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Epigenetic regulation is referred to as changes in gene function that do not involve
changes in the DNA sequence, it is usually accomplished by DNA methylation,
histone modifications (repressive marks such as H3K9me, H3K27me, H2Aub, or active
marks such as H3K4me, H3K36me, H3Ac), and chromatin remodeling (nucleosome
composition, occupancy, and location). In plants, the shoot apex produces different
lateral organs during development to give rise to distinguishable phases of a juvenile,
an adult and a reproductive phase after embryogenesis. The juvenile-to-adult transition
is a key developmental event in plant life cycle, and it is regulated by a decrease in
the expression of a conserved microRNA-miR156/157, and a corresponding increase
in the expression of its target genes encoding a set of plant specific SQUAMOSA
PROMOTER BINDING PROTEIN-LIKE (SPL) proteins. Recent work has revealed that
the miR156/157-SPL pathway is the master regulator of juvenile-to-adult transition
in plants, and genes in this pathway are subjected to epigenetic regulation, such
as DNA methylation, histone modifications, and chromatin remodeling. In this review,
we summarized the recent progress in understanding the epigenetic regulation of the
miR156/157-SPL pathway during juvenile-to-adult transition and bring forward some
perspectives of future research in this field.
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INTRODUCTION

Unlike mammals, in which organ formation is completed during embryonic development, plants
produce new organs from self-sustaining stem cell populations known as meristems in different
developmental processes. In plants, post-embryonic development can be divided into a juvenile
vegetative phase, an adult vegetative phase and a reproductive phase, and each developmental
phase is marked by changes in a series of distinct phase-specific traits (Poethig, 1990; Kerstetter
and Poethig, 1998). The transition from the juvenile vegetative phase to the adult vegetative phase
was referred to as the juvenile-to-adult transition or vegetative phase change.

In Arabidopsis, the juvenile-to-adult transition is characterized by the formation of leaf abaxial
trichomes, an increase in leaf length/width ratio and serration, and a decrease in cell size (Telfer
et al., 1997; Tsukaya et al., 2000; Usami et al., 2009). Genetic and molecular analyses demonstrated
that the conserved miRNA-miR156/157 and its target genes-SQUAMOSA PROMOTER BINDING
PROTEIN-LIKE (SPL) genes act sequentially with miR172, another miRNA that targets a class
of AP2-like transcription factors (TFs), to regulate juvenile-to-adult transition in plants (Wu and
Poethig, 2006; Wu et al., 2009; He et al., 2018). miR156/157 is highly expressed in juvenile phase and
its abundance declines gradually, while its target SPL genes increases during shoot development.
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miR156/157 negatively regulates SPL gene expression through
transcript cleavage or translational inhibition. SPLs were
also responsive to photoperiodic induction and exhibited an
miR156/157-independent expression pattern (Schmid et al.,
2003; Jung et al., 2012). Therefore, the outcome of SPL levels fine-
tuned by both miR156/157 and exogeneous cues orchestrates the
timing of juvenile-to-adult transition (Huijser and Schmid, 2011;
Poethig, 2013).

The Arabidopsis genome encodes eight miR156 genes
(MIR156A∼H) and four miR157 genes (MIR156A∼D), and
those genes function redundantly. The mir156a mir156c double
mutant exhibited a similar phenotype to the 35S::MIMICRY156
transgenic plants with significantly reduced levels of miR156,
which indicates that MIR156A and MIR156C are the two main
loci contributing to the level of miR156 and have dominant
roles in vegetative phase change within the miR156 family
in Arabidopsis (Yang L. et al., 2013; Yu et al., 2013). miR157
functions redundantly with miR156, but has a much smaller
effect on shoot morphology and SPL gene expression than
miR156 (He et al., 2018). miR156/157 targets 10 out of 16
different SPL genes in Arabidopsis. Based on the amino acid
sequence of the SBP domain, the miR156/157-targeted SPL genes
can be classified into five clades, SPL3/SPL4/SPL5, SPL9/SPL15,
SPL2/SPL10/SPL11, SPL6, and SPL13A/B (Xie et al., 2006;
Riese et al., 2007; Preston and Hileman, 2013). Genetic and
functional analysis of the role of SPL genes in vegetative phase
change indicated that SPL2/SPL9/SPL10/SPL11/SPL13/SPL15,
but not SPL3/4/5/6, contribute to the juvenile-to-adult
transition with SPL9/SPL13/SPL15 being more important
for juvenile-to-adult transition than SPL2/SPL10/SPL11
(Xu et al., 2016a).

