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Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted
by long day (LD) photoperiod and vernalization. However, there are differences in
the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana
regulators, FLOWERING LOCUS C (FLC) and CONSTANS (CO), being absent or not
having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box
transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
(AtSOC1), plays a key role in integrating the photoperiodic and vernalization pathways.
In this study, we set out to investigate whether the Medicago SOC1 genes play a
role in regulating flowering time. Three Medicago SOC1 genes were identified and
characterized (MtSOC1a–MtSOC1c). All three MtSOC1 genes, when heterologously
expressed, were able to promote earlier flowering of the late-flowering Arabidopsis
soc1-2 mutant. The three MtSOC1 genes have different patterns of expression.
However, consistent with a potential role in flowering time regulation, all three MtSOC1
genes are expressed in the shoot apex and are up-regulated in the shoot apex of
plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1
genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream
of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of
functional redundancy among Medicago SOC1 genes in promoting flowering.

Keywords: flowering time, Medicago, photoperiod, vernalization, legume, genome evolution

INTRODUCTION

In annual plants, the transition from vegetative growth to flowering, termed floral induction, is
regulated by environmental and endogenous cues to promote flowering in spring time (Srikanth
and Schmid, 2011; Letswaart et al., 2012; Romera-Branchat et al., 2014). In the Brassica Arabidopsis
thaliana, the key environmental cues which promote flowering are exposure to a prolonged
period of cold (vernalization), followed by long day (LD) photoperiods. Endogenous signals such
as carbohydrate status, gibberellin metabolism, developmental stage, and the autonomous floral
promotion pathway also interact to promote flowering (Andres and Coupland, 2012; McClung
et al., 2016; Cheng et al., 2017). In Arabidopsis, floral induction is repressed in non-inductive
conditions by the MADS-box transcription factors FLOWERING LOCUS C (FLC) and SHORT
VEGETATIVE PHASE (SVP) (Andres and Coupland, 2012). These floral repressors bind to
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regulatory elements of FLOWERING LOCUS T (FT) and
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1)
and other genes, such as those involved in gibberellin metabolism
(Hepworth et al., 2002; Searle et al., 2006; Tao et al., 2012; Mateos
et al., 2015). Vernalization downregulates FLC expression by
epigenetic and non-coding RNA-based mechanisms (Whittaker
and Dean, 2017). SVP represses flowering under short day (SD)
photoperiods but has reduced expression under LDs in the
inflorescence meristem and under high ambient temperatures
(Hartmann et al., 2000; Lee et al., 2007). Flowering is then
promoted in LDs by the stabilization of the zinc finger
transcription factor CONSTANS (CO) protein. CO is expressed
in leaf phloem companion cells and activates the expression of
the FT gene, which encodes a mobile florigen signal protein
(Kardailsky et al., 1999; Wigge et al., 2005; Corbesier et al.,
2007; Notaguchi et al., 2008). Studies in rice have shown that FT
protein moves to the shoot apical meristem (SAM), whereupon
it interacts with bZIP transcription factor FLOWERING D (FD)
via a 14-3-3 protein-mediated complex (Abe et al., 2005; Taoka
et al., 2011) to activate expression of the MADS box genes SOC1
and floral meristem identity (FMI) gene APETALA 1 (AP1) (Abe
et al., 2005; Wigge et al., 2005; Yoo et al., 2005), thereby inducing
the floral transition.

In Arabidopsis, SOC1 is a ‘floral integrator’ gene that perceives
inputs from the vernalization, LD photoperiodic, and gibberellin
pathways to promote flowering (Lee et al., 2000; Onouchi et al.,
2000; Samach et al., 2000; Hepworth et al., 2002; Moon et al.,
2003; Yoo et al., 2005; Helliwell et al., 2006; Searle et al., 2006;
Sheldon et al., 2006; Jung J.H. et al., 2012; Hou et al., 2014). SOC1
is also regulated post-transcriptionally (Song et al., 2009; Kim
et al., 2013). Upon activation at the shoot apex, the SOC1 protein
binds its own regulatory sequences (Immink et al., 2012; Tao
et al., 2012) and interacts with AGAMOUS-LIKE 24 (AGL24), for
translocation to the nucleus, thereby providing positive feedback
from inductive floral cues (Lee et al., 2008; Liu et al., 2008; Torti
and Fornara, 2012). Proper integration of inductive floral cues
by SOC1 is, therefore, an important step in regulating floral
induction in Arabidopsis.

