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Trade-offs between plant growth and defense depend on environmental resource
availability. Plants are predicted to prioritize growth when environmental resources
are abundant and defense when environmental resources are scarce. Nevertheless,
such predictions lack a whole-plant perspective—they do not account for potential
differences in plant allocation above- and belowground. Such accounting is important
because leaves and roots, though both critical to plant survival and fitness, differ in
their resource-uptake roles and, often, in their vulnerability to herbivores. Here we
aimed to determine how water availability affects plant allocation to multiple metabolic
components of growth and defense in both leaves and roots. To do this, we conducted
a meta-analysis of data from experimental studies in the literature. We assessed plant
metabolic responses to experimentally reduced water availability, including changes
in growth, nutrients, physical defenses, primary metabolites, hormones, and other
secondary metabolites. Both above- and belowground, reduced water availability
reduced plant biomass but increased the concentrations of primary metabolites and
hormones. Importantly, however, reduced water had opposite effects in different
organs on the concentrations of other secondary metabolites: reduced water increased
carbon-based secondary metabolites in leaves but reduced them in roots. In addition,
plants suffering from co-occurring drought and herbivory stresses exhibited dampened
metabolic responses, suggesting a metabolic cost of multiple stresses. Our study
highlights the needs for additional empirical studies of whole-plant metabolic responses
under multiple stresses and for refinement of existing plant growth-defense theory in the
context of whole plants.

Keywords: abiotic stress, biotic stress, drought, growth-defense trade-off, herbivory, multiple stresses, resource
allocation, roots

INTRODUCTION

Plants experience many forms of stress, from both the abiotic and the biotic environment. As
sessile organisms, plants have evolved various physiologic and metabolic responses to individual
stresses, but the nature of such responses strongly depends on whether and how stresses
co-occur in the plant’s environment (Atkinson and Urwin, 2012; Suzuki et al., 2014; Nguyen
et al., 2016). In particular, the co-occurrence of resource limitation and herbivory can steepen
the trade-off between growth and defense by altering both the availability of chemical precursors
and the strategic value of defense (Herms and Mattson, 1992; Mole, 1994; Donaldson et al., 2006).
The strategic value of defense (i.e., optimal defense) should depend on the cost of defense traits,
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the value of the tissue, and the risk of attack from herbivores
(McKey, 1974; Rhoades, 1979). Although roots are the first
responders to many kinds of stress (Brunner et al., 2015;
Weemstra et al., 2016), work to date on growth-defense trade-offs
and optimal defense has focused mostly aboveground, on shoots
and leaves, rather than on the whole plant (van Dam, 2009).
There are still few predictions about how simultaneous abiotic
and biotic stresses should drive whole-plant allocation strategies.

Water availability is a central resource affecting plant fitness.
Predicted increases in the frequency of extreme precipitation
events under ongoing global climate change (Bates et al., 2008;
Donat et al., 2016) threaten reliable sources of water for terrestrial
ecosystems (Easterling et al., 2000; Weltzin et al., 2003). Plants
experiencing drought or flooding can adjust their morphology to
optimize water uptake by the roots while decreasing the rate of
photosynthesis by the leaves, thereby changing the production
of growth and defense metabolites (Koricheva et al., 1998;
Grant et al., 2005; Nicotra et al., 2007; Kleine and Mueller,
2014). Changes in biochemistry under water stress can determine
plant physiology and performance, including the fitness-defining
production of flowers and seeds (Taiz and Zeiger, 1998). Despite
the potentially vital role of water availability in driving trade-
offs between growth and defense, few studies to date have
evaluated whole-plant metabolic responses to water stress in
combination with herbivory stress, either experimentally induced
or inferred from the plant’s production of defensive secondary
metabolites. Because plant chemistry links multi-species trophic
interactions with biogeochemical cycles, determining how plant
chemistry responds to changes in precipitation may be critical
to determining the response of entire ecosystems (Hunter,
2016).

