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Premature leaf senescence (PLS), which has a significant impact on yield, is caused
by various underlying mechanisms. Glycosyltransferases, which function in glycosyl
transfer from activated nucleotides to aglycones, are involved in diverse biological
processes, but their roles in rice leaf senescence remain elusive. Here, we isolated
and characterized a leaf senescence-related gene from the Premature Leaf Senescent
mutant (pls2). The mutant phenotype began with leaf yellowing at tillering and resulted
in PLS during the reproductive stage. Leaf senescence was associated with an increase
in hydrogen peroxide (H2O2) content accompanied with pronounced decreases in net
photosynthetic rate, stomatal conductance, and transpiration rate. Map-based cloning
revealed that a mutation in LOC_Os03g15840 (PLS2), a putative glycosyltransferase-
encoding gene, was responsible for the defective phenotype. PLS2 expression was
detected in all tissues surveyed, but predominantly in leaf mesophyll cells. Subcellular
localization of the PLS2 was in the endoplasmic reticulum. The pls2 mutant accumulated
higher levels of sucrose together with decreased expression of sucrose metabolizing
genes compared with wild type. These data suggested that the PLS2 allele is essential
for normal leaf senescence and its mutation resulted in PLS.

Keywords: glycosyltransferase, GT, leaf senescence, Oryza sativa, PLS2, sucrose

INTRODUCTION

Plant senescence is an age-dependent behavior in plant development under normal growth
condition (Lee et al., 2001; Woo et al., 2001). During senescence, leaf cells undergo dramatic
metabolic changes, including chlorophyll breakdown and hydrolysis of macromolecules (lipids,
proteins, and nucleic acids), that results in leaf cell death (Kong et al., 2006; Schippers et al.,
2015). In agriculture, delayed leaf senescence (stay green) provides opportunities to prolong
photosynthetic capacity and increase crop yield (Thomas and Howarth, 2000). PLS is triggered by
various external factors (such as drought, salinity, shading, or biotic stress) as well as physiological
factors such as endogenous sugar content, or plant hormone levels (van Doorn, 2008; Schippers
et al., 2015; Abdelrahman et al., 2017), and usually causes yield loss (Bai et al., 2015; Rao et al., 2015).
Therefore, an in-depth understanding of the molecular mechanism of leaf senescence is important
in delaying leaf senescence and increasing cereal crop production (Wu et al., 2012; Gregersen et al.,
2013).

Frontiers in Plant Science | www.frontiersin.org 1 April 2018 | Volume 9 | Article 560

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2018.00560
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2018.00560
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2018.00560&domain=pdf&date_stamp=2018-04-26
https://www.frontiersin.org/articles/10.3389/fpls.2018.00560/full
http://loop.frontiersin.org/people/504831/overview
http://loop.frontiersin.org/people/419453/overview
http://loop.frontiersin.org/people/419467/overview
http://loop.frontiersin.org/people/438816/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00560 April 24, 2018 Time: 17:17 # 2

Wang et al. PLS2 Is Involved in Leaf Senescence

By now, many research advances of leaf senescence at
the molecular level have been achieved through the isolation
and characterization of dozens of senescence-related mutants
and senescence-associated genes (SAGs) (Buchanan-Wollaston
et al., 2003; Lim et al., 2007; Li et al., 2012). These SAGs are
usually involved in various biological processes, such as the
breakdown of chlorophyll, degradation of chloroplasts, plant
hormone synthesis and signaling, and biotic and abiotic stress
responses (Kong et al., 2006; Jiao et al., 2012; Li et al., 2012;
Liang et al., 2014; Sakuraba et al., 2015). Several SAGs in
rice have been isolated and functionally characterized. For
example, the NB-domain-containing protein encoding gene,
RLS1 (rapid leaf senescence 1), is involved in an autophagy-
like process of chloroplast degradation (Jiao et al., 2012).
The highly increased transcription level of OsABC1-2 (an
Abc1 kinase family gene), a chloroplast membrane-localized
kinase encoding gene, is dramatically suppressed by dark
treatment and its over-expression improves plant resistance
in extended periods of darkness (Gao et al., 2012). OsNAP
(rice NAC-like, activated by apetala3/pistillata) exerts roles
in regulating expressions of an age-dependent manner SAGs
and ABA biosynthesis related genes (Liang et al., 2014).
Overexpressing rice OsWRKY42 (one transcription factor of
WRKY family) exhibited early leaf senescence with accumulation
of hydrogen peroxide and reduced chlorophyll content (Han
et al., 2014). The Stay-Green Rice (SGR) gene, encoding a
chloroplast protein, is necessary for the initiation of chlorophyll
breakdown (Park et al., 2007; Hörtensteiner, 2009) and it’s up-
regulated expression induced leaf senescence (Ren et al., 2007;
Pilkington et al., 2012). In addition, Rapid Leaf Senescence
3 (RLS3), which produces a protein with an AAAt domain,
functions in delaying leaf senescence in rice (Lin et al.,
2016). Mutation of DEL1 (Early Senescence Leaf 1) decreases
the enzymatic activity of PEL (pectate lyase) and increases
expressions of SAGs (Leng et al., 2017). Although, various
kinds of genes have been studied in rice, further investigation
on leaf senescence-related genes is essential in order to
establish a better understanding of regulatory mechanisms of
senescence.