As the master regulator of the juvenile-to-adult transition,
miR156/157-SPL pathway has been shown to be subjected
to transcriptional and post-transcriptional regulation. Those
include the transcriptional regulation of pri-MIR156/157 and
SPLs genes, the regulation of miR156/157 biogenesis, and post-
transcriptional regulation of SPL genes (Figure 1). Here, we
review our current understanding of epigenetic regulation of the
miR156/157-SPL pathway and the roles of corresponding players
in juvenile-to-adult transition in plants.

DNA METHYLATION

DNA methylation [5-Methylcytosine (5mC)] is a hallmark of
epigenetic gene silencing in both plants and mammals (Feng
et al., 2010; Law and Jacobsen, 2010). DNA methylation is
found at CG or non-CG sites including CHH and CHG
(H represents A, T, or C) in plants in contrast to CG
sites only in mammals (Henderson and Jacobsen, 2007;
Cokus et al., 2008). In plants, CG methylation is carried
out by DNA METHYLTRANSFERASE 1 (MET1), whereas
DOMAINS-REARRANGED METHYLTRANSFERASEs (DRM)
and CHROMOMETHYLASE 3 (CMT3) are responsible for the
non-CG methylation (Law and Jacobsen, 2010).

The first indication of DNA methylation plays a role in
phases of shoot development comes from the work done by

Brink. In the 1950s, Brink noticed the similarity between
phase change in plants and changes in cell states in non-plant
organisms, he proposed that phases of shoot development might
be regulated by reversible changes in chromatin based on his
research on paramutation in maize (Brink, 1962). Subsequent
work on Spm transposable elements (Banks and Fedoroff, 1989)
and the Robertson’s Mutator (Mu) element (Martienssen et al.,
1990) suggest that DNA methylation may be the underlying
mechanism for maintaining phases of shoot development in
plants. Recent work in peach also demonstrated that levels of
nuclear DNA methylation was higher in adult meristems than
that in juvenile and juvenile-like meristems (Bitonti et al., 2002),
and an increase in DNA methylation during development seems
widespread in plants (Fraga et al., 2002; Ruiz-García et al., 2005).
In Arabidopsis, the triple DNA methyltransferase mutant drm1
drm2 cmt3 exhibited a developmental retardation phenotype
(Cao and Jacobsen, 2002), indicating that DNA methylation
is important for normal growth and development in plants.
However, genome-wide DNA methylation analysis of 5-week-
old Columbia wild type, met1 and drm1 drm2 cmt3 triple
mutant (Zhang et al., 2006), and 25-day-old Columbia wild
type (Zilberman et al., 2007) indicated that only the coding
sequence of the SPL10 gene contains non-CG methylation.
These results suggest that genes upstream or downstream of the
miR156/157-SPL pathway, instead of miR156/157 or SPL genes,
might be regulated by DNA methylation. Therefore, phenotypic
characterization of vegetative phase change phenotype of
mutants of DNA methyltransferases (MET1, DRM, and DNMT2)
or demethylation enzymes (ROS1, DME, DML2, and DML3), as
well as bisulfite sequencing of MIR156/157 and SPLs loci, will
facilitate to uncover the role of DNA methylation in regulation
of miR156/157-SPL pathway and juvenile-to-adult transition in
plants.

HISTONE MODIFICATION

Histone modification at specific lysine sites functions as
transcription repressive marks such as H3K9me, H3K27me,
H2Aub, etc., or active marks such as H3K4me, H3K36me,
H3Ac, etc., this modification is catalyzed by Polycomb group
(PcG) protein complexes and Trithorax group (TrxG) protein
complexes, respectively (Pien and Grossniklaus, 2007; Köhler
and Hennig, 2010; Grossniklaus and Paro, 2014; Kingston
and Tamkun, 2014). PcG complexes are repressors of gene
transcription, and function in multi-subunit complexes, such
as Polycomb Repressor Complex 1 (PRC1) or Polycomb
Repressor Complex 2 (PRC2) (Grossniklaus and Paro,
2014).