Plant responses to water stress can affect the concentration,
composition, and distribution of both primary and secondary
metabolites. Plant primary metabolites, such as amino acids,
enzymes, and carbohydrates, maintain life processes and facilitate
growth (Díaz et al., 2004). Secondary metabolites allow plants to
adapt to their environments by defending them against abiotic
stresses, pathogens, and herbivores (Agrawal, 2007; Ramakrishna
and Ravishankar, 2011). A plant’s response to stress typically
begins with an elaborate signaling network, with frequent
crosstalk between primary and secondary metabolic pathways
(Robert-Seilaniantz et al., 2011; Atkinson and Urwin, 2012;
Bonaventure, 2014; Suzuki et al., 2014; Jacobo-Velázquez et al.,
2015). Signaling pathways can also be shared between responses
to different forms of stress, including between biotic and abiotic
stresses (Santner and Estelle, 2009; Robert-Seilaniantz et al.,
2011; Atkinson and Urwin, 2012; Denancé et al., 2013; Nguyen
et al., 2016). Changes in the quantity and composition of signal
molecules induced by simultaneous stresses may in fact allow
plants to alter their physiologies and metabolic mechanisms
to cope with multiple stresses at once (Krasensky and Jonak,
2012). For example, abscisic acid (ABA) and jasmonic acid (JA)
hormone signaling regulate plant responses to both drought and
foliar insect herbivores (Pieterse et al., 2012; Berens et al., 2017).
The cost of plant responses to both stresses may be reduced
by this overlap (Mittler, 2006; Nguyen et al., 2016). In other
cases, different stresses elicit opposing reactions. For example,

salicylic acid (SA) and ABA/JA signaling pathways are commonly
antagonistic to one another (Pieterse et al., 2012; Berens et al.,
2017). Elevated SA signaling in response to biotrophic pathogens
is often correlated with reduced ABA/JA signaling and decreased
resistance to drought and insect herbivores (Zarate et al., 2007;
Suzuki et al., 2014).

Changes in plant chemistry in response to water stress,
although measured less frequently in ecological studies than
changes in biomass and reproduction (but see Koricheva et al.,
1998), will strongly affect the surrounding ecological community
via direct and indirect trophic interactions (Hunter, 2016). These
interactions can then feed back to affect plant chemistry and
nutrient cycles. Such complex interactions initiate not only in
leaves, but also in roots. Plant metabolic responses to water
stress are also likely to differ between leaves and roots (Parker
et al., 2012). Because water is sensed by the roots, root metabolic
allocation under water stress is probably critical to defining
whole-plant responses (Wilkinson and Davies, 2010; Basu et al.,
2016). Although water stress often appears correlated with
differences in herbivore pressure aboveground (White, 1969;
Mattson and Haack, 1987; Huberty and Denno, 2004), very little
is known about how water stress affects the susceptibility of roots
to attack.

In this study, we assemble a meta-analytic database to
synthesize our knowledge so far of: (1) how whole plants
respond metabolically to reduced water; and (2) if and how these
responses differ when plants suffer from co-occurring herbivory
stress. To obtain sufficient studies for our analysis, we examined
any study that reduced water compared to controls (see Results
for details). For convenience, we use “drought” interchangeably
with reduced water, a convention that is consistent conceptually,
although not in operational detail, with the formal hydrological
definition of drought (Mishra and Singh, 2010). Specifically, we
test the hypotheses that: (1) leaves and roots produce different
metabolic responses under reduced water; (2) reduced water
negatively affects nutrient concentrations in both leaves and
roots (He and Dijkstra, 2014); (3) reduced water increases the
concentration of primary metabolites in both leaves and roots
(Chaves et al., 2003), but the effects on composition vary between
above- and belowground organs; (4) changes in secondary
metabolites under reduced water are related to distinct growth-
defense trade-offs in roots and leaves because the higher relative
growth of roots alone can mitigate the effects of drought; and
(5) the cost of co-occurring drought and herbivory stresses is
mitigated by the overlap in ABA/JA defense signaling pathways.

MATERIALS AND METHODS

Study Search and Data Collection
We compiled the database by conducting a key-word search in
the Web of Science (ISI) in September 2017. We considered all
resulting peer-reviewed studies with no date restrictions from
searches using the terms “secondary metabolites or compounds”,
“chemical compounds or defens∗”, “plant or leav∗ or root∗”
and “herbivor∗ or insect or parasitoid” as a topic in all possible
factorial combinations, but always with “water or precipitation or
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drought” as the title category. This initial search resulted in 1,475
studies. Our analysis did not include book chapters, graduate
theses, or unpublished data. We attempted to analyze the effects
of increased water, or flooding, stress on plant metabolism
as well, but found too few studies that had addressed this
alternative water stress to be confident in our results (data not
shown).

