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Proper seed development requires coordinated growth among the three genetically
distinct components, the embryo, the endosperm, and the seed coat. In Arabidopsis,
embryo growth rate accelerates after endosperm cellularization, which requires a
chromatin-remodeling complex, the FIS2-Polycomb Repressive Complex 2 (PRC2).
After cellularization, the endosperm ceases to grow and is eventually absorbed by the
embryo. This sequential growth pattern displayed by the endosperm and the embryo
suggests a possibility that the supply of sugar might be shifted from the endosperm
to the embryo upon endosperm cellularization. Since invertases and invertase inhibitors
play an important role in sugar partition, we investigated their expression pattern during
early stages of seed development in Arabidopsis. Two putative invertase inhibitors
(InvINH1 and InvINH2) were identified as being preferentially expressed in the micropylar
endosperm that surrounds the embryo. After endosperm cellularization, InvINH1 and
InvINH2 were down-regulated in a FIS2-dependent manner. We hypothesized that
FIS2-PRC2 complex either directly or indirectly represses InvINH1 and InvINH2 to
increase invertase activity around the embryo, making more hexose available to support
the accelerated embryo growth after endosperm cellularization. In support of our
hypothesis, embryo growth was delayed in transgenic lines that ectopically expressed
InvINH1 in the cellularized endosperm. Our data suggested a novel mechanism for the
FIS2-PRC2 complex to control embryo growth rate via the regulation of invertase activity
in the endosperm.

Keywords: invertase inhibitor, sugar, embryo, endosperm, seed development, PRC2

INTRODUCTION

Angiosperm seed is the product of double fertilization (Friedman, 1998; Linkies et al., 2010).
During this process, one sperm cell fuses with the egg cell to produce the embryo, while
the other sperm cell fuses with the central cell to produce the endosperm (Berger et al.,
2008). After fertilization, the ovule integument develops to form the seed coat (Schneitz
et al., 1995; Debeaujon et al., 2007). Therefore, seed development involves coordinated
growth of three distinct organs: the diploid zygotic embryo, the triploid zygotic endosperm,
and the diploid maternal seed coat (Garcia et al., 2005; Yang et al., 2008; Ingram, 2010).
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FIGURE 1 | The expression pattern of invertase and members of the InvINH/PMEI superfamily during seed development. (A) Illustration depicting a globular stage
seed containing embryo proper (light green), suspensor (dark green), chalazal seed coat (brown), general seed coat (yellow), as well as micropylar (purple), peripheral
(light blue), and chalazal (dark blue) endosperm. (B) Hierarchical clustering of 35 seed samples (in columns) and 107 genes (in rows), including 17 invertases
(indicated by asterisks) and 90 InvINH/PMEIs. The early developmental transition in the embryo and the endosperm occurs at the heart stage. Developmental stages
are indicated by the stage of embryo development. Each stage includes six seed compartments arranged from left to right as embryo proper (em), micropylar
endosperm (men), peripheral endosperm (pen), chalazal endosperm (cen), chalazal seed coat (csc), and general seed coat (gsc). The color represents gene
expression level relative to the median level of expression across all samples. Red, high expression; blue, low expression; gray, data not available. Seven clusters of
co-regulated genes (I–VII) were identified based on the gene dendrogram. (C) A zoomed-in heatmap for Cluster II genes with the data points arranged in the same
sequence as (B).

Most angiosperms, including Arabidopsis, have nuclear
endosperm (Olsen, 2004; Bhojwani, 2009). During the initial
phase of nuclear endosperm development, the nuclei divide
rapidly without cellularization, forming a syncytium (Boisnard-
Lorig et al., 2001). The syncytial phase is followed by endosperm
cellularization, which coincides with the transition in the embryo
from morphogenesis phase to growth phase (Goldberg et al.,
1994; Olsen, 2004; Hehenberger et al., 2012). In addition to
coordinated transition in development, the embryo and the
endosperm also exhibit coordinated changes in growth rate. In
eudicots with transient endosperm, embryo growth accelerates
after the transition, while the endosperm stops growing soon
after the transition and is eventually absorbed by the expanding
embryo (Goldberg et al., 1994; Olsen, 2004; Baud et al., 2008;
Hehenberger et al., 2012). This sequential growth pattern
suggests that nutrient supplies are shifted from the endosperm to
the embryo after endosperm cellularization.