Despite strong conservation of flowering time genes between
Arabidopsis and legume species, differences in the regulation
and function of genes controlling flowering in legumes are
becoming progressively more apparent (Weller and Ortega,
2015). Medicago truncatula (Medicago, Mt) and the garden
pea (Pisum sativum, Ps), are vernalization-responsive, long-day
annual legume species which are emerging models for flowering
time studies in the agronomically important Fabaceae family
(Clarkson and Russell, 1975; Laurie et al., 2011; Putterill et al.,
2013; Weller and Ortega, 2015). The most striking difference is
the absence of a clear FLC ortholog in legume species (Hecht
et al., 2005). Expansions of flowering time genes are typical, such
that SVP, CO-LIKE (COL), FT, SOC1, and FRUITFUL (FUL)
orthologs typically occur in multi-gene families in Medicago,
garden pea, and soybean (Glycine max, Gm) (Hecht et al.,
2005; Kim et al., 2012; Jung C.H. et al., 2012; Putterill et al.,
2013). Yet, differences in gene function seem to have arisen –
MtSVP genes do not delay flowering when over-expressed in
transgenic Medicago (Jaudal et al., 2014), and MtCOL genes do

not appear to regulate photoperiodic flowering (Wong et al.,
2014). Insights have been gained into the function and regulation
of garden pea and Medicago FT genes by inductive seasonal
cues. PsFTa1/GIGAS is a LD photoperiod inducible and graft-
transmissible mobile signal which promotes flowering in garden
pea (Hecht et al., 2011). In Medicago, MtFTa1 is the sole target
of the vernalization pathway and is rapidly up-regulated in leaves
in response to LD photoperiod (Laurie et al., 2011). Transgenic
Medicago over-expressing MtFTa1 flowers very early, while loss-
of-function fta1-1 mutants flower late and no longer respond
to vernalization (Laurie et al., 2011). Medicago spring mutants
flower early without vernalization and have elevated levels of
MtFTa1 when grown in LD photoperiods (Jaudal et al., 2013;
Yeoh et al., 2013). However, it is unclear how vernalization or LD
activates Medicago FT expression and how FT triggers flowering.

Here, we examined the role of three Medicago SOC1 homologs
(MtSOC1a, MtSOC1b, and MtSOC1c). Our study indicates that
all three MtSOC1s are up-regulated by favorable seasonal cues
in the shoot apex, via both MtFTa1-dependent and MtFTa1-
independent pathways, and likely play a role in the regulation of
Medicago flowering.

MATERIALS AND METHODS

Sequence and Phylogenetic Analyses
MtSOC1 cDNA sequences were obtained as described previously
(Hecht et al., 2005). AtSOC1 was used as a query for a
BLASTP search of GenBank. Predicted SOC1 amino acid
sequences belonging to Rosid species were aligned using the
MUSCLE algorithm (Edgar, 2004) in Geneious software version
10.0.2 (Biomatters). A neighbor-joining phylogenetic tree was
constructed using aligned amino acid residues 61–170, which
excluded the variable C-terminal domain and the conserved
MADS DNA-binding domain.

Plant Materials and Growth Conditions
Medicago truncatula wild-type accessions Jester and R108 were
grown as previously described (Laurie et al., 2011). fta1-1
(R108 background) was described by Laurie et al. (2011).
Tnt1 retroelement insertions in the R108 background at
the MtSOC1b locus (Medtr8g033250) were sourced from the
Noble Foundation collection (Tadege et al., 2008). Primers for
genotyping and quantitative real-time RT-PCR (qRT-PCR) are
listed in Supplementary Table 1. Flowering time was scored
by counting the number of nodes to the first flower on the
main stem. Arabidopsis thaliana soc1-2 (Columbia) mutants were
described in Lee et al. (2000). Arabidopsis plants were grown and
flowering time scored by counting the total number of rosette
leaves at flowering (Laurie et al., 2011).

Generation of Binary Constructs and
Arabidopsis Transformation
The DNA was amplified by PCR using Platinum High Fidelity
Taq DNA polymerase (Invitrogen) and cloned into binary
expression constructs by Gateway R© LR recombination
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technology. Construct integrity was verified by Sanger
sequencing and restriction digest. Arabidopsis soc1-2 (Col)
(Lee et al., 2000) was transformed in accordance with Narusaka
et al. (2010) with Agrobacterium tumefaciens GV3101 harboring
the constitutive expression (CaMV 35S) construct pB2GW7
(Karimi et al., 2002), incorporating the coding sequences of
AtSOC1, MtSOC1a, MtSOC1b, and MtSOC1c. Transgenic
plants were selected on soil by spraying with 0.02% BASTA
(glufosinate).