PRC2 AND H3K27me3 MODIFICATION

PRC2 is a highly conserved and well-characterized PcG complex,
and it represses target gene expression by trimethylating histone
H3 at lysine 27 (H3K27me3) through the E(z) SET domain
(Köhler and Hennig, 2010; Grossniklaus and Paro, 2014). In the
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FIGURE 1 | Epigenetic regulation of juvenile-to-adult transition in plants. Active and repressive epigenetic regulators were marked in red and black at MIR156/157
and SPL loci, respectively. Triangle indicates gradual increase or decrease in the epigenetic modification levels of MIR156 loci.

Arabidopsis genome, three paralogous genes MEDEA (MEA),
SWINGER (SWN), and CURLY LEAF (CLF) are orthologs
of the Drosophila E(z) gene, which function as a histone
methyltransferase subunit in the PRC2 complex. MEA appears
to function in embryogenesis specifically, and CLF and SWN
are broadly expressed and partially redundant in vegetative and
reproductive development (Zheng and Chen, 2011; Bemer and
Grossniklaus, 2012; Xu et al., 2016b).

Whole genome analysis in Arabidopsis uncovered 1000s
of gene loci carrying the H3K27me3 mark catalyzed by the
PRC2 complex, indicating that H3K27me3 is a major epigenetic
silencing mechanism in plants (Zhang et al., 2007; Lafos et al.,
2011). Among them, most MIR156/157 loci, especially the
dominant loci (MIR156A, MIR156C, and MIR157A), also carry
H3K27me3 mark. However, except for SPL4 and SPL6 which play

no obvious roles in juvenile-to-adult transition, miR156/157-
targeted SPL genes are largely devoid of the H3K27me3 mark.
These results imply that the PRC2 complex promotes SPL
gene transcription indirectly by repressing the transcription of
MIR156/157 loci (Lafos et al., 2011).

During juvenile-to-adult transition in Arabidopsis, the
decrease in the transcription of MIR156A and MIR156C loci is
associated with an increase in the binding of the PRC2 complex
to these two loci, causing an increase in the H3K27me3 mark in
their promoter and transcribed regions as well as a decrease in
the H3K27ac mark in the region immediately after transcription
start sites (TSS) (Xu et al., 2016b,c). Loss-of-function mutant
of SWN, but not the loss-of-function mutant of CLF, exhibited
an obvious delayed juvenile-to-adult transition phenotype (Xu
et al., 2016b,c). H3K27me3 was completely lost in clf swn double
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mutant and it eventually dedifferentiated into a callus-like
tissue, making it impossible to determine the phenotype of
juvenile-to-adult transition (Xu et al., 2016b). Therefore, the
question of if SWN and CLF functions redundantly in vegetative
phase change remains unknown. However, the H3K27me3
mark at MIR156A/MIR156C loci was significantly reduced in
clf mutants, but that in swn mutant remains controversial,
which indicates that SWN and CLF may function redundantly to
repress MIR156A/MIR156C by catalyzing H3K27me3 (Xu et al.,
2016b,c).

PRC1 AND HISTONE UBIQUITINATION

PRC1 is thought to recognize the H3K27me3 mark to confer
stable transcriptional repression (Lund and van Lohuizen, 2004).
PRC1 is more dissimilar between Arabidopsis and animals, but
it has related functions. In Arabidopsis, the function of PRC1
can be histone 2A mono-ubiquitination (H2Aub) dependent or
independent. H2Aub dependent group requires the E3 ubiquitin
ligase activity of Arabidopsis B lymphoma Moloney murine
leukemia virus insertion region1 homolog 1A (AtBMI1A)/B/C
or AtRING1A/B, while H2Aub independent group requires the
activity of the EMBRYONIC FLOWER 1 (EMF1) (Yang C. et al.,
2013; Calonje, 2014). BMI1-PRC1 and RING1-PRC1 are required
for the repression of seed maturation program after germination,
whereas EMF1-PRC1 is required for floral repression (Moon
et al., 2003; Calonje et al., 2008; Chen et al., 2010).