To be included in the analysis, each study had to meet
three criteria. First, water or precipitation had to have been
manipulated experimentally, i.e., the study had to have both
control and treatment levels of water. Observational studies
comparing plants growing in variable natural conditions were
thus excluded from the analysis. Second, at least one secondary
chemical metabolite (including hormones) had to have been
reported. Third, studies had to provide each of the following
variables (directly or indirectly): means, measure of variance (SD
or SE), and the sample sizes of the control and the treatments.
When this statistical information was not reported in the text,
we extracted these values from the data using “GetData Graph
Digitizer” (v2.24; Fedorov, 2002). Unspecific error bars were
assumed to show standard error.

We also followed two rules when collecting the data from
each study: (1) When a single study presented results for
several plant species and response variables, we included them
all. (2) When plant species were subjected to a gradient
of water treatments or several treatments in a factorial
design, we chose the control, and the lowest value of water
as “drought.” Although an imperfect proxy for real-world
drought, this definition allows us to begin to address how
plants may respond metabolically to changes in precipitation.
Results from factorial designs in which water treatment was in
combination with another treatment (e.g., low nutrient, shade)
were excluded.

We investigated plant metabolic responses to drought alone
and to drought combined with herbivory. We grouped the
response variables into six overarching groups: (1) growth,
including root and/or shoot weight (dry or fresh); (2)
nutrients, including nitrogen (N), phosphorus (P), and potassium
(K) concentrations from whole plants, roots, and/or shoots;
(3) physical traits, including lignin, specific leaf area, and
root length; (4) primary metabolites, including leaf soluble
sugars (mono-, di-, and trisaccharides), complex carbohydrates
(starch and/or total non-structural carbohydrates), vitamins,
amino acids, and enzymes; (5) hormones, including abscisic
acid (ABA) and jasmonic acid (JA), which are important
for plant drought and herbivory responses; and (6) other
secondary metabolites, including both carbon- and nitrogen-
based secondary metabolites (i.e., flavonoids, phenolics, tannins,
terpenoids, volatiles, alkaloids, stilbenes, and glucosinolates)
from roots and shoots. Although the ‘volatiles’ mainly comprised
monoterpenes and sesquiterpenes, we separated them from
“terpenoids” due to the method of extraction: volatiles were
extracted from head-space collections, whereas terpenoids were
extracted from ground leaves. We also collected the following
additional information from each study: plant species, study
location (greenhouse, growth chamber, or field), type of
reduced water treatment, herbivore species, plant part attacked

by herbivores (leaf, roots, or both), herbivore feeding type
(i.e., chewing or sap-sucking), and the indirect effect on
parasitoids.

Statistical Analyses
For each study and response variable, we estimated the mean
effect size of a plant subjected to water treatments using Hedges’ d
statistic (Koricheva et al., 2013). We estimated the magnitude of
the treatment effect (effect size, d) by calculating the difference
between the treatment and control estimated means, adjusted
by their sample sizes and standard deviation, and weighted
by a correction term (Gurevitch et al., 2001; Koricheva et al.,
2013). We use Hedges’ d because it is not affected by unequal
sampling variances, and it includes a correction factor for
small sample sizes (Gurevitch et al., 2001). We calculated the
mean effect size and confidence interval (CI) for each class of
response variable. The water treatment was considered to have
a statistically significant effect when the 95% CI of the variable
did not overlap zero. A positive effect indicates that the drought
treatment increased the amount of a given plant trait, whereas a
negative effect indicates that the water treatment decreased the
amount of a given plant trait.

To test if there was variation among studies beyond that due
to sampling error, we used the model heterogeneity statistic (QM ,
also known as heterogeneity between groups QB). QM describes
the amount of heterogeneity that can be explained by the model
(Gurevitch et al., 2001; Koricheva et al., 2013). Here this means
that if QM for a given plant trait is significant (P < 0.05), some
of the variance can be explained by the water treatment. We
calculated QM using the Q statistic and then compared against
the QE (unexplained heterogeneity, also known as QError) using a
chi-squared distribution.

We conducted all analyses using the R statistical programming
language (v3.2.4; R Core Team, 2016) with the package metafor
(v2.0-0; Viechtbauer, 2010). We used the standardized mean
difference (SMD) and the rma() function as the meta-analytic
random-effect model with the Hedges estimator (Viechtbauer,
2010). We also performed some additional analyses to test
for publication bias. Publication bias occurs when the mean
effect size in the overall dataset generates different conclusions
from those obtained when the mean effect size comes from
a representative sample with reliable results (Koricheva et al.,
2013). We used both funnel plots (i.e., scatterplots of effect sizes
against their variance) and Spearman rank correlations between
the mean effect size and sample sizes to test for publication bias
(Koricheva et al., 2013). In the absence of bias, the funnel plots
should show symmetry around the mean effect size, and effect
sizes should not correlate with sample sizes (Koricheva et al.,
2013).