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated from Medicago and Arabidopsis and
1 µg used for cDNA synthesis, as described previously (Laurie
et al., 2011). qRT-PCR was performed in 10 µL reactions using
3 µL of cDNA diluted 1/30, with Roche SYBR Green I master
mix, in the Roche LightCycler 480 instrument. Multi-well plates
were loaded using a CAS1200 PCR robot. Calculation of the
relative gene expression levels was based on the 11Ct method
(Pfaffl, 2001). In Medicago, the data were normalized to the
reference gene, PROTODERMAL FACTOR 2 (PDF2) (Kakar
et al., 2008). In Arabidopsis, the data were normalized to ACTIN2
(Lee et al., 2013). See Supplementary Table 1 for qRT-PCR primer
sequences.

Statistical Analyses
Differences between means for treatments in gene expression
data, and for flowering times of transgenic lines compared to the
Arabidopsis soc1-2 mutant, were assessed by one-way ANOVA
at the 0.05 significance level, with corrections for multiple
comparisons as stated, using GraphPad Prism version 7.0.

RESULTS

An Ancient Genome Duplication Has
Resulted in Two Distinct Classes of
SOC1 Genes in Legumes
The full-length AtSOC1 amino acid sequence was used as
a BLASTP query to search for predicted SOC1 orthologs in
GenBank. Sequences from 21 Rosid species were retrieved
and aligned using the MUSCLE algorithm. A region 110
amino acids long corresponding to positions 61–170 (spanning
the Intervening and Keratin domains, excluding the highly
conserved MADS DNA-binding domain and highly variable
C-terminal domain) was used to generate a neighbor-joining
phylogenetic tree (Figure 1A). As a control, related AGL
sequences (AGL19, AGL24, and AGL42) from Arabidopsis were
included and did not cluster with any of the predicted SOC1
orthologs. Two distinct classes of SOC1 proteins were observed
for Fabaceae members. We have named them Fabaceae Group
A and B SOC1s (Figure 1A). Medicago has three SOC1 genes,
MtSOC1a (Medtr07g075870), MtSOC1b (Medtr08g033250), and
MtSOC1c (Medtr08g033220) (Hecht et al., 2005). All three
MtSOC1 (c.v. R108) genes encode proteins sharing 65–67%
amino acid identity with AtSOC1 and were identical over the
N-terminal MADS domain that is important for DNA-binding

activity (Figure 1B). MtSOC1b and MtSOC1c proteins are highly
similar to one another, sharing 93% identity (Figure 1B).

To investigate the evolution of the two groups of legume
SOC1 genes, we examined their genomic regions in diverse
legume species. This revealed that a genomic region containing
approximately 20 genes had been duplicated (Supplementary
Figure 1). The synteny of this duplicated region has remained
largely conserved. However, there are differences which can be
used to determine which region likely contains the Group A or
B SOC1 genes. For example, the region containing MtSOC1b also
includes a predicted deacetylase gene (Medtr08g033340) that is
not present in the region with the MtSOC1a locus (a Group
A SOC1). All the legume species we examined possessed this
duplication, with the duplication existing in diverse taxonomic
clades of papilionoid legumes; the phaseoloid or warm season
legumes (such as soybean, common bean, cowpea, and pigeon
pea), the galegoid or temperate legumes (Medicago, garden pea,
and chickpea), and in lupin and peanut species, which belong
to more distantly related clades (Genistoids and Dalbergioids,
respectively). This indicates that the duplication likely occurred
during the early evolution of the legume family, likely as
a result of a whole genome duplication (WGD) event that
occurred about 58 million years ago during the early evolution
of the papilionoid legumes (Bertioli et al., 2009). Also in
M. truncatula, there is a duplication of the Group B SOC1
genes, resulting in MtSOC1b and MtSOC1c genes (Figure 1A,
Supplementary Figure 1). This duplication is also present
in M. sativa (Ms, alfalfa) (Supplementary Figure 2), but is
absent in the other legumes, indicating that it occurred more
recently.