Glycosylation, a process of glycosyltransferases (GTs, EC
2.4.x.y) catalyzing the transfer of sugar moieties from activated
donor molecules to specific acceptor molecules, is considered
a single modification reaction on plant hormones, secondary
metabolites, and xenobiotics by glycosidic bonds (Jones and
Vogt, 2001; Lairson et al., 2008; Li et al., 2015). There are
about 452 and 609 GT members in the Arabidopsis and
rice genomes, respectively, and most of them have not been
functionally characterized (Ko et al., 2006; Cao et al., 2008). UDP-
glycosyltransferases (UGTs) utilize UDP-glucoses as donor in
regulating various biological processes (Coutinho et al., 2003).
Accumulating evidence suggests a critical role of UGTs in
plant developmental processes and stress reactions. Reduced
expression level of gene UGT71B6 in Arabidopsis induces early
senescence and enhances susceptibility to the necrotrophic
pathogen Alternaria brassicicola (von Saint Paul et al., 2012).
UGT74E2 modulates plant architecture as well as conferring
drought stress tolerance (Tognetti et al., 2010), and UGT76C2

was found to be involved in adaptation to drought stress (Li
et al., 2015). UGT75D1 modulates cotyledon development and
stress tolerance during seed germination (Zhang et al., 2016).
Ectopic expression of UGT85A5 in tobacco and SrUGT74G1 in
Arabidopsis promotes seed germination in tobacco (Sun et al.,
2013) and catechin accumulation in Arabidopsis (Guleria and
Yadav, 2014), respectively. Overexpression of UGT80B1 increases
resistance to freezing and heat stress (Mishra et al., 2015).
Ectopic expression of UGT85U1, UGT85U2, and UGT85V1
in Arabidopsis improved salt and oxidative stress tolerance
(Ahrazem et al., 2015). In rice, the expression level of
OsGT61-1 was significantly responsive to exogenous treatment
of ABA and NaCl (Singh et al., 2010). In addition, XAX1
from GT 61, could mediate xylosyl transfer to rice xylan
(Chiniquy et al., 2012). GT43 family is involved in xylan
biosynthesis of rice (Lee et al., 2014). OsGT47A has a role
in plant secondary cell wall thickness (Zhang B. et al.,
2014).

Although several SAGs have been cloned and studied, there is
no insight about the role of GT in leaf senescence. In the previous
study, we described Premature Leaf Senescence mutant (pls2) in
rice, mapped the PLS2 locus on chromosome 3, and postulated
the LOC_Os3g15840, a glycosyltransferase encoding gene, as the
candidate gene (Zhang T. et al., 2014). In the present study, we
remappedPLS2 using a newly developed genetic population, and
confirmed LOC_Os3g15840 as the target gene. PLS2 expression
was detected in all tissue types, but predominantly in leaf
mesophyll cells, with a sub-cellular localization of endoplasmic
reticulum. The mutation in the PLS2 caused PLS. Compared to
the wild type (WT), the pls2 mutant accumulates sucrose together
with decreased expression of sucrose metabolizing related genes.
The collected data suggest that PLS2 is essential for normal
senescence.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Rice premature leaf senescence pls2 was obtained as a space-
radiation mutant in indica var. Luhui H103. The pls2 mutant
was crossed with japonica var. Nipponbare and a F2mapping
population was grown in a paddy field in Beijing (39◦54′N,
summer season, temperate climate).