The developmental transition in the endosperm is likely
responsible for the acceleration in embryo growth rate after
endosperm cellularization. Works in both Arabidopsis and
rice have demonstrated that a chromatin-remodeling complex
produced in the endosperm, the Polycomb Repressive Complex

2 (PRC2), is required for endosperm cellularization and the
acceleration in embryo growth rate (Kiyosue et al., 1999;
Sørensen et al., 2001; Folsom et al., 2014). In PRC2 mutants, such
as mea, fis2, fie, and msi1, the endosperm fails to cellularize and
continues to proliferate, while the embryo fails to transition into
the growth phase and aborts at heart stage (Ohad et al., 1996;
Chaudhury et al., 1997; Kiyosue et al., 1999; Köhler et al., 2003).
The PRC2 complex regulates many developmental processes by
methylating histone H3 lysine 27 (H3K27me) to initiate gene
silencing (Schubert et al., 2005; Schuettengruber et al., 2007;
Zheng and Chen, 2011; Holec and Berger, 2012). These data
indicate that PRC2-mediated gene silencing in the endosperm
is involved in the regulation of nutrient allocation from the
endosperm to the embryo.

Invertase plays an important role in sugar allocation during
seed development. Since there is no symplastic connection
between the seed coat, the endosperm, and the embryo (Stadler
et al., 2005), active transport is required to move nutrients from
maternal tissues to the endosperm at the chalazal interface, and
from the endosperm to the embryo at the micropylar interface
(Sanders et al., 2009; Pommerrenig et al., 2013; Chen et al., 2015;
Sosso et al., 2015). At the chalazal interface, sucrose is unloaded
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from the phloem to apoplastic space, hydrolyzed by cell-wall-
bound invertase to glucose and fructose, and subsequently
imported into the endosperm (Cheng et al., 1996; Cheng and
Chourey, 1999). Sucrose hydrolysis generates the concentration
gradient that facilitates sucrose unloading from the seed coat
to the endosperm at the chalazal interface (Weber et al., 1996;
Sherson et al., 2003). However, it is not clear whether invertase
is a part of the sugar transport mechanism at the micropylar
interface.

There are two types of invertase: the acid invertase in the
vacuole or the cell wall, and the neutral/alkaline invertase in
the cytoplasm (Sturm, 1999). Since the acid invertases are
relatively stable, their activity is mainly regulated by small
proteinous invertase inhibitors (InvINHs) (Ruan et al., 2010).
InvINHs and pectin methylesterase inhibitors (PMEIs) belong to
the same superfamily that are characterized by four conserved
cysteine residues (Camardella et al., 2000). To investigate
whether invertases and InvINHs are involved in sugar transport
across the micropylar interface, we analyzed the spatial and
temporal expression pattern of invertase and the members
of InvINH/PMEI superfamily during seed development. We
identified two putative InvINHs (InvINH1 and InvINH2) that
were specifically expressed in the micropylar endosperm.
Moreover, both genes were silenced by FIS2-PRC2 complex
after endosperm cellularization. Finally, ectopic expression data
suggested that InvINH1 inhibited embryo growth.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana ecotype Col-0 and fis2-8 mutant (Wang
et al., 2006) plants were housed in a walk-in Environmental Room
(Norlake Scientific, Hudson, WI, United States) at 22◦C under
16-h light/8-h dark long-day condition. Seeds were stratified for
4 days at 4◦C before germination. Plants were grown in Pro-Mix
BX soil (Premier Horticulture, Quakertown, PA, United States)
and fertilized with Peters 20-20-20 (Scotts-Sierra Horticultural
Products Company, Marysville, OH, United States).

Microarray Data Analysis
Microarray data was downloaded from Gene Expression
Omnibus database (accession no. GSE12404). The expression
values were normalized with the GeneChip Robust Multiarray
Averaging method (GC-RMA) implemented as a Bioconductor
package under the R platform1 (Wu et al., 2004). Hierarchical
cluster analysis (average linkage and Euclidean distance as
similarity measure) was performed using Cluster 3.0 on log2-
transformed expression values (de Hoon et al., 2004). The result
of cluster analysis was visualized using Java TreeView (Saldanha,
2004).