The MtSOC1 Genes Can Partially
Complement an Arabidopsis soc1-2
Mutant
To investigate the function of the three MtSOC1 genes, the
ability of each gene to complement the Arabidopsis late-flowering
soc1-2 (Col) mutant (Lee et al., 2000) was examined. A series
of transgenic plant lines expressing the coding sequence of
each MtSOC1 gene under the control of the constitutive CaMV
35S promoter were generated, in the soc1-2 (Col) mutant
background. For each MtSOC1 gene, multiple transgenic lines
were identified that promoted the flowering of soc1-2 mutant
to varying extents, as inferred by flowering times statistically
significantly different to soc1-2 (Figures 2A,B). As a control,
the Arabidopsis SOC1 gene was also re-introduced into the
soc1-2 mutant. Only one of seven lines (line 1) expressing
AtSOC1 completely rescued the soc1-2 late-flowering mutant
phenotype, meanwhile three lines partially rescued (lines 4,
6, and 7 flowered statistically significantly earlier than soc1-2)
(Figure 2C). To investigate the possibility that transgene
expression level contributed to the variation in flowering time
observed, we isolated RNA from seedling tissues of additional
transgenic lines containing 35S:MtSOC1 cassettes in the soc1-2
background and examined transgene expression levels by qRT-
PCR. Generally, the earlier flowering lines had higher levels
of SOC1 expression (Supplementary Figure 3). Overall, these
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FIGURE 1 | Phylogenetic relationships among SOC1 proteins. (A) Phylogeny of Rosid SOC1 proteins showing two distinct clades of Fabaceae SOC1, based upon a
neighbor-joining tree from a MUSCLE alignment of residues 61–170, comprising a region spanning the Intervening and Keratin domains. Related A. thaliana
AGAMOUS-LIKE sequences were used as outgroups. Species abbreviations: At: Arabidopsis thaliana, Bj: Brassica juncea, Bn: Brassica napus, Bp: Betula
platyphylla, Br: Brassica rapa, Ca: Cicer arietinum, Cf: Cardamine flexuosa, Cs: Citrus sinensis, Fv: Fragaria vesca, Glyma: Glycine max, Hb: Hevea brasiliensis, Jc:
Jatropha curcas, Md: Malus x domestica, Mt: Medicago truncatula, Phvul: Phaseolus vulgaris, Pm: Prunus mume, Pp: Pyrus pyrifolia, Py: Prunus x yedoensis, Ps:
Pisum sativum, Sa: Sinapis alba, Tp: Trifolium pratense. (B) Alignment of full-length Arabidopsis thaliana (Col-0) and Medicago (R108 accession) SOC1.

results indicate that all three MtSOC1 genes can promote
flowering and are functionally equivalent to theArabidopsis SOC1
gene.

The MtSOC1 Genes Have Distinct
Expression Profiles
Next, the expression pattern of the three MtSOC1 genes was
analyzed by qRT-PCR using primers specific for each MtSOC1

gene (Supplementary Figure 4). All three MtSOC1 genes are
expressed (Figure 3). MtSOC1a is expressed in vegetative
tissues (leaves, stem, apical nodes), but is almost undetectable
in reproductive tissues (floral buds, flowers, and seed pods)
(Figure 3A). In contrast, MtSOC1b and MtSOC1c have a similar
but not identical pattern of expression, and both are detected in
vegetative tissues, in floral buds, and in flowers (Figures 3B,C).
Consistent with a potential role in floral induction, all three
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FIGURE 2 | Complementation of late-flowering Arabidopsis soc1-2 (Col)
mutants by Medicago SOC1 genes. Flowering time phenotypes of genetically
independent transgenic plant lines ectopically expressing SOC1 transgenes in
the soc1-2 mutant background. (A) Flowering time of homozygous T3

transgenic lines harboring 35S:MtSOC1a or 35S:MtSOC1b cassettes.
(B) Flowering time of homozygous T3 transgenic lines harboring a
35S:MtSOC1c cassette. (C) Flowering time of T2 transgenic lines harboring a
35S:AtSOC1 cassette. Data are mean ± SD of at least 12 plants grown under
16 h illumination at ∼120 µE.m2.s−1 light intensity at 22◦C day time/18◦C
night time. Statistically significant differences between means of soc1-2
versus each other genotype were determined by one-way ANOVA. Asterisks,
where annotated, denote P-values. ∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001,
∗∗∗∗P ≤ 0.0001.

MtSOC1 genes are expressed under inductive environmental
conditions in apical node tissue, containing the shoot apical
meristem (SAM) (Figure 3). All three MtSOC1 genes are also

FIGURE 3 | Expression pattern of MtSOC1 genes. (A) MtSOC1a,
(B) MtSOC1b, and (C) MtSOC1c. RNA was isolated from various tissues of
WT c.v. Jester plants grown under inductive conditions. Vegetative tissues
were harvested 15 days after sowing and reproductive tissues 35 days after
sowing in soil. Data are the mean ± SE of three biological replicates and
transcripts were normalized to PDF2. All tissues were harvested at ZT 2.

expressed in stem internode tissue, with MtSOC1b and MtSOC1c
being expressed at the highest level in this tissue.