Quantitative Analysis of Chlorophyll
Content
Chlorophyll content was measured according to the procedure
described by Suzuki and Makino (2012). About 0.2 g of
leaves were homogenized in 5 ml of a 9: 1 acetone to
0.1 M NH4OH solution and centrifuged at 3000 × g for
20 min. These supernatants were then washed three times using
hexane (1:1 ration of supernatants to hexane) and the pigment
content was measured by spectrophotometer at the absorption
wavelengths of 663 and 645 nm (Beckman Coulter DU-800,
CITY, United States). The experiment was carried out with three
technical and three biological replicates, respectively.
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Analysis of H2O2, Malondialdehyde
(MDA)
H2O2 was detected by DAB staining as described by Thordal-
Christensen et al. (1997). Fully expanded flag leaves were
vacuum-infiltrated with DAB solution (1 mg of DAB dissolved
in 1 ml of distilled water, pH 3.8) for 24 h at 25◦C and washed
in boiling ethanol (96%) for 10 min before photographing. For
H2O2 quantitative measurement, H2O2 was extracted from leaves
at heading according to the method described by Rao et al.
(2000). MDA content was measured by the following steps:
0.5 g leaves were ground into powder, and then dipped into
0.5% TCA buffer, followed by treatment of 100°C for 30 min.
After centrifuged at 3000 × g for 30 min, the supernatant
(2 ml) was added to 2 ml 0.5% TBA, then subjected to 100°C
for 30 min again. After the mixture was dropped to room
temperature, it was centrifuged at 3000 × g for 20 min. Finally,
the light absorption of the supernatant was measured at the
absorption wavelength of 450-, 532-, and 600 nm, respectively.
The MDA content was calculated according to the formula:
(CMDA = 6.45∗[A532-A600]-0.56∗A450 [µmol/L]). The experiment
of H2O2 and MDA were performed with three technical and three
biological replicates.

Analysis of Photosynthetic Parameters
Flag leaves of the wild type and pls2 mutant were used to
measure the net photosynthetic rate, stomatal conductance, and
transpiration rate from 9:00 am to 11:00 am. The detailed
methods of photosynthetic parameters were to procedures (Wang
et al., 2015). In order to allow flag leaves to reach steady-state
photosynthesis, flag leaves were kept under each level of CO2
concentration for 5 min before these photosynthetic parameters
were recorded on portable photosynthetic system (CIRAS-2, PP
Systems, Hitchin, United Kingdom). The assay was carried out
with three technical and biological replicates, respectively.

Transmission Electron Microscopy (TEM)
Leaves at heading were cut into small pieces, fixed in 2.5%
glutaraldehyde in a phosphate buffer (pH 7.2), vacuum infiltrated,
rinsed, and incubated overnight at 4◦C in a solution of 1% OsO4.
Samples were dehydrated in a series of 10, 30, 50, 70, 90, and
100% ethanol and infiltrated in epoxy resin, and embedded in
Epon 812 resin. A series of 80 nm sections was cut using a
Reichert OM2 ultramicrotome, stained in 2% uranylacetate and
10 mM lead citrate (pH12), before observation in a HitachiH-
7650 transmission electron microscope.

Map-Based Cloning of the PLS2 Gene
DNA was extracted according to CTAB method described
by Telzur et al. (1999). Eight-hundred-and twenty pls2-like
individuals were sampled from the segregating F2 population
for linkage analysis. All InDel markers used in this study were
developed according to sequence diversity between H103 and
Nipponbare, which are available at the Gramene website1. dCAPS
markers were automatically designed using the web server

1www.gramene.org

program dCAPS Finder 2.0.2 The PLS2 locus was finally mapped
to a 90-Kb region of chromosome 3 delimited by two dCAPS
of C-2 and SL-1-9. The candidate gene was identified by DNA
sequencing.

Vector Construction and Transformation
For overexpression of PLS2, we cloned the coding region of PLS2
into the pCAMBIA1390 vector under the maize Ubi promoter
to produce the fusion vector pUbi::PLS2. The pUbi::PLS2 vector
was transformed into pls2 plants by Agrobacterium-mediated
transformation as described previously by Hiei and Komari
(2008).

To obtain a crispr-PLS2 mutant line, we used the CRISPR-
Cas9 system according to the method previously described by
Miao et al. (2013). A 20 bp PLS2-specific spacer sequence was
cloned into the entry vector pOs-sgRNA, followed by subcloning
into a pCAS9 binary vector by means of the Gateway cloning
system. The fused vector was transformed into Nipponbare
as described above. The molecular markers used for vector
construction are listed in Supplementary Table S1.