RESULTS

The literature search resulted in 1,475 publications, of which
61 papers published between January 1992 and August 2017
met our criteria. The full data set is deposited in the Dryad
Digital Repository. The publications were reported in 41 different
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journals (see Supplementary Materials). Considering only the
studies that experimentally manipulated water availability we
found three types of experiments: (1) studies that reduced the
percentage of moisture in the soil compared to the control
(44%), (2) studies that reduced the amount of water given to the
plant (28%), and (3) studies that deprived the plants of water
for the length of the study (28%). Eleven studies manipulated
drought and aboveground herbivory simultaneously, and only
one study also investigated the effects of root herbivory.
Herbivory studies included nine species of herbivores who
engaged in chewing (seven studies), sap-sucking (five studies),
and artificial mechanical damage (two studies). Three studies
measured the indirect effect of drought, by means of volatiles,
on parasitoids. Forty-one studies measured leaf traits, 18
measured traits of both leaves and roots, and two measured
only root traits. In total, the studies we reviewed investigated
the responses of 92 plant species or genotypes in 48 genera.
Crop species were used in 42 studies, native species in 16
studies, an invasive species in two studies, and a medicinal
plant in one study. Sixty-seven percent of the studies were
conducted in greenhouses or growth chambers, and 33% were
field experiments.

Water treatment explained a significant proportion of trait
variation for almost all plant traits measured (Table 1). For most
traits, funnel plots of effect sizes versus sample sizes indicated
that, overall, few studies reported these traits and that those
studies were biased towards smaller sample sizes (Supplementary
Figure A1). Nevertheless, Spearman’s rank correlations did not
show significant relationships between the mean effect size
and the sample size for 17 of the 19 traits we quantified
(Supplementary Table A1), which indicates that bias in the

meta-analysis is mostly non-significant, and our results are
reliable estimates.

Growth and Physical Traits
Drought treatments reduced shoot and root biomass (Figure 1;
P < 0.001 for both). Drought treatments also negatively affected
physical traits (i.e., lignin) in leaves (Figure 1A; P < 0.01). In
contrast, drought did not change pooled physical traits in roots
(i.e., lignin, and root length; Figure 1B; P = 0.3), but it did
significantly reduce root length (Hedges’ d = −0.548, CI = −0.939
to −0.157, P < 0.01).

Nutrients and Primary Metabolites
Drought treatments did not change overall nutrient content
in leaves (Figure 1A; P = 0.8) or in roots (Figure 1B;
P = 0.7). In leaves, this lack of effect emerged from the
opposing effect of drought on nitrogen (N) compared with its
effect on phosphorus (P) and potassium (K). Reduced water
increased leaf N (Figure 2; P = 0.03) but reduced both
P (Hedges’ d = −0.874, CI = −1.45 to −0.298, P < 0.01) and
K (Hedges’ d = −2.798, CI = −4.111 to −1.485, P < 0.001). In
contrast, drought did not affect root N (Figure 2; P = 0.6), and no
data were available on changes in root P or K.

Drought treatments increased the concentrations of pooled
primary metabolites in both leaves and roots, but this effect was
significant only in leaves (Figure 1; P < 0.05 for leaves and
P = 0.09 for roots). When primary metabolites were subdivided,
drought treatments tended to increase sugars but reduce complex
carbohydrates in leaves, but these effects were not significant
(Figure 2). Very few studies examined sugars or complex
carbohydrates in roots (Figure 2), and no studies examined

TABLE 1 | The model heterogeneity (QM ) for changes in plant traits under drought treatment alone, and under drought and herbivory treatments combined.