To determine whether the Group A and B SOC1 genes
also have distinct patterns of expression in other plants, we
first examined available RNAseq data from Medicago sativa
(The Alfalfa Gene Index and Expression Atlas Database1).
This data also revealed that the three alfalfa SOC1 genes are
expressed at their highest levels in stem internodes. MsSOC1a
was expressed at relatively low levels in leaves compared with
the MsSOC1b and MsSOC1c genes. For all three MsSOC1 genes,
low or no expression was detected in developing flowers, nor
root nodules, while modest expression was found in roots
(Supplementary Figure 5A). Next, we examined the expression

1http://plantgrn.noble.org/AGED/SearchVisual.jsp#
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of the soybean SOC1 genes in the RNA Seq Atlas database
available at https://soybase.org/ (Severin et al., 2010). This
revealed that GmSOC1b from chromosome 3 is only expressed
at low levels in the tissues examined (young leaves, flowers,
developing seeds, roots, and nodules), whereas the other
GmSOC1b (from chromosome 7) and the Group A GmSOC1s
from chromosomes 9 and 18 had somewhat similar patterns of
expression, with low levels of expression in developing seeds,
and modest expression in the other tissues (Supplementary
Figure 5B).

Given that the legume SOC1 genes have similar patterns
of expression, we examined their promoters with the aim of
identifying conserved regulatory elements. Short regions of
high conservation were identified within the various legume
promoters (Supplementary Figure 6A). Examination of these
conserved regions revealed potential transcription factor-binding
sites. Notably, there were multiple MADS-box transcription
factor-binding sites (Supplementary Figure 6B). In Arabidopsis,
the SOC1 promoter is bound by the MADS-box proteins, FLC,
SVP, and SOC1 itself (Searle et al., 2006; Immink et al., 2012; Tao
et al., 2012; Mateos et al., 2015). Potential SPL, WRKY, and bHLH
transcription factor-binding sites were also found in the legume
SOC1 promoter regions (Supplementary Figure 6B).

MtSOC1b and MtSOC1c Up-regulation in
Response to Inductive Conditions
Requires MtFTa1
Given the potential role of the MtSOC1 genes in flowering
time, we examined their expression during development under
different environmental conditions. As Medicago flowering is
promoted by both vernalization and LD photoperiods, wild-
type plants (accession R108) were grown with and without
vernalization (± V) under LD (16 h light:8 h dark) and SD (8 h
light:16 dark) photoperiods. Germinated seeds of all treatments
were sown into soil at the same time. Gene expression was
examined in aerial tissues (excluding cotyledons) for samples
collected at days 5–15 after sowing, and in apical nodes at days
20 and 25 (Figure 4 and statistical analysis of this data is shown
in Supplementary Figure 7). MtSOC1a was the lowest expressed
MtSOC1 gene throughout the experiment, but was expressed
at the highest levels in the vernalized LD samples at days 20
and 25 (Figure 4A). MtSOC1b was the most strongly expressed
gene under inductive conditions in WT and was induced by day
20 (Figure 4B), with high expression by day 25. In contrast,
MtSOC1b was relatively weakly expressed under SD (Figure 4B).
However, it did show higher expression under LD photoperiod
even without vernalization, compared to vernalized and non-
vernalized SD treatments (Supplementary Figure 8). MtSOC1c
behaved in a similar fashion to MtSOC1b, being strongly
up-regulated under inductive conditions in WT, although to a
lesser extent (Figure 4C).

The role of MtFTa1 in the induction of the MtSOC1 genes was
also addressed in this experiment, by examining the expression
of MtSOC1 in the late-flowering and vernalization insensitive
fta1-1 (R108) mutant background (Laurie et al., 2011). In fta1-
1 mutants grown under LD, both MtSOC1b and MtSOC1c were

expressed at similarly low levels irrespective of vernalization, and
expression was dramatically attenuated compared to vernalized
wild-type plants (for MtSOC1b and MtSOC1c approximately 100-
fold, Figures 4G,H), suggesting both these genes are common
targets of the vernalization pathway and are downstream of
MtFTa1.