Quantitative Real-Time PCR Analysis
Total RNA was extracted according to the instructions
with TRIZOL Kit (TaKaRa, Japan). First-strand cDNA was
obtained from 2 µg of total RNA using the QuantiTect Reverse
Transcription Kit (Qiagen, Germany). qRT-PCR (20 µl reaction
volume) was carried out with 0.5 µl of cDNA, 0.2 µM of
primer mix, and the SYBR Premix Ex Taq Kit (TaKaRa,
Japan). The endogenous rice UBQ gene (LOC_Os03g13170)
and OsActin gene (LOC_Os03g50885) were used as the
reference genes, respectively. The assay was carried out
with three technical and biological replicates respectively.
All qRT-PCR primers are listed in the Supplementary
Table S1.

RNA in Situ Hybridization
Assays were performed as described previously (Bradley et al.,
1993). For preparation of materials, flag leaves of wild type
plants at heading were fixed using an RNase-free formalin/acetic
acid fixative solution, followed by a series of dehydration
steps and embedded in paraffin for sectioning. To prepare
the probe, we used a pair of primers, PLS2-in situ-F (5′-
CGTCAGTAGCTATTGCCGAGGACTTTGA-3′) and PLS2-in
situ-R (5′-GCTTGTGAGAGCTCCTCGCCTT-3′), to amplify
a 335 bp unique sequence of PLS2 from a cDNA clone.
The fragment was then inserted into the pGEM-T vector
(Promega) for RNA transcription. Digoxigenin-labeled RNA
probes were prepared using a DIG Northern Starter Kit (Roche3).
Hybridization signals were visualized and photographed using
a Leica DMR microscope equipped with a Micro Color charge-
coupled device camera (Apogee Instruments4).

2http://helix.wustl.edu/dcaps/dcaps.html
3http://www.roche.com/
4http://www.apogeeinstruments.com/
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Subcellular Localization and Promoter
Fusions
To create the integrated vector pCAMBIA1305-d35S-PLS2-GFP,
the PLS2 CDS fragment was cloned into the pCAMBIA1305-GFP
vector at the Bgl II site. Constructs were transiently expressed
in tobacco (Nicotiana benthamiana) epidermal cells as described
previously (Batoko et al., 2000). Tobacco leaf protoplasts were
obtained as described by Miao et al. (2006) to analyze transient
expression of PLS2. The GFP signal was photographed by a laser
scanning confocal microscope (LSCM 700; Carl Zeiss).

A 3,393 bp upstream fragment of the PLS2 gene was amplified
using the primers (Supplementary Table S1) and sub-cloned into
a pCAMBIA 1305:GUS vector with restriction enzyme sites EcoR
I and Noc I to get a PLS2Pro: GUS construct, and then introduced

into japonica var. Kitaake by Agrobacterium described above. For
histochemical analysis, we used excised tissues of independent T2
transgenic plants, as reported by Jefferson (1987).

Quantitative Analysis of Soluble Sugar
Flag leaf pieces (0.05 g) were dissolved in 1 ml of 80% ethanol,
incubated at 50°C for about 30 min, and then centrifuged at
3,000 g for 15 min, repeated twice. The three supernatants
were vacuum dried at 45°C, dissolved in 50°C preheated
ultrapure water, and subjected to a 5 µm C18 extraction column
(150 × 4.6 mm; Agilent Zorbax) for removing impurities.
After that, the soluble sugar of supernatants was analyzed
by High Performance Liquid Chromatography instrument
(Shimadzu Company, Japan). The standard curve of sucrose

FIGURE 1 | pls2 is a premature leaf senescence mutant. (A–D) Phenotypes of wild type and pls2 mutant at the seedling (A), tillering (B), and heading (C) stages.
Bar in (A–C) 15 cm. (D,E) Uppermost five leaves from the main culms of WT (D) and pls2 (E). Bar in (D,E) 3 cm. L1–L5 represent leaves from the flag leaf
downward. (F) Chlorophyll contents of the five uppermost leaves from WT and pls2. (G) qRT-PCR analysis of four senescence associated genes (SAGs) between
WT and pls2. Data is presented as the mean ± standard deviation (n = 9). ∗∗P ≤ 0.01; Student’s t-test.
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was previously made including concentrations of 10 mg/mL,
5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, and 0.625 mg/mL. The
chromatography analysis and sample recovery steps were carried
out according to the method described by Brushwood (1997).
The assay was conducted with three technical and biological
replicates, respectively.