The gene IDs for eight acid invertases (Glycoside Hydrolase
Family 32) and nine neutral/alkaline invertases (Glycoside
Hydrolase Family 100) were obtained from Carbohydrate-Active

1http://bioconductor.org/packages/2.0/bioc/html/gcrma.html

FIGURE 2 | The expression pattern of InvINH1 and InvINH2 in wild type (+/+)
and fis2-8/+ mutant plants. The mRNA level of InvINH1 and InvINH2 was
determined by qRT-PCR in rosette leaves, roots, stems, closed floral buds,
and whole siliques at 3 and 5 dap. The expression level in wild-type 3-dap
siliques was set as 100%, which was used as a reference point to calculate
the relative expression level in other tissues.

enZYmes Database2 (Sturm et al., 1999; Lammens et al., 2009).
The gene IDs for 125 members of the plant InvINH/PMEI
superfamily were obtained from SUPERFAMILY database3

(Wilson et al., 2009). Cluster analysis was conducted on 107 genes
that are present on Affymetrix Arabidopsis ATH1 Genome Array,
including 17 invertase genes and 90 InvINH/PMEI genes.

Bioinformatics Analyses
The following online programs were used to predict the
subcellular localizations of InvINH1 and InvINH2: PSORT4

(Nakai and Kanehisa, 1991), MultiLoc25 (Blum et al., 2009), and
YLoc6 (Briesemeister et al., 2010). All three programs were run
with the default setting for plant proteins.

Genevestigator7 (Hruz et al., 2008) was used to analyze
the expression pattern of InvINH1 and InvINH2. The data
selection includes a compendium of 5,825 wild-type A. thaliana
samples profiled on the Affymetrix Arabidopsis ATH1 Genome
Array platform. The Anatomy tool and Perturbations tool from
the CONDITION SEARCH toolset were used to analyze the
expression level of InvINH1 and InvINH2, which are represented
by the same Affymetrix probe (248823_s_at).

RNA Isolation and Quantitative RT-PCR
Total RNAs were extracted from roots, stems, rosette leaves,
closed floral buds from stage 0 to 12 (Smyth et al., 1990), and
young siliques at 3 and 5 days after pollination (dap) following a
modified hot borate extraction method (Wan and Wilkins, 1994).
The first-strand cDNAs were synthesized with the RETROscript
kit (Ambion, Inc., Austin, TX, United States). Quantitative PCR

2http://www.cazy.org
3http://supfam.org/SUPERFAMILY
4http://psort.hgc.jp/form.html
5http://abi.inf.uni-tuebingen.de/Services/MultiLoc2
6http://abi.inf.uni-tuebingen.de/Services/Yloc/webloc.cgi
7https://genevestigator.com/gv/
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(qPCR) was performed with the SYBR Select Master Mix and
the StepOnePlus real-time PCR system (Applied Biosystems,
Foster City, CA, United States). The primers used for qPCR
are as follows: InvINH1, forward 5′-ctgagtgctgctttggatgta-3′,
reverse 5′-gttctcgttggtaatcggagac-3′; InvINH2 forward 5′-
aagacccgcaatcgtcatac-3′, reverse 5′-gtcgatgctagggccaaatc-3′;
and Actin2 forward 5′-tccctcagcacattccagcagat-3′, reverse 5′-
aacgattcctggacctgcctcatc-3′. CT values were normalized against
Actin2. The use of Actin2 as the reference gene for qPCR analysis
has been previously described (Wang et al., 2010). Most tissues
were analyzed with three biological replicates except for silique
tissues, which were analyzed with two biological replicates and
two technical replicates. The mRNA level of InvINH1 or InvINH2
in 3-dap wild-type siliques was set as the reference point (100%)
to calculate the relative mRNA levels in other tissues following
the−11CT method (Livak and Schmittgen, 2001).