Expression of the FMI gene, MtPIM (Benlloch et al., 2006),
was examined in all conditions tested (Figures 4D,I). Similar to
MtSOC1 genes in WT plants grown under inductive conditions,
MtPIM was up-regulated in apical nodes by day 20, thereby
heralding the commitment to flowering, and confirming the
timing of MtSOC1 up-regulation is consistent with these genes
having a role in the floral transition at the apex. Furthermore,
only vernalized LD conditions resulted in a gradual up-regulation
of MtFTa1 in WT plants (Figure 4E), which is necessary
to rapidly promote flowering under favorable environmental
conditions (Laurie et al., 2011; Jaudal et al., 2013). In wild-
type, MtFTa1 induction is concomitant with MtSOC1b and
MtSOC1c activation in apical nodes, in both vernalization
and LD photoperiod conditions, over the duration of this
experiment.

Regulation of MtSOC1 by Photoperiod
Shift
As the MtSOC1 genes are up-regulated under inductive LD
photoperiods (Figure 4, Supplementary Figure 7), we sought
to examine in greater detail the effect of photoperiod on
MtSOC1 expression in apical nodes. Since exposure of SD-
raised vernalized WT (accession R108) plants to just 3 LD
is sufficient to commit Medicago to flowering (Laurie et al.,
2011), we investigated whether MtSOC1 is induced in the
SAM after this period of exposure to LD photoperiod, and
the role of MtFTa1 in this activation (Figure 5 and statistical
analysis of this data is shown in Supplementary Figure 9). In
plants permanently grown under LD, which were harvested
at the conclusion of the experiment (the equivalent of 3 SD
time point), MtSOC1a and MtSOC1b were expressed at higher
levels in WT than fta1-1 (Figures 5A,B). All three MtSOC1
genes were relatively weakly expressed in SD before shift
(SD BS) conditions (Figures 5A–C). Upon transfer of WT
plants into LD, MtSOC1a and MtSOC1b were up-regulated and
remained high when transferred back to SDs (Figures 5A,B).
An increase in MtSOC1a and MtSOC1b expression was also
evident when fta1-1 mutant plants were shifted into LDs,
and generally this increase was smaller than for WT plants
(although none of the changes in expression were statistically
significant; Supplementary Figure 9). Although MtSOC1c is
expressed at higher levels in LD grown plants, compared
with SD grown plants (Figure 4C), no statistically significant
up-regulation in MtSOC1c expression was observed over the six
days of this experiment (Figure 5C). To check the LD exposure
was sufficient to induce markers of the floral transition, we
examined the expression of the FMI genes, MtPIM and MtFULc
(Benlloch et al., 2006; Jaudal et al., 2015), in WT of pre-shift
SD samples, and in samples harvested at the conclusion of
the experiment, which had seen both 3 LD and subsequently
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FIGURE 4 | Time course of MtSOC1 expression during development. (A–E) Expression of indicated genes in wild-type R108 and (F–I) in fta1-1 (R108 background).
Wild-type plants were grown under LD and SD photoperiod, with and without vernalization. fta1-1 plants were grown under LD alone, with and without vernalization.
All treatments were sown into soil at the same time. Aerial tissues of plants excluding cotyledons were harvested for days 5–15 and apical nodes only for days 20
and 25. Data are the mean ± SE of 2–4 biological replicates and transcripts were normalized to PDF2. All samples were harvested at ZT 2.

3 SD (Figure 5D). MtPIM expression remained unchanged
between these time points, while MtFULc was activated following
return to SD, suggesting that MtFULc is likely activated before
MtPIM.

Overall, our results indicated that LDs promote the expression
of the three MtSOC1 genes (Figures 4, 5). However, the

dynamics of this LD response varied between the MtSOC1
genes, with MtSOC1b showing the largest increase in expression
after exposure to three LDs, MtSOC1a showing a moderate
increase and MtSOC1c showing little response (Figure 5).
This rapid induction of MtSOC1a and MtSOC1b is not
eliminated in the fta1-1 mutant (Figure 5), likely due to the
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FIGURE 5 | Regulation of MtSOC1 in apical nodes by changes in
photoperiod. Expression of (A) MtSOC1a, (B) MtSOC1b, (C) MtSOC1c, and
(D) MtPIM and MtFULc. Vernalized WT (c.v. R108, black) and fta1-1 (R108,
gray) plants were grown under SD photoperiod until the monofoliate leaf had
appeared (∼6 days). Plants were sampled [SD-BS refers to SD sample
collected before shifting (BS) into LDs] and then transferred to LD photoperiod
for sampling for 3 days (1 LD, 2 LD, and 3 LD). The remaining plants were
then returned to SD for 3 days and sampled each day (1 SD, 2 SD, and 3 SD).
LD control plants were grown permanently under LD and harvested at the
conclusion of the experiment. Samples are the mean ± SE of 3 biological
replicates and transcripts were normalized to PDF2. All tissues were
harvested at ZT 4 in both light regimes.