RESULTS

pls2 Is a Premature Leaf Senescence
Mutant
The senescence symptoms of the pls2mutant gradually developed
from the tillering stage when emerging leaves slowly became
yellowish or developed senescence (Figure 1). Senescent leaves
had reduced chlorophyll content (Figures 1D–F). The pls2
mutant had reduced height and internode length, and low seed
setting (Supplementary Figures S1A–C). Detailed analysis of

grain plumpness at different positions on the panicle revealed that
the mutant had a higher proportion of semi-filled grain (SFGN),
and shriveled grain (SGN) compared to WT (Supplementary
Figures S1D,E). 1000-grain weight was decreased slightly, but
not significantly in the pls2 mutant (Supplementary Figure S1F).
The results indicated that the PLS in pls2 had a detrimental
effect on vegetative growth as well as grain development
(Supplementary Figure S1). In addition, expressions of several
SAG genes (PAO, SGR, NYC3, and Osl85) were also significantly
increased in the pls2 mutant at heading stage in comparison with
WT (Figure 1G).

The pls2 Mutant Accumulated H2O2 and
Reduced Leaf Photosynthetic Capability
We examined H2O2 [a reactive oxygen species (ROS)] levels by
DAB in both WT and pls2, and strong DAB brown straining
appeared in the pls2 flag leaves (Figure 2A), consistent with
quantitative results showing that the pls2 mutant exhibited

FIGURE 2 | pls2 accumulated excessive ROS. (A) DAB staining of leaves of WT and pls2. Bar, 4 cm. (B,C) H2O2 (B) and MDA (C) quantitation assays at heading.
(D–F) Net photosynthetic, stomatal conductance, and transpiration rates in flag leaves of WT and pls2. Data is presented as the mean ± standard deviation (n = 9).
∗0.01 ≤ P ≤ 0.05; ∗∗P ≤ 0.01; Student’s t-test.
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FIGURE 3 | Map-based cloning of the PLS2 gene. (A) Fine mapping of PLS2 in the F2 population of pls2 × Nipponbare. (B) Schematic of the PLS2 gene structure.
Black boxes indicate exons and black lines between the boxes represent introns. The red arrow indicated the position where the C→T substitution occurred. (C,D)
Overexpression analyses of positive plants by qRT-PCR. (E) PLS2 over-expressing plants in pls2 background. Bar, 15 cm. ∗∗P ≤ 0.01; Student’s t-test. Data is
presented as the mean ± standard deviation (n = 9).

excess H2O2 accumulation (Figure 2B). As the end-product
of membrane lipid peroxidation caused by ROS (Draper and
Hadley, 1989), the malonic dialdehyde content (MDA) was
accumulated highly in the pls2 (Figure 2C). Meanwhile, leaf

photosynthesis capability determined by net photosynthetic
rate (Figure 2D), stomatal conductance (Figure 2E), and
transpiration rate (Figure 2F) was accordingly reduced
in pls2.
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FIGURE 4 | Expression and localization of PLS2. (A) Expression levels in various tissues revealed by qRT-PCR using the UBQ as the reference gene. Data is
presented as the mean ± standard deviation (n = 9). (B–E) GUS expression patten of PPLS2:GUS transgenic rice plants on 5-day-old seedlings (B), root
cross-scection of the box area in B (C), leaf sheath (D), leaf (E; left, PPLS2:GUS transgenic leaf; right, control). (G,H) RNA in situ hybridization analysis of PLS2. Flag
leaves of wild type plants at heading were cross-sectioned and hybridized with PLS2-specific antisense (G) or sense (H) probes. x, xylem; p, phloem; ep, epidermis;
m, mesophyll. (I) Co-expression of PLS2-GFP fusion protein with HDEL-mRFP (ER marker). ER, endoplasmic reticulum. Scar bars: 12 mm in (B), 100 µm in (C),
1 cm in (D,E), 3 mm in (F), 200 µm in (G,H), 10 µm in (I).