Constructs and Plant Transformation
The 5′ flanking region of InvINH1 or InvINH2 was cloned
into the binary vector pBN-GFP (Wang et al., 2006) to create
promoter fusion constructs. In brief, the 5′ flanking regions
of InvINH1 (1172 bp) and InvINH2 (2238 bp), including the
entire 5′ intergenic region and the coding region encoding the
first seven amino acids, were amplified from Col-0 genomic
DNA using Phusion Polymerase (Thermo Fisher, Waltham, MA,
United States). The 5′ UTR region and the first seven amino acids
were included in the promoter fusion to ensure proper translation
of the GFP gene. Since the N-terminal signal peptide for InvINH1
and InvINH2 was predicated to be 20-amino-acid long, the
inclusion of the first seven amino acids is unlikely to change the
subcellular localization of the GFP protein. The primers used
for amplification are as follows: InvINH1 forward primer (5′-
aatgtctagagctgaaatgaaactacatgtgc-3′), InvINH2 forward primer
(5′-cgtttctagacgtctccgattaccaacga-3′), and a common reverse
primer (5′-gagaaggatcccaatgaaaccaagaacttcat-3′). The amplified
fragments were cloned in frame into the pBN-GFP vector
between the XbaI and BamHI sites.

The ectopic expression construct for InvINH1 was generated
by cloning the ZOU promoter and InvINH1 coding region
into the binary vector pBN (Wang et al., 2006). Since
InvINH1 has no intron, both InvINH1 coding region and
Zou promoter were amplified from Col-0 genomic DNA
using Phusion Polymerase (Thermo Fisher). The Zou promoter
region (−2009 bp to +18 bp) was amplified with forward
primer (5′-tgattacgccaagcttgtgttacgttgtaacgaattt-3′) and reverse
primer (5′-tgctcaccatggatccctcttgagcattagtcatattg-3′), then cloned
into pBN vector between the HindIII and BamHI site,
resulting in construct pBN-pZOU. Next, the InvINH1 coding
region (525 bp) was amplified with forward primer (5′-
attaggatccatgaagttcttggtttcattggt-3′) and reverse primer (5′-
gataggtaccttacaacatattagtaaaagccaaagga-3′), then cloned into
pBN-pZOU in between the BamHI and KpnI sites, resulting in
construct pBN-pZou-InvINH1. All constructs were verified by
sequencing.

Arabidopsis plant transformation was carried out as
described previously (Wang et al., 2006). In brief, Agrobacterium
tumefaciens strain GV3101 pMP90 (Koncz and Schell, 1986)

carrying the appropriate binary vector was used to perform the
standard floral dip method (Clough and Bent, 1998). Transgenic
seedlings were selected on 0.5x Murashige and Skoog (MS)
media containing 35 µg/ml Kanamycin. The presence of the
transgene in T1 plants was confirmed using PCR.

Image Collection and Processing
Seeds were dissected out of the silique as described previously
(Wang et al., 2010). To isolate the embryos, seeds were punctured
with a dissecting needle and then gently pressed to release the
embryos. GFP expression pattern in whole-mount seeds were
obtained with a Zeiss LSM 700 inverted confocal microscope
(Carl Zeiss, Oberkochen, Germany). Dissected embryos were
imaged with Nikon C-DS stereoscopic microscope (Nikon,
Tokyo, Japan) equipped with an AxioCam Icc1 digital camera
imaging kit (Carl Zeiss). Image processing was performed
with Adobe Photoshop CS (Adobe Systems Inc., San Jose,
United States).

RESULTS

Expression Profiling of Invertases and
InvINHs/PMEIs during Seed
Development
In Arabidopsis, embryo growth rate accelerates after endosperm
cellularization (Goldberg et al., 1994; Baud et al., 2008;
Hehenberger et al., 2012). To investigate whether the change in
embryo growth rate is correlated with any change in invertase
activity, we analyzed the temporal and spatial expression pattern
of invertase and InvINHs by performing hierarchical cluster
analysis on a published seed microarray dataset (Belmonte et al.,
2013). The dataset includes six developmental time points from
pre-globular stage to mature green embryo stage (Figure 1). Each
stage contains five to six distinct seed compartments captured
with laser capture microdissection (Figure 1). The list of genes
included in our analysis was described in Section “Materials and
Methods.” Since it is difficult to distinguish InvINHs from PMEIs
based on sequence conservation alone (Hothorn et al., 2004), we
included all members of the InvINH/PMEI superfamily in our
analysis.

