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In plants, salicylic acid (SA) plays important roles in regulating immunity and programed
cell death. Early studies revealed that increased SA accumulation is associated with the
onset of hypersensitive reaction during resistance gene-mediated defense responses.
SA was also found to accumulate to high levels in lesion-mimic mutants and in some
cases the accumulation of SA is required for the spontaneous cell death phenotype.
Meanwhile, high levels of SA have been shown to negatively regulate plant cell death
during effector-triggered immunity, suggesting that SA has dual functions in cell death
control. The molecular mechanisms of how SA regulates cell death in plants are
discussed.
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Salicylic acid (SA) is a plant hormone that plays key roles in defense signaling (Vlot et al.,
2009). Pathogen infection induces SA biosynthesis and accumulation. Two groups of Arabidopsis
mutants, salicylic acid induction deficient2 (sid2) and enhanced disease susceptibility5 (eds5), are
deficient in pathogen-induced SA accumulation and exhibit increased susceptibility to biotrophic
pathogens (Nawrath and Metraux, 1999; Dewdney et al., 2000). sid2 mutants carry mutations in
the isochorismate synthase ICS1, suggesting that SA is synthesized from chorismate following
pathogen infection via ICS1 (Wildermuth et al., 2001). EDS5 encodes a multi-antimicrobial
extrusion protein (MATE) transporter (Nawrath et al., 2002). The exact role of EDS5 in SA
metabolism is unclear. It is likely to be involved in exporting SA or a precursor of SA out of plastids
(Serrano et al., 2013).

SA is perceived by two groups of receptors, NONEXPRESSOR OF PATHOGENESIS-RELATED
GENES1 (NPR1) and NPR3/NPR4, all of which display high affinity with SA (Fu et al., 2012;
Wu et al., 2012; Manohar et al., 2015; Ding et al., 2018). However, they have opposite roles
in transcriptional regulation of defense gene expression (Ding et al., 2018). NPR1 functions
as a transcriptional activator that promotes SA-induced defense gene expression and pathogen
resistance (Fan and Dong, 2002). Loss of NPR1 results in reduced SA-induced PR gene expression
and increased susceptibility to pathogens (Cao et al., 1994; Delaney et al., 1995). On the other
hand, NPR3 and NPR4 serve as redundant transcriptional co-repressors that prevent activation
of defense gene expression when the SA level is low (Ding et al., 2018). When SA levels are
high, SA inhibits the transcriptional repression activity of NPR3/NPR4 to activate the expression
of SA-responsive genes. The NPR4-4D mutant protein that is unable to bind SA constitutively
represses defense gene expression and blocks SA-induced immunity, rendering the mutant plants
with enhanced disease susceptibility (Ding et al., 2018). Regulation of defense genes by NPR1 and
NPR3/NPR4 is directly facilitated by a group of redundant bZIP transcription factors, including
TGA2, TGA5, and TGA6, which interact with both NPR1 and NPR3/NPR4 (Zhang et al., 1999,
2003, 2006; Despres et al., 2000; Zhou et al., 2000).
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Increased SA accumulation is associated with hypersensitive
response (HR), a form of programed cell death often induced
by effector-triggered immunity (ETI), as well as spontaneous
cell death in lesion-mimic mutants. Early studies showed that
activation of N gene-mediated defense responses by tobacco
mosaic virus led to about 20-fold increase in endogenous SA
levels in the infected tobacco leaves (Malamy et al., 1990).
Activation of ETI by Pseudomonas effectors AvrRpm1 and
AvrRpt2 in Arabidopsis also results in dramatic increases in local
SA levels in a SID2 and EDS5-dependent manner (Nawrath and
Metraux, 1999). Meanwhile, in mutants with spontaneous cell
death, SA accumulates at much higher levels than in wild type
(Bruggeman et al., 2015). However, in autoimmune mutants with
no spontaneous lesion formation, such as suppressor of npr1-1,
constitutive1 (snc1) and defense, no death1 (dnd1), SA levels
are still dramatically increased (Yu et al., 1998; Li et al., 2001),
suggesting that cell death is not required for the activation of

SA biosynthesis and high levels of SA alone are not sufficient to
activate cell death.