Map-Based Cloning of the PLS2 Gene
Segregation in the redeveloped F2 population of pls2 × japonica
cv. Nipponbare was 2,285 plants with normal phenotype and 820
with mutant phenotype, confirming that a single recessive gene
caused the senescent phenotype (χ2

3:1 = 0.06: P > 0.05). We
previously placed PLS2 between markers of RM14704 and SL-1-5
on chromosome 3, represented by a physical distance of 84.11 Kb
(Zhang T. et al., 2014). Using extra 820 F2 mutant individuals, we
confirmed the interval by the newly developed marker C-2 and
SL-1-9 (Figure 3A), which mapped the similar location compared
with previous study. The determined 90 Kb candidate region
contained 15 ORFs, and a C→T substitution in the ninth exon
of gene LOC_Os03g15840 (ORF4), putatively causing an R→C
amino acid alternation (Figure 3B).

To validate the candidate gene, we transformed the WT
CDS of LOC_Os03g15840 driven by the Ubi promoter into the
pls2 mutant. Four independent positive T2 transgenic plants
were identified by PCR genotyping (Figure 3C) and qRT-PCR,
which expressed LOC_Os03g15840 significantly higher than the
control (Figure 3D) and rescued the leaf senescence phenotype
of the pls2 mutant (Figure 3E), confirming that an aberrant

LOC_Os03g15840 was the cause of pls2. We further verified
the candidate gene by knock-out of the gene in Nipponbare
background using Crispr/Cas9 technology. Finally, two Crispr-
PLS2 positive transgenic plants exhibited early leaf senescent and
reduced plant height (Supplementary Figure S2). These results
indicated that the mutation in LOC_Os03g15840 caused the leaf
senescence of the pls2, and the locus therefore was designated
PLS2.

LOC_Os03g15840 encodes a glycosyltransferase containing
the Glyco_trans_4_1 and Glyco_trans_4_2 domains that catalyze
sugar transfer from donor to acceptor (Supplementary Figure
S3A). A phylogenetic tree analysis showed that the rice PLS2 gene
Os03g0265100 is highly homologous to Brachypodium sylvaticum
gene XP003558286.1 and Aegilops tauschii gene EMT15626.1
(Supplementary Figure S3B).

Temporal and Spatial Expression of the
PLS2 Gene
The results of qRT-PCR showed that PLS2 was expressed
in all tissues, i.e., roots, leaf sheaths, stems, young leaves,
and panicles, and there was strong expression in leaves,
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FIGURE 5 | Sucrose contents of plants at heading. (A,B) Transmission electron microscopic images of flag leaf cells from wild type (A) and pls2 mutant (B). Bar
500 nm in (A,B). (C) Sucrose content in WT, pls2, and OE lines of OE1 and OE4. (D) Sucrose content in the control and two crispr plants. Data is presented as the
mean ± standard deviation (n = 9). ∗0.01 ≤ P ≤ 0.05; ∗∗P ≤ 0.01; student’s t-test.

followed by roots and stems (Figure 4A and Supplementary
Figure S4). β-glucuronidase (GUS) staining was detected in
various tissues, especially seedlings (Figures 4B,C), leaf sheaths
(Figure 4D), leaves (Figure 4E), and panicles (Figure 4F).
Observations on root sections indicated strong GUS signals
in the phloem (Figure 4C). In situ hybridization (ISH) assays
demonstrated that PLS2 was highly expressed in leaf mesophyll
cells (Figures 4G,H). The PLS2-GFP completely merged with
the ER marker HDEL-mRFP (Figure I) (Gomord et al.,
1997) in epidermal protoplasts of N. benthamiana leaves,
suggesting subcellular localization of the PLS2 in the endoplasmic
reticulum (ER).

pls2 Accumulated More Sucrose
Than WT
Through TEM assay, we found that cells in green sections
of pls2 leaves were heteroplastidic with more starch grains
(Figures 5A,B). It is well known that glycosyltransferases catalyze
the transfer of activated sugars to various acceptor molecules
(Li et al., 2015; Zhang et al., 2016). In order to investigate
the impact of PLS2 mutation on the sugar metabolism, sucrose

levels in flag leaves at grain filling stage were measured in
the WT, pls2, Ubi::PLS2-OE, and CRISPR/Cas9-based knockout-
plants. Results revealed that the pls2 accumulated more sucrose
than WT whether in their green leaves or senesced leaves
(Figure 5C). Transgenic over-expressing lines showed similar
sugar levels to WT (Figure 5C). Two CRISPR knockout
plants accumulated excess sucrose compared to the control
(Figure 5D).