Treatment per Plant trait measured QM df P

plant part

Drought

Leaf Primary metabolites 2400 240 <0.001

Secondary metabolites 966 222 <0.001

N-Based compounds 55.2 20 <0.001

C-Based compounds 911 201 <0.001

Physical traits 10.6 7 0.2

Hormone 107 14 <0.001

Biomass 329 33 <0.001

Nutrients 263 35 <0.001

Root Primary metabolites 158 17 <0.001

Secondary metabolites 143 13 <0.001

Physical traits 22.1 9 <0.01

Hormone 7.18 3 0.07

Biomass 154 20 <0.001

Nutrients 86.6 9 <0.001

Drought x Herbivory

Leaf Primary metabolites 1.84 2 0.4

Secondary metabolites 242 93 <0.001

Hormone 30.6 14 <0.01

A significant QM (P < 0.05) indicates that the treatment explains a significant proportion of the variance among observations.
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FIGURE 1 | Influence of drought treatments on leaf and root traits. (A) Effect of drought on leaves. (B) Effect of drought on roots. Numbers in parentheses represent
the number of studies considered. Mean effect sizes are shown with 95% confidence intervals (CIs). Effects are considered significant if their associated CIs do not
overlap zero (dashed line) and are illustrated with solid circles.

amino acids or enzymes. In leaves, drought treatments had no
effect on enzymes (P = 0.2) but did increase pooled amino acids
(Figure 3; P < 0.03). Nevertheless, this increase in leaf amino
acids depended almost entirely on proline (Figure 3).

HORMONES AND SECONDARY
METABOLITES

Drought increased the concentrations of hormones (ABA and
JA) in both leaves and roots (Figure 1; P < 0.05 and P < 0.01,
respectively). On the other hand, salicylic acid (SA) was
unchanged or marginally lower in leaves subjected to drought
(Hedges’ d = −0.1015, CI = −1.007 to 0.803, P = 0.8).

Drought treatments also significantly increased secondary
metabolites in leaves when all compounds were pooled
(Figures 1A, 4; P < 0.01). Interestingly, and in contrast to leaves,
drought treatments significantly reduced secondary metabolites

in roots (Figures 1B, 4; P < 0.05). This difference between leaves
and roots depended on carbon (C)-based secondary compounds,
which were higher in leaves under drought but lower in roots
(Figure 4A.1; P < 0.01 and P < 0.05, respectively). Drought
did not affect nitrogen (N)-based secondary compounds in leaves
(Figure 4A.2; P = 0.8), and these compounds were not measured
in roots. Among C-based secondary metabolites, concentrations
of flavonoids, phenolics, and terpenoids all increased in leaves
under drought, but only the increase in flavonoids was significant
(Figure 4B; P < 0.01). In contrast, phenolics in roots were
significantly reduced by drought (Figure 4B; P < 0.04).
Interestingly, although phenolics in leaves were not significantly
higher under reduced water when all data were pooled,
drought treatments significantly increased phenolics in non-trees
(Hedges’ d = 1.953, CI = 0.191 to 3.715, P = 0.03), and marginally
decreased phenolics in trees (Hedges’ d = −0.242, CI = −0.564
to 0.08, P = 0.1). Volatiles, mainly comprising monoterpenes and
sesquiterpenes did not change in leaves under drought treatments

Frontiers in Plant Science | www.frontiersin.org 5 June 2018 | Volume 9 | Article 852

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00852 June 22, 2018 Time: 17:52 # 6

Mundim and Pringle Whole-Plant Metabolic Allocation Under Water Stress

FIGURE 2 | Drought effects on nitrogen content, complex carbohydrates, and
sugars for leaves and roots. Numbers in parentheses represent the number of
studies considered. Mean effect sizes are shown with 95% confidence
intervals (CIs). Effects are considered significant if their associated CIs do not
overlap zero (dashed line) and are illustrated with solid circles.

FIGURE 3 | Drought effects on leaf amino acid content. “Amino acids” include
all pooled amino acids; “Other amino acids” includes all amino acids except
for proline. Numbers in parentheses represent the number of studies
considered. Mean effect sizes are shown with 95% confidence intervals (CIs).
Effects are considered significant if their associated CIs do not overlap zero
(dashed line) and are illustrated with solid circles.

(Figure 4B; P = 0.6), resulting from the opposing effects of two
studies that found increases in volatiles and one that found a
decrease. Volatiles under drought stress were not measured in
roots.