Hierarchical cluster analysis revealed seven co-regulated gene
clusters that share distinct spatial and temporal expression
patterns during seed developments (Figure 1). Some of the co-
regulated clusters were specific to seed compartments located
at the interface of nutrient transfer, such as chalazal endosperm
(Figure 1B, Cluster IV), chalazal seed coat (Figure 1B, Cluster
VII), general seed coat (Figure 1B, Cluster VI), and micropylar
endosperm (Figure 1B, Cluster II). Among these four seed
compartments, chalazal endosperm, chalazal seed coat, and
general seed coat are located at the seed coat/endosperm
interface, suggesting that clusters IV, VI, and VII genes might
be involved in nutrient transfer from the maternal tissues to
the endosperm during seed development (Li and Berger, 2012).
Since we were interested in the nutrient transfer mechanism that
regulates embryo growth rate, we focused on Cluster II genes
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FIGURE 3 | InvINH1 and InvINH2 promoter activity in the female gametophyte and the endosperm. Promoter-GFP fusions for InvINH1 (A–L) and InvINH2 (M–X)
were analyzed by confocal microscopy in the ovules isolated from stage 12 flowers (Smyth et al., 1990) containing stage FG4 (Christensen et al., 1997) female
gametophyte (A,M) and from flowers at 1 day after emasculation (B,N). The GFP signals in the fertilized seeds were analyzed at endosperm stage I (C,O), II (D,P),
III (E,Q), IV (F,R), V (G,S), VI (H,T), VII (I,U), VIII (J,V), and IX (K,W) (Boisnard-Lorig et al., 2001), as well as in seeds containing heart stage embryos (L,X). The
embryo stage in (L,X) was verified by dissection. GFP (green) and auto-fluorescent signals (red) were imaged simultaneously and merged. All the images were
oriented with the micropylar ends on the left and the chalazal ends on the right. Arrow indicates micropylar endosperm. Dashed circle indicates the location of
chalazal endosperm. Bar = 50 µm.

that were specifically expressed in the micropylar endosperm
surrounding the embryo (Figure 1B). Cluster II contains nine
members of the plant InvINH/PMEI superfamily represented by
eight Affymetrix probes (Figure 1C). After the transition at heart-
stage (Figure 1), cluster II genes were down-regulated in the
endosperm (Figure 1B), which is expected to cause an increase
in invertase or pectin methylesterase activity after endosperm
cellularization.

InvINH1 and InvINH2 Were Specifically
Expressed in Reproductive Tissues
To validate the microarray data, two genes from Cluster II
were selected for additional expression analysis. These two
genes were tentatively named as InvINH1 (At5g46960) and
InvINH2 (At5g46950). InvINH1 and InvINH2 are represented
by the same Affymetrix probe due to 93.5% DNA sequence
identity between the two genes. Both InvINH1 and InvINH2
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proteins are 174 amino acids long and are 88.5% identical to
each other. We used three different methods to predict the
subcellular location of InvINH1 and InvINH2. The probability
of InvINH1 and InvINH2 to be localized to the extracellular
space is 75.2, 99.9, and 68% according to PSORT (Nakai and
Kanehisa, 1991), Yloc (Briesemeister et al., 2010), and MultiLoc2
(Blum et al., 2009), respectively. The PSORT program predicted
that both InvINH1 and InvINH2 have a 20-amino-acid-long
N-terminal signal peptide. In addition, InvINH1 has been
experimentally confirmed to be a secreted protein associated
with the plant cell wall (Irshad et al., 2008), which supports
the possibility of InvINH1 to act as an inhibitor of cell-wall-
associated enzymes.