Expression Level Analysis of
Sucrose-Related Genes
Sucrose synthase (SuSy, EC 2.4.1.13) mainly mediates the sucrose
metabolism by catalyzing the reversible transfer of a glucosyl
moiety between fructose and a nucleoside diphosphate (NDP)
(Chourey et al., 1998; Baroja-Fernández, 2012). There are at
least six members (OsSUS1-6) of sucrose synthase family in
rice (Tatsuro et al., 2008). We assayed the expression levels
of sucrose synthase genes OsSUS1, OsSUS2, OsSUS4, and
OsSUS5 (Hirose et al., 2008). qRT-PCR analysis showed that
mRNA levels of all except OsSUS4 were remarkably down-
regulated in pls2 (Figure 6A), suggesting that lower expression
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FIGURE 6 | Expression analyses of genes associated with sucrose synthesis genes OsSUS1, 2, 4, 5 (A) and sucrose transportation genes OsSWEET4, 5, 11, 14
and OsSUT1, 2 (B). Data is presented as the mean ± standard deviation (n = 9). ∗0.01 ≤ P ≤ 0.05, ∗∗P ≤ 0.01, Student’s t-test.

suppresses sucrose turnover and metabolism, and result in
sucrose accumulation in pls2. We next detected the expression
level of sugar transporters including OsSUT1 (Siahpoosh et al.,
2012), OsSUT2 (Siao et al., 2011), OsSWEET4, OsSWEET5 (Zhou
et al., 2014), OsSWEET11, OsSWEET14 and OsSWEET15 in WT
and the pls2 mutant, respectively, and found that all mRNA
levels were significantly down-regulated in pls2 (Figure 6B),
suggesting that mutation in the PLS2 gene affected the sugar
transport, leading to over-accumulation of starch in chloroplast
of pls2.

DISCUSSION

Premature leaf senescence causes detrimental plant growth and
reduced crop productivity (Chen L.J. et al., 2013; Chen Y. et al.,
2013; Liang et al., 2014). Previous studies on leaf senescence

revealed that many genes are involved (Woo et al., 2001;
Liang et al., 2014; Schippers et al., 2015) and SAGs usually
up-regulated during senescence (Liang et al., 2014; Sakuraba
et al., 2015; Yang et al., 2015; Zhao et al., 2015, 2016; Zhu
et al., 2015). Our study found that several SAGs such as the
pheophorbidea oxygenase gene PAO (Schelbert et al., 2009),
chloroplast degradation related gene (SGR) (Hörtensteiner,
2009), and senescence associated genes NYC3 and Osl85 (Lee
et al., 2001), were prominently up-regulated in the pls2 mutant,
suggesting pls2 was undergoing a typical senescence process.
However, identification of more SAGs could be helpful in
elucidating the leaf senescence processes involved in normal
plant development. Here, we characterized a rice pls2 mutant
that displayed PLS under normal conditions and isolated a
putative glycosyltransferase encoding gene LOC_Os03g15840by
map-based cloning. A mutation in PLS2 was responsible for
the defective phenotype. PLS2 expression was detected in all
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tissues surveyed, but predominantly in leaf mesophyll cells, with
a sub-cellular localization of the endoplasmic reticulum. The
pls2 mutant accumulated much higher levels of sucrose together
with decreased expression of sucrose metabolizing related genes
compared to wild type. Our results indicated that the PLS2 is
essential for normal leaf senescence and its mutation resulted in
the PLS.

Based on the substrate specificity of GT, all GT members
can be classified into 105 GT subfamilies in Arabidopsis and
41 OsGT in rice (Ko et al., 2006; Cao et al., 2008). UDP
glycosyltransferases are the most common GT enzymes that
catalyze glycosylation in the plant kingdom. They transfer donor
molecules to specific acceptors and participate in adversities
with environmental conditions (Coutinho et al., 2003; Lairson
et al., 2008). A recent study shows that excessive UGT results
in programmed cell death (PCD) (Xiao et al., 2018). However,
information on GT function in PLS is scarce. According to the
gene annotation, PLS2 is an unidentified substrate GT and our
results provide evidence that abnormal sugar metabolism leads
to leaf senescence.