Salicylic acid has been shown to be required for spontaneous
cell death in several lesion-mimic mutants (Table 1). Treatment
with low levels of SA activates runaway cell death in lesion
simulating disease 1 (lsd1) (Dietrich et al., 1994). Blocking
SA accumulation by expressing the SA hydroxylase encoded
by the bacterial NahG gene suppresses lesion formation in
lsd6, lsd7, accelerated cell death 6 (acd6), and acd11 mutants
(Weymann et al., 1995; Rate et al., 1999; Brodersen et al., 2005).
In the syntaxin of plants 121 (syp121) syp122 double mutant,
spontaneous cell death is also attenuated when SA biosynthesis
or SA perception is blocked (Zhang et al., 2007). However, not all
lesion-mimic mutants require SA accumulation for activation of
spontaneous cell death. For example, expression of NahG does
not affect lesion formation in lsd2 and lsd4 mutants (Dietrich
et al., 1994; Hunt et al., 1997).

TABLE 1 | SA levels and cell death phenotypes of Arabidopsis thaliana mutants.

Mutant SA levels Cell death phenotype Reference

lsd1 High Spontaneous cell death Dietrich et al., 1994

lsd2 ND∗ Spontaneous cell death Dietrich et al., 1994

lsd2 nahG Low Spontaneous cell death Dietrich et al., 1994; Hunt et al., 1997

lsd4 ND∗ Spontaneous cell death Dietrich et al., 1994

lsd4 nahG Low Spontaneous cell death Dietrich et al., 1994; Hunt et al., 1997

lsd6 High Spontaneous cell death Weymann et al., 1995

lsd6 nahG Low No spontaneous cell death Weymann et al., 1995

lsd7 High Spontaneous cell death Weymann et al., 1995

lsd7 nahG Low No spontaneous cell death Weymann et al., 1995

acd6 High Spontaneous cell death Rate et al., 1999

acd6 nahG Low No spontaneous cell death Rate et al., 1999

acd11 High Spontaneous cell death Brodersen et al., 2005

acd11 nahG Low No spontaneous cell death Brodersen et al., 2005

syp121 syp122 High Spontaneous cell death Zhang et al., 2007

syp121 syp122 nahG Low Reduced spontaneous cell death Zhang et al., 2007

syp121 syp122 sid2 Low Reduced spontaneous cell death Zhang et al., 2007

snc1 High No spontaneous cell death Li et al., 2001

dnd1 High No spontaneous cell death; reduced AvrRpt2-induced cell
death

Yu et al., 1998

dnd2 High No spontaneous cell death; reduced AvrRpt2-induced cell
death

Jurkowski et al., 2004

agd2 High Spontaneous cell death; reduced AvrRpt2- and
AvrRpm1-induced cell death

Rate and Greenberg, 2001

agd2 nahG Low Spontaneous cell death; restored AvrRpm1-induced cell
death

Rate and Greenberg, 2001

agd2 npr1 ND∗ Reduced spontaneous cell death; restored
AvrRpt2-induced and AvrRpm1-induced cell death

Rate and Greenberg, 2001

hrl1 High Spontaneous cell death; reduced AvrRpm1-induced cell
death

Devadas and Raina, 2002

hrl1 nahG Low Delayed spontaneous cell death; restored
AvrRpm1-induced cell death

Devadas and Raina, 2002

hrl1 npr1 High Delayed spontaneous cell death; restored
AvrRpm1-induced cell death

Devadas and Raina, 2002

npr3 npr4 WT-like No spontaneous cell death; reduced AvrRpt2-induced cell
death

Zhang et al., 2006; Fu et al., 2012

∗ND, not determined; WT, wild type.
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Interestingly, pre-treatment of Arabidopsis Col-0 plants with
SA blocks HR activated by Pseudomonas syringae pv maculicola
(P.s.m.) ES4326 carrying avrRpm1 (Devadas and Raina, 2002). In
transgenic plants overexpressing NPR1, activation of cell death
by the bacteria is also attenuated (Rate and Greenberg, 2001). In
addition, increased ion leakage was observed in eds5-3 compared
to wild type following treatment with Pseudomonas syringae pv
tomato (P.s.t.) DC3000 with avrRpt2 (Figure 1A), indicating that
AvrRpt2-induced cell death is enhanced in eds5-3. These findings
suggest that activation of SA signaling plays an important role in
negative regulation of cell death during ETI.

Consistent with the role of pathogen-induced SA in negative
regulation of cell death in ETI, enhanced cell death was observed
in the npr1-1 mutant compared to wild type following treatment
with P.s.m. ES4326 carrying avrRpm1 (Rate and Greenberg,
2001), suggesting that perception of SA by NPR1 is critical for
the attenuation of AvrRpm1-induced cell death. When npr1-1,
npr4-4D, and the npr1-1 npr4-4D double mutant plants were
challenged with P.s.t. DC3000 carrying avrRpt2, cell death in
the npr1-1 and npr4-4D single mutants was similar to that
in wild type, whereas npr1-1 npr4-4D exhibited enhanced
cell death (Figure 1B), suggesting that npr1-1 and npr4-4D
have additive effect on AvrRpt2-induced cell death. These data
also suggest that SA signaling mediated by both NPR1 and
NPR3/NPR4 plays critical roles in dampening cell death during
ETI.