PRC1 has been shown to be involved in juvenile-to-adult
transition in Arabidopsis. BMI1-PRC1 maintains the repression
of miR156 and accelerates juvenile-to-adult transition (Picó et al.,
2015). The levels of MIR156A and MIR156C were upregulated in
atbmi1a/b mutant and the juvenile phase was prolonged with the
H2Aub and H3K27me3 marks being decreased in the TSS region
of MIR156A and MIR156C (Picó et al., 2015).

RING1-PRC1 and EMF1-PRC1 function to repress SPLs to
delay juvenile-to-adult transition (Li et al., 2017). In ring 1a ring
1b double mutant, the H2Aub mark was obviously decreased
in the promoter and coding region of SPL3, SPL9 and SPL10,
causing upregulation of these genes to accelerate the appearance
of adult traits (Li et al., 2017). Therefore, PRC1 variants
function in vegetative phase change mainly by targeting different
MIR156/157 loci or SPL genes in the miR156/157-SPL pathway,
and they have opposing roles in this process. However, how PRC1
variants recognize distinct targets still remains unclear, and more
work is required to explore the mechanism of how PRC1 works.

ATXR7 AND H3K4me3 MODIFICATION

The Arabidopsis genome encodes three H3K4 methyltransferase,
namely ARABIDOPSIS TRITHORAX1 (ATX1), ATX2, and
ATXR7 (Avramova, 2009). ATX1 and ATX7 are members of
the Trithorax family, and ATXR7 is the only member of the
SET1 subfamily in Arabidopsis (Tamada et al., 2009). atxr7-1,
but not atx1-1, atx2-1, or atx1 atx2 double mutant, exhibits
a precocious juvenile-to-adult transition phenotype. Chromatin

immunoprecipitation (ChIP) analyses indicated that ATXR7
binds to a region adjacent to the TSS of MIR156A and deposits
the H3K4me3 mark to activate MIR156A transcription (Xu et al.,
2018).

HAG1 AND HISTONE ACETYLATION

Histone acetylation is generally considered as an active
epigenetic mark, which is a balanced process regulated by
histone acetyltransferases (HAG1) and histone deacetylases
(HDA1, HAD6). Spt–Ada–Gcn5–acetyltransferase-like histone
acetyltransferase complex (SAGA-like complex) is conserved in
mammals, plants, files and yeast, and General Control Non-
repressed 5 (GCN5) functions as the catalytic component for this
complex (Turner, 2000).

In Arabidopsis, loss-of-function mutants in HAG1 (the
Arabidopsis homolog of GCN5), hag1-6 and hag1-7, exhibited a
significantly delayed juvenile-to-adult transition phenotype (Kim
et al., 2015). In hag1-6 mutant, transcripts of MIR156 loci and
mature miR156 remained stable; however, those of SPL3, SPL4,
SPL5, SPL9, SPL11, SPL13, SPL15, and SPL8were greatly reduced,
suggesting that the regulation of SPLs by HAG1 is independent of
miR156. ChIP results showed HAG1 was bound to the promoters
and transcribed regions of SPL3 and SPL9 directly, leading to
histone acetylation at the H3K9, H3K14, and H3K27 sites in
these genes (Kim et al., 2015). HAG1-mediated H3 acetylation
(H3Ac) of SPL9 is also responsive to light signals, which indicates
that HAG1-mediated H3Ac of SPL9 might function as a sensor
of environmental conditions to modulate the developmental
process in plants (Kim et al., 2015).

CHROMATIN REMODELING

Chromatin remodeling includes changes in nucleosome
composition, nucleosome occupancy, nucleosome location, and
the accessibility of the DNA to other transcriptional regulators.