Herbivory and Tritrophic Interactions
Among the 1,475 studies that were returned by our search
criteria, only 11 studies manipulated water and herbivory
simultaneously and contained sufficient observations for us to

calculate an effect size. Overall, the co-occurrence of herbivory
with reduced water appeared to dampen plant metabolic
responses relative to those under reduced water alone (Figure 5).
Hormones were slightly higher in leaves (Figure 5) and lower
in roots in co-occurring drought and herbivory treatments
relative to controls (i.e., plants sustaining neither drought nor
herbivory), but these effects were not significant (P = 0.5 in
leaves and P = 0.2 in roots). Among studies that manipulated
both drought and herbivory and also assessed root metabolic
traits (Tariq et al., 2013a; Ederli et al., 2017), hormones were
the only metabolite measured. In leaves, sugars were the only
primary metabolites measured under co-occurring drought and
herbivory treatments, and the slight increase in sugars was not
significant (Figure 5; P = 0.1). Finally, co-occurring drought and
herbivory treatments increased secondary metabolites in leaves
when all compounds were pooled (Figure 5; P < 0.03), due
to increases in C-based secondary metabolites (P < 0.04) and
flavonoids in particular (P < 0.02). Still, the effect size of this
increase in secondary metabolites under co-occurring drought
and herbivory treatments was smaller than the increase observed
under drought treatment alone (Figure 5).

The three studies that measured the effect of drought on
volatiles also looked at parasitoid responses. These three studies
illustrated a wide variety of possible outcomes: drought increased
volatiles, which increased parasitoid attraction (Salerno et al.,
2017); drought decreased volatiles, which decreased parasitoid
attraction (Tariq et al., 2013b), and drought increased volatiles,
but this had no effect on parasitoid attraction (Weldegergis et al.,
2015).

DISCUSSION

Our results highlight the importance of considering whole-
plant metabolic responses under water stress. Despite the key
role of roots in sustaining and mitigating abiotic and biotic
stress, early theories of trade-offs between plant growth and
defense focused on aboveground tissues (Rhoades, 1979; Coley
et al., 1985; Herms and Mattson, 1992). Although attention
to roots has increased recently (e.g., in our meta-analysis,
a third of papers with root measurements were conducted
since 2010), some metabolic comparisons between leaves and
roots under water stress will be possible only with further
studies. Additional studies will also be necessary to differentiate
among levels of water stress, which could be associated
with different plant metabolic responses. In the comparisons
that were possible, leaves and roots often produced different
metabolic responses, consistent with our first hypothesis. The
leaf economics spectrum now provides simple predictions of
how leaf traits should vary with resources, and such traits
also correlate with vulnerability to herbivores (Wright et al.,
2004; Agrawal and Fishbein, 2006). In contrast, an analogous
root economics spectrum remains elusive (Valverde-Barrantes
et al., 2015; Weemstra et al., 2016; also see Roumet et al.,
2016), perhaps because roots respond to a wider variety of
environmental constraints (Weemstra et al., 2016). Consistent
with the existence of differential constraints operating above- and
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FIGURE 4 | Secondary metabolite response to drought for both leaves and roots. (A) Secondary metabolites, including all measured metabolites (C-based and
N-based) for each tissue (from Figure 1). (A.1) Carbon-based metabolites, including flavonoids, phenolics, tannins, terpenoids, and volatiles. (A.2) Nitrogen-based
metabolites, including glucosinolates, alkaloids and glycoalkaloids. (B) Breakdown of C-based secondary metabolites for each tissue. Numbers in parentheses
represent the number of studies considered. Mean effect sizes are shown with 95% confidence intervals (CIs). Effects are considered significant if their associated
CIs do not overlap zero (dashed line) and are illustrated with solid circles.

belowground, our results suggest that leaves and roots respond
to water stress via partially decoupled growth-defense trade-
offs.

Contrary to our second hypothesis, drought did not affect
overall nutrient concentrations in either leaves or roots.
However, this result obscured some interesting differences among
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FIGURE 5 | Effects of drought with and without herbivory on leaf metabolic responses. “No herbivory” effects are the same as those shown in Figure 1 and are
reproduced here for comparison. Numbers in parentheses represent the number of studies considered. Mean effect sizes are shown with 95% confidence intervals
(CIs). Effects are considered significant if their associated CIs do not overlap zero (dashed line) and are illustrated with solid circles.

nutrients, as well as between leaves and roots. Whereas P
and K concentrations decreased in leaves under drought, N
concentrations increased. This latter finding is in line with
early work tying drought to increased N and higher herbivore
pressure on aboveground tissues (e.g., White, 1969), and it
may result from studies where either the duration of drying
or the frequency of rewetting was relatively high (He and
Dijkstra, 2014). Surprisingly, a recent meta-analysis of N and
P responses to drought found that soil extractable N, unlike P,
can actually increase under drought treatment (He and Dijkstra,
2014; but see Delgado-Baquerizo et al., 2013). Roots, in contrast
to leaves, showed no discernible changes in N concentration
under drought, but only two studies were available for analysis.