Consistent with the effects of pathogen-induced SA
accumulation on inhibition of HR, avirulent pathogen-
induced cell death in several autoimmune mutants with high SA
levels was found to be greatly reduced. For example, cell death
induced by P.s.m. ES4326 strains carrying avrRpt2 or avrRpm1
is dramatically reduced in aberrant growth and death2 (agd2)
plants (Rate and Greenberg, 2001). The reduced cell death can
be restored back to wild type level by introducing NahG or
npr1-1 into agd2, suggesting that the high SA level in agd2 is
responsible for the suppression of cell death activated during
ETI. In the hypersensitive response like lesions1 (hrl1) mutant, cell
death induced by AvrRpt2 and AvrRpm1 is also greatly reduced
(Devadas and Raina, 2002). Similarly, introducing NahG or npr1-
1 into hrl1 leads to restoration of RPM1-mediated cell death. In
another class of autoimmune mutants, including dnd1 and dnd2,
gene-for-gene resistance is normal, but there is almost no HR
following infection by avirulent bacterial pathogens (Yu et al.,
1998; Jurkowski et al., 2004). Both dnd1 and dnd2 accumulate
high levels of SA in the absence of pathogen infection, which
is likely responsible for the lack of ETI-induced HR in these
mutants.

Arabidopsis NPR3 and NPR4 function redundantly in
negative regulation of defense gene expression. npr3 npr4 double
mutants accumulate similar levels of SA as wild type plants, but
constitutively express PR genes and exhibit enhanced resistance
to virulent pathogens (Zhang et al., 2006). Interestingly, HR
activated by AvrRpt2 is almost completely blocked in npr3 npr4
double mutant plants (Fu et al., 2012). AvrRpt2-induced HR
is restored in the npr3 np4 npr1 triple mutant [9], suggesting
that constitutive activation of SA response in npr3 npr4 mutants
is responsible for the suppression of cell death activated by

FIGURE 1 | Analysis of ion leakage in eds5-3, npr1-1, npr4-4D, and npr1-1
npr4-4D plants after treatment with P.s.t. DC3000 avrRpt2. Leaves of
4-week-old plants of the indicated genotypes grown under 12 h/12 h
light/dark photoperiod at 23◦C were infiltrated with mock (10 mM MgCl2) or
P.s.t. DC3000 avrRpt2 (OD600 = 0.02). For each plant, two leaves were
infiltrated and one leaf disk was cut from each leaf immediately after
infiltration. The leaf disks were subsequently washed twice in distilled water.
Six leaf disks from three plants, representing one biological replicate, were
transferred into a 50-ml plastic tube containing 20 ml of distilled water and
electrical conductivity was measured at different time points after infiltration
using a VWR EC meter (Model 2052). Each data point on the graph
represents the mean ± SD of three biological replicates. In (A), Two-tailed
t-test was performed for each time point between wild type (Col-0) and
eds5-3 plants treated with P.s.t. DC3000 avrRpt2 (∗∗p < 0.01). In (B), one
way ANOVA with post hoc Tukey HSD test was performed for each time point
among the different genotypes. Different letters (a,b) indicate statistically
significant differences between the samples (p < 0.01).

AvrRpt2. This is consistent with reduced ETI-induced cell death
in autoimmune mutants with high SA levels.

In conclusion, SA plays dual roles in the regulation of
programed cell death in plants. The exact mechanism of how
SA regulates cell death is currently still unclear. Analysis of early
SA-responsive genes by RNA-sequencing revealed that a large
number of positive regulators of defense signaling are strongly
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up-regulated 1 h after SA treatment (Ding et al., 2018).
Induction of these defense regulators may play critical roles
in potentiating defense signaling leading to activation of
cell death. Meanwhile, many known negative regulators of
plant immunity are also rapidly induced after SA treatment.
Induction of such negative immune regulators could lead to
negative feedback regulation of defense responses and cell
death, which is critical in controlling the magnitude of cell
death and preventing the spread of cell death beyond the
infection site. The key regulatory components downstream of
the SA receptors that are involved in SA-mediated inhibition
of ETI-induced cell death remain to be determined in the
future.
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