SWR1-C AND H2A.Z HISTONE VARIANT

ATP-dependent SWR1 chromatin remodeling complex (SWR1-
C) functions in exchanging the histone H2A-H2B dimer with
the H2A.Z-H2B dimer, and then produces nucleosome variant
(Mizuguchi et al., 2004; Luk et al., 2010). In Arabidopsis,
mutations in the SWR1-C subunit coding genes (ARP6, SEF,
and PIE1) and H2A.Z coding genes (HTA8, HTA9, and HTA11)
exhibited a similar pleiotropic phenotype, which indicates that
the primary function of SWR1-C is to deposit H2A.Z (Mizuguchi
et al., 2004; Wu et al., 2005). However, the mechanism of
H2A.Z modification by SWR1-C to regulate different target
gene expression is distinguishable in that H2A.Z can change the
nucleosome occupancy to destabilize nucleosomes or to increase
nucleosome stability and/or to function with H3K4me3 mark
together (Martin-Trillo et al., 2006; Kumar and Wigge, 2010;
Choi et al., 2013).
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In arp6 and hat9/hat11 mutants, MIR156A/MIR156C
transcripts were reduced and juvenile-to-adult transition
was accelerated (Choi et al., 2016; Xu et al., 2018). ChIP
with H2A.Z antibody showed that H2A.Z was enriched at
the first 500 nucleotides after TSS of MIR156A/MIR156C,
and the level of H2A.Z was significantly reduced in arp6
mutant. However, H2A.Z level does not change significantly
during juvenile-to-adult transition, suggesting that H2A.Z
and SWR1-C contribute to maintaining the expression of
MIR156A/MIR156C early in shoot development, but do not
regulate the timing of juvenile-to-adult transition (Xu et al.,
2018). MIR156A transcript was reduced in arp6 mutant due
to higher nucleosome occupancy in its promoter region (Choi
et al., 2016); however, it was suggested that H2A.Z increases
the expression of MIR156A/MIR156C by promoting the
deposition of H3K4me3 rather than by decreasing nucleosome
occupancy in the MIR156A promoter region (Xu et al.,
2018).

ATP-DEPENDENT CHROMATIN
REMODELING PROTEIN

BRAHMA (BRM) is the ATPase subunit of the most
widely studied SWI2/SNF2 chromatin remodeling protein
complex. It uses the energy derived from ATP hydrolysis to
change the histone octamer-DNA interaction (Saha et al.,
2006; Clapier and Cairns, 2009). BRM regulates MIR156A
transcription by directly binding to the promoter region and
maintaining low occupancy of the −2 and +1 nucleosomes
proximal to the TSS. brm mutants exhibit an accelerated
juvenile-to-adult transition phenotype by reducing the
transcription of MIR156A (Xu et al., 2016c). BRM also
antagonizes the function of SWN in the PRC2 complex to
remove H3K27me3 repressive mark in MIR156A (Xu et al.,
2016c).

PICKLE (PKL) is a CHD3 ATP-dependent nucleosome
remodeling protein, which is physically associated with the
nucleosome remodeling and deacetylation complex (Perruc et al.,
2007; Zhang et al., 2008; Ho et al., 2013). PKL is bound to
the TSS adjacent region of MIR156A/MIR156C to promote
the juvenile-to-adult transition by repressing the transcription
of MIR156A/MIR156C. In pkl mutants, MIR156A/MIR156C
transcripts were elevated due to the reduction in nucleosome
occupancy at the +1 position, an increase in the H3K27ac mark,
and a corresponding decrease in the H3K27me3 mark in the
promoter and transcribed region (Xu et al., 2016b).

PERSPECTIVE

Although the miR156/157-SPL pathway has been shown to be
the master regulator of juvenile-to-adult transition in plants, yet
little is known about the upstream regulator of this pathway,
especially for miR157. Recent studies have revealed that DNA
methylation, histone modification, chromatin remodeling play
important roles in regulating the expression of some components

in the miR156/157-SPL pathway. However, there are still some
critical questions remain to be solved as illustrated in Figure 2.

HOW ARE EPIGENETIC REGULATORS
RECRUITED TO THE MIR156/157
AND/OR SPLs LOCI?

MIR156/157 and/or SPL loci are subjected to epigenetic
regulation to modulate juvenile-to-adult transition in plants.
However, these epigenetic regulators, by their own, have no DNA
binding specificity. Therefore, a central question is how these
epigenetic regulators are recruited to their target genes.