Reactive oxygen species are continuously produced in plants
as products of aerobic metabolism (Maurino and Flügge, 2008).
Excess ROS accumulation leads to oxidative damage to thylakoid
membranes and other cellular components (Apel and Hirt, 2004).
Previous studies showed that early leaf senescence is usually
associated with excessive ROS (Han et al., 2014). In our study,
one species of ROS, H2O2, was much higher in the pls2 mutant
than wild type, indicating that H2O2 accumulation in pls2
might result in oxidative impair to thylakoid membranes, and
finally causing PLS in the mutant. Previous studies suggested
that glycosyltransferases in rice and Arabidopsis were mostly
localized in cytoplasm (Dong et al., 2014; Liu et al., 2015). Our
investigation with marker HDEL-mRFP (Gomord et al., 1997)
indicated PLS2 was completely merged with ER in epidermal
protoplasts of N. benthamiana leaves, suggesting that PLS2
perform its role in the ER.

Sugars, especially sucrose, are not only essential carbon and
energy sources, but also exert regulatory roles in metabolism
control, stress immunity, growth, and development (Rolland
et al., 2006, a review). Previous studies showed that exogenous
sucrose supplied to leaves affects sugar metabolism and inhibits
photosynthesis by down-regulating Rubisco abundance activity
in 4-month-old sugarcane (Lobo et al., 2015). Feeding glucose
or sucrose to mesophyll protoplasts in basic maize medium
decreased photosynthetic gene expression (Sheen, 1990). In
addition, leaf senescence was induced by adding glucose in
combination with low nitrogen levels in Arabidopsis (Pourtau
et al., 2004; Wingler et al., 2004). Over-accumulation of sugar
accelerated the synthesis of starch grains in chloroplast stroma,
which resulted in oppressing thylakoid and inhibiting light
absorption in photosynthetic membranes (?). Here, we found
that PLS2 mutation caused significant sucrose accumulation and
cells containing chloroplasts were heteroplastidic with starch
grain accumulation in pls2, speculating that larger numbers of
starch grains in chloroplasts and the descending expression of
photosynthesis genes might cause the premature leaf senescence
in pls2.

Sucrose is the main form of photosynthetic product and its
translocation and distribution are mainly regulated by SUTs.
SUTs are mainly involved in phloem loading, long-distance
transportation, “library” unloading of sucrose (Kühn et al.,
2003; Hackel et al., 2006), and regulating sucrose storage and
distribution (Rae et al., 2005; Hackel et al., 2006). One study
showed that OsSUT1 expression is inhibited by higher sucrose
content and induced by drought and salt stress in excised
rice tissues (Ibraheem et al., 2011). An Ossut2 mutant showed
sucrose accumulation and lower sucrose output capability
that finally disturbed plant development (Eom et al., 2011).
When excised tobacco (Krapp et al., 1991) and barley (Parrott
et al., 2005) leaves were exposed to strong sunlight more
sugar accumulated and caused PLS. The pls2 mutant similarly
undergoes sugar accumulation that appears to be the cause of
PLS. However, due to lack of knowledge of the substrate of the
glycosyltransferase encoded by PLS2 and its interacting protein,
the mechanism of senescence underlying pls2 remains to be
explored.
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FIGURE S1 | Agronomic trait comparisons between the wild type (WT) and pls2 in
plant height (A), and internode lengths (B), seed setting (C), three types of grain
(D), their proportions (E), and 1000-grain weight (F). FGN, fully filled grain; SFGN,
semi-filled grain; SGN, shriveled grain, bar, 5 mm. Data is presented as the
mean ± standard deviation (n = 9). ∗0.01 ≤ P ≤ 0.05; ∗∗P ≤ 0.01; Student’s
t-test.

FIGURE S2 | PLS2 crispr analyses. (A) Crispr plants in Nipponbare background.
Bar, 15 cm. (B) Plant height of crispr plants with the control. (C) Sequence
analysis of PLS2 for Crispr lines. ∗∗P ≤ 0.01; student’s t-test. Data is presented as
the mean ± standard deviation (n = 9).

FIGURE S3 | Phylogenetic analysis of PLS2 protein and homologous proteins
among plant species. (A) The domains of PLS2 protein. (B) Phylogenetic and
blast analyses of PLS2 among plant species.

FIGURE S4 | Expression levels in various tissues revealed by qRT-PCR using the
OsAction as the reference gene. Data is presented as the mean ± standard
deviation (n = 9).

TABLE S1 | Primers used in the study.
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