Consistent with our third hypothesis, we found that some
primary metabolites increased in both leaves and roots under
drought. Plant growth is particularly sensitive to drought
stress (Shao et al., 2008; Ings et al., 2013), and slowed
growth may immediately redirect primary metabolism to the
production of stress metabolites, such as sugars and free
amino acids (Chaves et al., 2003). Reduced photosynthesis
under drought also profoundly alters primary metabolism
(Bradford and Hsiao, 1982; Lawlor, 2002). We found higher
amino acids in leaves under drought stress, although this
result was driven largely by increases in proline, an amino
acid well known to adjust osmotic pressure, scavenge free
radicals, and increase expression of stress-related genes under
drought (Mali and Mehta, 1977; Chaves et al., 2003; Hayat
et al., 2012). Among the studies we analyzed (Appendix

1), only one measured proline in the roots, but it too
found that concentrations of proline nearly doubled under
drought (El Sayed, 1992). These increases in free amino
acids could be advantageous to nitrogen-limited herbivores
(White, 1969), but proline metabolism has also been implicated
in the production of plant phenolic secondary metabolites
(Lattanzio et al., 2009), such that gains in accessible nitrogen
to herbivores under drought may commonly be offset by
higher plant toxicity (Gershenzon, 1984 and see below).
Although sugars also marginally increased under drought in both
leaves and roots (Figure 2), roots and leaves may metabolize
complex carbohydrates at different rates under drought stress
(Figure 2; Chaves, 1991). Because root:shoot biomass ratios
increase under water stress (Poorter et al., 2012; Eziz et al.,
2017), implying differential primary metabolism in below-
and aboveground organs, future work quantifying primary
metabolites in whole plants will be useful for determining
whether and how primary metabolic responses reflect the
source of stress and its relationship to organ function (e.g.,
Merewitz et al., 2011; Tardieu, 2012; Gargallo-Garriga et al.,
2014).

One of the main criteria of our meta-analysis was to find
studies that measured secondary metabolites under water stress.
Consistent with our fourth hypothesis, our results showed that
concentrations of C-based secondary metabolites increased in
leaves but decreased in roots under drought treatments. The
effects of drought were also associated with plant type (tree
or non-tree) and compound class. Phenolics were the most
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commonly measured secondary metabolites in drought studies.
In all plants but trees, leaf phenolics increased whereas root
phenolics decreased in response to drought. Although leaf
phenolics in trees marginally decreased in response to drought,
we did not find any studies that had measured root phenolics
in trees for comparison. Increases in phenolics under water
stress may be explained partly by their function as antioxidants
(Nakabayashi et al., 2014), a function that may in fact be
less necessary in roots than in leaves, because roots lack the
spikes in reactive oxygen species under stress that are associated
with chloroplasts (e.g., Lodeyro et al., 2016). Many important
secondary metabolites (e.g., alkaloids and flavonoids) known to
be produced in roots (van Dam, 2009) were not measured in
studies considering the effects of water stress. It will be important
to consider a broader spectrum of root secondary metabolites
and their responses to water stress in future studies. For example,
flavonoids might be expected to increase in both roots and leaves
under drought because these compounds can be enhanced by
ABA signaling and modulate plant growth (Brown et al., 2001;
Besseau et al., 2007).