PRC2-mediated H3K27me3 is a conserved epigenetic
modification between plants and the animal kingdom (Mozgova
and Hennig, 2015; Xiao and Wagner, 2015). Recent genomic
study in Arabidopsis showed that PRC2 components bind to
specific DNA motifs called Polycomb response elements (PREs)
by interacting with specific TFs (Xiao et al., 2017). Interestingly,
six top enriched motifs (CTCC, CCG, G-box, GA repeat, AC-
rich, and Telobox motifs) out of 170 computationally defined
PREs were present at the MIR156A locus (Xiao et al., 2017). The
GA repeat and Telobox motifs were present adjacent to the TSS
region of MIR156A and MIR156C loci together, these motifs
are the potential binding sites for class I BPC and C1-2iD TFs,
respectively. This information will be helpful to identity TFs
through which the PRC2 complex interacts to be recruited to the
MIR156A/MIR156C loci during juvenile-to-adult transition.

EPIGENETIC MODIFICATION OF
MIR156/157 AND/OR SPL LOCI BY
STRESS?

Plants are sessile organisms and they are forced to adapt to
the changing environment. The miR156/157-SPL pathway
functions as the master regulator of juvenile-to-adult transition
and flowering (Wang et al., 2009; Wu et al., 2009). Therefore,
plants evolved a precise mechanism to adapt to the environment
by shortening or prolonging the juvenile phase or changing
the flowering time. Under salt or drought stress conditions,
miR156 was induced to maintain plants in the juvenile phase
for a relatively longer time; when they were returned to
favorable conditions, miR156 was suppressed to accelerate
the developmental transition (Cui et al., 2014). Under UV-
B radiation conditions, the PRC2-mediated H3K27me3
modification in the MIR156A/MIR156C loci was decreased,
and the corresponding up-regulation of miR156 delayed
juvenile-to-adult transition (Dotto et al., 2018). Other studies
also indicate that the expression of miR156 is responsive to
ambient temperature (Stief et al., 2014), phosphate starvation
(Hsieh et al., 2009), CO2 treatment (May et al., 2013), suggesting
a tight interaction between juvenile-to-adult transition and
environment through the miR156/157-SPL pathway.

Epigenetic modification is a reversible mark, which can be
removed or deposited to target genes to affect their expression
in response to changing environment. It will be of great interest
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FIGURE 2 | Epigenetic regulation of the miR156/157-SPL pathway in plant lifecycle. In plant lifecycle, the transcription of genes in the miR156/157-SPL pathway
exhibits a fixed temporal expression pattern. The major unknown parts in epigenetic regulation of the miR156/157-SPL pathway are shown in question mark. Oval
represents recruited transcription factors (TFs).

to learn how epigenetic modification patterns of MIR156/157
and/or SPL loci change in response to external cues, especially to
environment stresses, as well as how this changing environment
affects the juvenile-to-adult transition.

REVERSIBLE EPIGENETIC REGULATION
OF miR156/157 RESETTING?

During juvenile-to-adult transition, miR156/157 transcription
was reduced or silenced gradually to ensure the plant to enter the
adult phase and flower. This is achieved by disposing of active
epigenetic marks such as H3K4me3, H3K27ac and depositing
some repressive epigenetic marks such as H3K27me3 to miR156
loci. Interestingly, this silencing process needs to be reset to an
active state in each generation as miR156/157 is de-repressed
again to be highly expressed in the pro-embryo stage (Nodine and
Bartel, 2010) after flowering.

A similar example of Off-Resetting pattern in plant lifecycle is
the regulation of FLOWERING LOCUS C (FLC). FLC is silenced
by depositing H3K27me3 mark under winter cold treatment,
and the silenced state was maintained in the mature pollen
grains and the egg cells (De Lucia et al., 2008; Sheldon et al.,
2008). In pro-embryo stage, FLC is activated by depositing active
epigenetic marks such as H3K4me3, H3K36me3, and disposing

of repressive marks such as H3K27me3. LEAFY COTYLEDON1
(LEC1), a seed-specific pioneer TF (Tao et al., 2017), and EARLY
FLOWERING 6 (ELF6), a H3K27me3 demethylase (Crevillén
et al., 2014), were shown to play critical roles in FLC re-
activation.

As for MIR156/157, it is still unknown where and when the
de novo re-activation occurs. Moreover, whether the resetting
of miR156/157 depends on a reversible epigenetic regulation
still remains elusive. Further study of when, where and how
miR156/157 Off-Reset pattern is initiated during plant life cycle
will be an important future task.
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