 ± 0.005 for multiple and single species analysis
respectively, t-value=−1.56, p= 0.12).

DISCUSSION

The methodology presented here demonstrates the potential
of 1H-NMR networks to expose chemical markers of interest
from complex mixtures. Through the use of prepared mixtures
of secondary metabolites, we verified the reliability of the
analysis for linking groups of 1H-NMR resonances to structurally
similar compounds and identifying class-specific modules
for metabolites. By varying the complexity of the prepared
mixtures, we gained insight into compound correlations, such
as relationships driven by secondary structural features (e.g.,
prenyl and glycosyl moieties in aromatic compounds), shared
core features (Nitrogen-vicinal resonances in amides and
alkaloids), and potentially from intramolecular interactions

(resveratrol in the presence of escin). These results are based
on a compound set that represents only part of the highly
diverse structural space of plant secondary metabolites. We
project that complementing the network with more complex
and unique molecules found in complex extracts, as well
as compounds originated from biosynthetic pathways other
than those represented here, will enhance the power of
this approach to recognize specific molecular features and
facilitate structure elucidation of unknown compounds in
other plant families. We also predict that this approach
could be used in the investigation of non-model organisms
besides plants, given the proper considerations regarding
the general composition of the study system, and with the
selection of representative compounds for the mixture training
set.

The ability to identify shared structural features rather than
absolute compound identities is important for the analysis
of plant extracts, in which metabolite diversity and spectral
complexity are more expressive. In the interspecific comparison
of Piper species, we found higher module count per spectra,
which was due to multiple shared structural features identified
across species. The stability of modules within a species is an
important attribute of this approach, making it more robust to
phenotypic plasticity than for quantifying specific compounds,
since individual compounds can vary substantially and may
even drop out at certain ontogenetic stages. We found a
strong positive correlation between yeast growth inhibition
and the presence of specific chemical markers shared across
different species. These markers appear to be related to a
common structural feature present in related molecules: a
prenyl group. The most active extract showed strong correlation
to resonances that indicate a slightly modified version of
the prenyl moiety, and the ongoing targeted isolation of the
bioactive compound should confirm that hypothesis. Here,
the network analysis and resulting eigenvalues connected
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chemical information (1H-NMR data) to biological activity
across taxa, revealing important structure-activity relationships
and facilitating the identification of compounds of interest.
The chemistry of these species is largely unknown and the
genus Piper is known to utilize divergent biosynthetic pathways
between species, with closely related species producing different
classes of compounds. Thus, this analysis also revealed potentially
shared biosynthetic pathways that were previously unknown
in these species, suggesting that the same method could be
applied to connect secondary metabolic profiles to phylogenetic
data, exposing specific relationships between compounds or
specific compound features and their underlying genes. These
results will require subsequent isolation, characterization and
bioassays, nevertheless this example highlights the utility of the
network based approach for identifying potential compounds of
interest.

In the intraspecific study of Piper kelleyi, we combined the
variable reduction resulting from network analysis and classic
statistical methods to elucidate the effects of plant ontogeny on
chemical composition. Given the lower variability in data for
the Piper extracts, more information was extracted for specific
compounds, resulting in fewer modules identified per sample. In
the single species analysis the module eigenvalues were higher
per sample due to higher sensitivity to compound concentrations.
The modules revealed that piplartine was found in seedlings but
was not present in other developmental stages. These results
corroborate findings from a previous study on the changes in
secondary metabolism during ontogeny in P. gaudichaudianum
(Gaia et al., 2014). This species also produces a PBA in the
seedling stage, which is postulated to be the precursor for
the chromene in P. kelleyi (Jeffrey et al., 2014). The approach
described here can be used to uncover broad patterns of change
across ontogeny of plants, and those taxa that exhibit the greatest
changes in eigenvalues or network structure warrant further
chemical ecology investigation. For example, it is interesting
to note the prevalence of amides in the seedlings, which are
especially vulnerable to generalist herbivores, fungi, and other
parasites. Amides, including piplartine, are produced by several
species of Piper, where they function as antifungal and anti-
herbivore defensive compounds (Navickiene et al., 2000; da Silva
et al., 2002; Dyer et al., 2004; Marques et al., 2007, 2010).
We hypothesize that these ontogenetic changes in defensive
chemistry of P. kelleyi may reflect the changes in sources
of mortality across the different life stages of a plant. As a
seedling, plants may be more susceptible to fungal attack and
generalist herbivory. Previous studies on P. kelleyi found that
plants producing higher amounts of PBA and chromene had
a lower diversity of specialist caterpillars, suggesting that these
compounds play a defensive role against herbivory (Jeffrey
et al., 2014; Tepe et al., 2014; Glassmire et al., 2016). Another
study found that chromenes produced by species of Encelia
(Asteraceae) were phototoxic to bacteria, yeast and insects
(Proksch et al., 1983). The hypothesis of age-specific specialized
chemical defenses is clarified by the biosynthetic evidence that
piplartine and PBA originate in the PHP pathway, so metabolic
flexibility is made possible by the existence of a common
precursor, p-cinnamic acid. Network analysis on P. kelleyi