involvement of other LD-inducible MtFT genes, such as MtFTb1
(Laurie et al., 2011). In contrast, the large increase in MtSOC1a
and MtSOC1b expression is probably associated with floral
induction (as indicated by the up-regulation of the FMI gene,
MtPIM) and is not seen in the fta1-1 mutants which flower
late and are yet to express MtPIM (Figure 4). Consistent
with this idea, MtSOC1b expression begins to increase at
later in development in the fta1-1 mutant (Supplementary
Figure 8).

Medicago soc1b Mutants Do Not
Flower Late
To identify mutations within the MtSOC1 genes, a reverse
genetics approach was employed to screen for Tnt1

FIGURE 6 | The soc1b mutant does not flower late. Flowering time of
vernalized wild-type R108 and insertion mutant line NF1789 grown under LD
photoperiod. Individual plants of a segregating NF1789 line were genotyped
to determine if they were wild-type, heterozygous or homozygous mutants.
Data are mean ± SE of 8 or more plants. There is no statistically significant
difference between the flowering times of the lines.

retrotransposon-tagged insertion mutants, sourced from the
Noble Foundation collection (Tadege et al., 2008) by PCR. Two
independent lines in the c.v. R108 background were found to
have Tnt1 insertions within exon 7 of MtSOC1b (Supplementary
Figure 10A). Homozygous plants for an insertion annotated
as NF1789 were identified using PCR primers binding within
the MtSOC1b gene and the Tnt1 insertion. No qRT-PCR
products were detected using primers across the insertion site,
indicating that the Tnt1 sequences prevent a correctly spliced
mRNA from being produced (Supplementary Figure 10B).
Homozygous NF1789 plants flowered at a similar time to
wild-type (R108), when grown under inductive conditions
(Figure 6). Moreover, a second independent insertion mutant,
line NF9471 (also with a Tnt1 insertion within exon 7),
also flowered at a similar time to wild-type (Supplementary
Figure 10C).

DISCUSSION

While detailed knowledge of how flowering time is regulated
exists for Arabidopsis, a member of the Brassica family,
less is known about how flowering is regulated in other
plant families. There are several differences between
Arabidopsis and legumes relating to flowering time control,
with evolutionary and genetic data indicating the likely
involvement of legume-specific genes and mechanisms. For
example, legumes lack a clear ortholog of the key Arabidopsis
vernalization-responsive gene, FLC (Hecht et al., 2005) and
the ability to respond to vernalization has likely evolved
independently in legumes and other plant families (Bouché
et al., 2017). Orthologs of the key gene in the Arabidopsis
photoperiodic flowering pathway, CONSTANS (CO) do not
function to control flowering of Medicago (Wong et al.,
2014). Here, we set out to investigate the SOC1 genes of
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Medicago truncatula and their role in the control of flowering
time.

The SOC1 gene plays an important role in Arabidopsis
flowering by integrating multiple floral cues within the apex
to promote flowering at the appropriate time. We have found
that legumes contain two classes of SOC1 genes, which we
refer to as Group A and Group B SOC1s, as a result of a
duplication of a region containing ∼20 genes. This duplication
is present in diverse legumes and likely a result of the WGD that
occurred during the early evolution of the papilionoid legumes
about 58 million years ago (Bertioli et al., 2009). This WGD
has been important in the evolution of various legume-specific
traits allowing the duplicated genes to acquire new functions,
while the other gene copy maintains its original function (Young
and Bharti, 2012). In the case of the two groups of SOC1
genes, they differ in their amino acid sequences and patterns
of expression, indicating that they might have evolved distinct
functions.

Despite the duplication that resulted in two groups of
legume SOC1s and the more recent Medicago-specific tandem
duplication, all three MtSOC1 genes are able to promote the
flowering of the Arabidopsis soc1-2 mutant. Similar phenotypes
have also been reported for the two Group A GmSOC1
genes, with GmGAL1/GmSOC1 (Glyma18g224500) being able
to partially complement the late-flowering soc1-1 (Ler) mutant,
and causing early flowering when constitutively expressed in a
wild-type Arabidopsis (Col) background (Zhong et al., 2012).
GmSOC1-like, the other Group A member (Glyma09g266200),
also resulted in early-flowering when heterologously expressed
(Na et al., 2013). Similar to Arabidopsis and GmSOC1 genes
(Lee et al., 2000; Samach et al., 2000; Zhong et al., 2012;
Na et al., 2013), Medicago SOC1 genes are expressed in a
range of tissues, though at differing levels. All three MtSOC1
genes are expressed in apical node tissue, consistent with a
potential role in control of flowering time, as reported for
GmSOC1 genes under inductive SD conditions (Na et al., 2013).
MtSOC1b and MtSOC1c are also expressed at relatively high
levels in stem tissue, indicating that they might also play a role
in other aspects of Medicago development, such as internode
elongation.