Although water and herbivory stress frequently co-occur
belowground (Bardgett and Wardle, 2003; Ryalls et al., 2016) and
roots play a vital role in plant metabolism and fitness (Zangerl
and Bazzaz, 1992; Lambers et al., 2002), growth-defense trade-
offs and patterns of optimal defense are rarely determined for
roots (van Dam, 2009). If the plant is integrating its responses
above- and belowground under water stress, and if water stress
increases the relative value of roots because they determine
whole-plant water availability (Eziz et al., 2017), the plant might
be expected to reduce its chemical defense of leaves and increase
its chemical defense of roots. Our results, however, revealed the
opposite pattern (Figure 1; see also Gargallo-Garriga et al., 2014).
Notably, our results are consistent with the model of Zangerl and
Bazzaz (1992), who argued that a higher root:shoot ratio under
resource stress makes the roots comparatively less valuable per
unit of structural investment. We propose that, at the level of
the whole plant, there could be organ-specific variation in the
optimal growth-defense ratio that is determined by the cost of the
stress for the tissue and the tissue’s function for the plant (see also
Freschet et al., 2013). Plants may invest in tolerance and regrowth
of roots under drought stress, perhaps partly to explore a larger
area of soil for water (e.g., Hodge, 2004). In contrast, producing
new leaves under drought conditions may be particularly
expensive, leading to higher investment in aboveground chemical
defenses. More information is needed to evaluate whole-plant
growth-defense trade-offs under water stress, particularly because
some important metabolic comparisons require additional root
measurements. Addressing the trade-off only aboveground is
problematic because, in addition to the stress responses of the
roots themselves, root responses will influence leaf responses, as
well as play a significant role in determining plant fitness and
yield (e.g., Bardgett and Wardle, 2003; War et al., 2012; Tariq
et al., 2013a; Gargallo-Garriga et al., 2014).

Plants are known for their remarkable ability to respond
to multiple stress conditions, sometimes using the same
signaling pathway (Rizhsky et al., 2004; Fujita et al., 2006;
Ramakrishna and Ravishankar, 2011). Our results are

consistent with evidence that drought and herbivory may
be regulated cooperatively by ABA/JA signaling. However,
contrary to our fifth hypothesis, our results also suggest that
the responses of secondary metabolites under co-occurring
herbivory and drought were smaller than those under drought
alone. Although this could be due to the smaller sample
size of studies addressing the two stresses simultaneously,
it is also possible that the combined energetic costs of
drought and herbivory reduce the availability of energy and
chemical precursors for an effective stress response (e.g.,
Rennenberg et al., 2006; Zhu, 2016). Determining whether
such costs are additive or synergistic should be a key goal
for future research (e.g., Bansal et al., 2013; Ben Rejeb et al.,
2014).

Herbivores are strongly influenced not only from the
bottom up by plant metabolites, but also from the top
down by interactions with predators. Studies of tritrophic
interactions in the context of drought stress typically
examine only the population dynamics of herbivores and
their natural enemies (Tariq et al., 2013b; Weldegergis
et al., 2015; Salerno et al., 2017; see, e.g., Hoover and
Newman, 2004; Ahmed et al., 2017). Studies examining
plant chemistry will be necessary to add predictive power
to these, frequently context-dependent, observations. For
example, plant metabolites can influence the effectiveness
of the herbivore immune system, physical barriers against
entomopathogens, and sequestration of secondary metabolites
(War et al., 2012; Biere and Bennett, 2013; Duisembecov
et al., 2017). Plant metabolites can also have differential effects
on specialist and generalist herbivores (Ali and Agrawal,
2012), which could further modify community-wide food
webs. We found only three studies of the indirect effects
of drought on parasitoid predators via plant chemistry,
and the results were inconsistent. Moreover, combining
drought stress with herbivory stress may have additional
important, non-additive effects on plant chemistry, and
thus on the multitrophic interactions mediated by the
plant (Shikano, 2017; Tariq et al., 2013b). Because plants
are powerful mediators of interactions between otherwise
loosely connected food webs, understanding phytochemical
responses to co-occurring stresses will be crucial to
predicting how terrestrial ecosystems will respond to global
change.

CONCLUSION

Drought and herbivory are common and important stresses in
terrestrial ecosystems that can cause whole-plant changes in
growth, physiology, and biochemistry. Whereas specific primary
metabolites and changes in biomass are often measured in studies
of drought and secondary metabolites are often measured in
studies of herbivory, assessment of changes in a variety of
primary and secondary metabolites, as well as physical traits,
would lend insight into the complex metabolic and structural
demands required for plants to acclimate and maintain function
when faced with multiple stresses. Recent studies of plant-
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herbivore interactions clearly demonstrate that metabolic profiles
of shoots can be altered by root herbivory and vice versa
(Erb et al., 2008; Kaplan et al., 2008; Wondafrash et al.,
2013), but it remains surprisingly rare to examine whole-
plant responses to herbivory under co-occurring abiotic stress.
Allocation to metabolic processes to tolerate and/or protect
tissues from damage under stress can impact plant fitness and
competitive ability, as well as plant mediation of multi-species
trophic interactions. Prediction of the effects of multiple stresses
on plant metabolic allocation and its ecological ramifications
will ultimately require a theoretical framework for the whole
plant.
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