successfully revealed an ontogenetic change in chemotype,
however additional controlled studies should verify the gradual
changes in metabolic profile during the development of P. kelleyi
individual plants.

This method can be applied to any 1H-NMR dataset and is
not limited to plant samples. There are several considerations for
any system. First, the strength of the peak-module-compound
associations will vary depending on the variation between
samples. For example, in the interspecific analysis, modules
identified shared structural features as opposed to complete
compounds. In comparison, the modules in the single species
analysis represented entire compounds or more complete
fragments of compounds. Second, this method does not require
seeding the analysis with known compounds, however it can
be a useful tool for structure determination and de-replication.
When including spectra of known compounds, it is helpful to
choose compounds that would represent potential structural
features based on previous knowledge of the samples. Since the
analysis is based on co-variation among peaks across spectra, it
is important to prepare the samples of known compounds with
varying relative concentrations. And finally, it is possible that
bioactivity associated with a module may be due to synergistic
effects with compounds at concentrations not detected by the 1H-
NMR and this analysis should be viewed as a starting point for
further investigations.

It is relevant to point out a complementary approach,
statistical total correlation spectroscopy (STOCSY), which is a
method to identify co-varying peaks across sets of spectra 1H-
NMR (Sands et al., 2011). Starting from a specific “driver” peak
pre-defined by the analyst, the technique primarily identifies
other peaks related to the same compound, and with multiple
rounds of analysis it could also provide fine-tuned information
about positive or negative compound associations. We support
the view that important 1H-NMR peaks revealed through the
proposed network approach could be seeded into STOCSY, from
which we would further gain information to completely identify
compounds of interest. This combination of techniques could
also highlight unexpected metabolite associations, and therefore,
motivate new hypothesis regarding the natural role of secondary
metabolites in ecological systems.

CONCLUSION

Plant secondary metabolite profiles vary within a species, across
species, across habitats, and along gradients from local to global
scales. However, there are not many established metrics that
accurately categorize and quantitatively compare these mixtures,
so it is tempting to focus on single compounds, broad-range
colorimetric assays, or bioassays (Dyer et al., 2014, 2018).
Here, we demonstrate that network analysis of 1H-NMR spectra
can provide a heuristic summary of complex phytochemical
mixtures. This approach can facilitate examination of the
biological consequences of complete biosynthetic products, as
opposed to focusing on effects of single compounds. It provides a
method for identifying ecologically important chemical features
that may be shared across compounds or active mixtures. From
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the perspective of natural products chemistry, this approach has
the potential to facilitate filtering of extract arrays from multi-
species field sampling, allowing one to focus on extracts that
are characterized by the most promising network modules for
subsequent targeted isolation and structure determination. For
chemical ecology, it provides a tool to quantifying entire arrays
of chemical defense within plant or animal tissues and using
the parameters as predictors or response variables in statistical
models. Module importance or overall network parameters can
be examined in response to manipulations of resources or can be
mapped onto phylogenies to address interesting questions about
the origins of biodiversity (Ehrlich and Raven, 1964).
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