All three MtSOC1 genes were up-regulated by inductive
conditions of LD and vernalization, in a spatio-temporal manner
concomitant with MtFTa1 and MtPIM induction in leaves and
shoot apices, respectively. Medicago fta1-1 mutants do not
respond to vernalization (Laurie et al., 2011), indicating that
MtFTa1 is an important and perhaps the sole direct target of
the vernalization process. Consistent with this hypothesis, there
are no clear differences between the expressions of the different
MtSOC1 genes in an fta1-1 mutant compared to wild-type grown
without vernalization. This suggests MtSOC1 genes can be placed
genetically downstream of MtFTa1 in the vernalization pathway.
Supporting this conclusion, studies on early-flowering Medicago
spring mutants, which show LD-conditional ectopic MtFTa1
expression, have higher levels of MtSOC1a expression in both
leaves and apices, compared to wild-type (Jaudal et al., 2013).
The requirement for MtFTa1 for vernalization, as well as MtSOC1
induction, has been further highlighted inMedicago vrn2mutants

that flower early under LD photoperiod without vernalization
(Jaudal et al., 2016). vrn2-1 mutants show elevated levels of
MtFTa1 under LD photoperiod, accompanied by increased levels
of all three MtSOC1 genes in leaf tissue. vrn2-1 fta1-1 double
mutants flowered late like fta1-1 single mutants, which was
accompanied by a suppression of MtSOC1 expression in the
double mutant back to levels approaching wild-type (Jaudal et al.,
2016). Taken together, these data from us and others clearly
demonstrate that both MtFTa1 and vernalization are essential for
maximal MtSOC1 induction, in response to favorable seasonal
cues.

MtSOC1 expression is also up-regulated by LD photoperiod
in the absence of vernalization (therefore with low MtFTa1
expression) (Figure 4 and Supplementary Figure 7). We have
previously shown that shifting Medicago plants from non-
inductive SDs into inductive LDs for just 3 days, is sufficient
to both up-regulate two functional MtFT genes, MtFTa1 and
MtFTb1, and to commit to flowering in plants that are
subsequently returned back SD photoperiod (Laurie et al., 2011).
MtFTa1 and MtFTb1 are both rapidly up-regulated in the
leaves, while MtFTa1 is also up-regulated in the shoot apex.
The expression of MtFTa1 and MtFTb1 rapidly declines upon
returning plants to SD photoperiod (Laurie et al., 2011). Here,
we show that 3 days of MtFTa1 expression is sufficient to induce
the expression of MtSOC1a and MtSOC1b genes (Figures 5A,B).
MtSOC1a and MtSOC1b expression also remains at higher levels
when the plants are shifted back into SDs. Consistent with both
MtFTa and MtFTb genes having a role in LD induction of
flowering in legumes (Hecht et al., 2011; Laurie et al., 2011),
this induction was reduced, but not eliminated, in the fta1-
1 mutant background. The rapid induction of MtSOC1a and
MtSOC1b suggests that they might be early targets ofMtFT genes.
In Arabidopsis, SOC1 is also rapidly up-regulated during the
floral transition (Samach et al., 2000). The FMI gene, MtFULc
(Jaudal et al., 2015), was also induced six days after plants were
first transferred into LDs, however, the Medicago ortholog of
AP1, MtPIM, remained unchanged. MtSOC1c also did not show
strong up-regulation upon exposure to LD in the photoperiod
shift experiment, whereas in the time course experiment both
MtSOC1c and MtPIM were up-regulated (Figure 4). This raises
the possibility that these two genes could be more important
slightly later during the Medicago floral transition. Following
flowering, the expression of both MtSOC1b and MtSOC1c
remained at high levels in floral nodes, indicating a potential role
in floral development.

Overall, the results of this study indicate that Medicago
SOC1 genes act downstream of the FT genes and likely act
redundantly to promote flowering. Obtaining double and triple
mutants’ combinations for the three SOC1 genes will be needed
to determine their importance in flowering and potentially other
aspects of Medicago development.
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