AUTHOR=Song Jie , Zhai Jingjing , Bian Enze , Song Yujia , Yu Jiantao , Ma Chuang TITLE=Transcriptome-Wide Annotation of m5C RNA Modifications Using Machine Learning JOURNAL=Frontiers in Plant Science VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2018.00519 DOI=10.3389/fpls.2018.00519 ISSN=1664-462X ABSTRACT=
The emergence of epitranscriptome opened a new chapter in gene regulation. 5-methylcytosine (m5C), as an important post-transcriptional modification, has been identified to be involved in a variety of biological processes such as subcellular localization and translational fidelity. Though high-throughput experimental technologies have been developed and applied to profile m5C modifications under certain conditions, transcriptome-wide studies of m5C modifications are still hindered by the dynamic nature of m5C and the lack of computational prediction methods. In this study, we introduced PEA-m5C, a machine learning-based m5C predictor trained with features extracted from the flanking sequence of m5C modifications. PEA-m5C yielded an average AUC (area under the receiver operating characteristic) of 0.939 in 10-fold cross-validation experiments based on known