To determine whether InvINH1 and InvINH2 are specifically
expressed in the seed, we used qRT-PCR to analyze the
mRNA level of InvINH1 and InvINH2 in both vegetative
tissues (roots, stems, and rosette leaves) and reproductive
tissues (closed floral buds, 3-dap siliques, and 5-dap siliques).
Among the reproductive tissues, the 3-dap siliques contained
globular-stage embryo and syncytial endosperm, while the 5-dap
siliques contained early-torpedo stage embryo and cellularized
endosperm. Since InvINH1 and InvINH2 are 93.5% identical
in DNA sequence, gene-specific qRT-PCR primers were first
designed to distinguish InvINH1 from InvINH2. In wild-
type plants, the expression level of InvINH1 and InvINH2
were dramatically higher in reproductive tissues than in
vegetative tissues (Figure 2). InvINH1 was primarily expressed
in closed floral buds and 3-dap siliques, while InvINH2
was primarily expressed in 3-dap siliques (Figure 2). Both
InvINH1 and InvINH2 were strongly down-regulated in 5-
dap siliques compared to 3-dap siliques (Figure 2). Therefore,
both the qRT-PCR and the microarray data suggested that
InvINH1 and InvINH2 were expressed in the seeds during
the syncytial phase and are down-regulated after endosperm
cellularization.

In support of our qRT-PCR data, the silique was identified
as the structure with the highest expression level for InvINH1
and InvINH2 among the 87 anatomical structures annotated by
Genevestigator (Supplementary Figure S1A). Genevestigator
analysis also revealed that the expression of InvINH1 and
InvINH2 were regulated by additional developmental cues
and environmental stimuli (Supplementary Figure S1B). For
example, InvINH1 and InvINH2 were up-regulated during
germination (Narsai et al., 2011) and upon Pseudomonas
syringae inoculation (GEO accession GSE5520, GSE18978).
The down-regulation of InvINH1 and InvINH2 was observed
in the endosperm/seed coat fraction from germinating seeds
upon ABA treatment (GEO accession GSE5751), and in
seedlings upon exposure to sucrose (Stokes et al., 2013).
Moderate expression was also detected in senescent leaves
(Supplementary Figure S1A). In general, InvINH1 and
InvINH2 are expressed in tissues that undergo active sugar
reallocation, such as the endosperm, germinating seeds, and
senescent leaves. Collectively, theses data suggested that InvINH1
and InvINH2 are potentially involved in other biological
processes in addition to their function during early endosperm
development.

InvINH1 and InvINH2 Were Specifically
Expressed in Syncytial Micropylar
Endosperm
To investigate the spatial and temporal expression pattern
of InvINH1 and InvINH2 during seed development, we
generated promoter-GFP fusions for these two genes and
analyzed GFP expression pattern in stable transgenic plants. The
InvINH1 promoter-GFP signal was detected in both the female
gametophyte and the syncytial endosperm (Figures 3A–K).
Briefly, the InvINH1 promoter-GFP activity was detectable
in stage FG4 female gametophyte (4-nucleate, Christensen
et al., 1997, Figure 3A). In the mature female gametophyte
at 1 day after emasculation, the promoter activity was only
present in the central cell (Figure 3B). After fertilization,
the promoter-GFP signal was more prevalent in the syncytial
endosperm from endosperm stage I (one nucleus) to stage VIII
(∼100 nuclei, Boisnard-Lorig et al., 2001, Figures 3C–J). After
endosperm cellularization at stage IX (Figure 3K), the GFP
signal decreased dramatically and was no longer detectable in
seeds containing heart stage embryos (Figure 3L). In seeds
that contained globular-stage embryo and syncytial endosperm,
the GFP signal was primarily detected in the micropylar
endosperm, with weak expression in the periphery endosperm
and no expression in the chalazal endosperm (Figure 3J).
Promoter-GFP expression pattern similar to that of InvINH1
was also observed for InvINH2 (Figures 3M–X), except that
InvINH2 promoter-GFP signal was not detectable in the female
gametophyte at 1 day after emasculation (Figure 3N). The
observed GFP expression pattern was consistent among the
13 analyzed T1 lines for pInvINH1-GFP, as well as among
the 11 analyzed T1 lines for pInvINH2-GFP. Therefore, both
InvINH1 and InvINH2 were preferentially expressed in the
micropylar endosperm prior to endosperm cellularization, which
was in good agreement with the microarray and qRT-PCR
data.

Embryo Growth Was Inhibited by
Ectopically Expressed InvINH1
Based on the specific expression pattern of InvINH1 and
InvINH2, we hypothesized that their function is to inhibit cell-
wall-bound enzymes, such as invertase or pectin methylesterase,
that are located at the embryo-endosperm interphase prior
to endosperm cellularization. To investigate whether the
down-regulation of InvINH1 after endosperm cellularization
is connected to the acceleration in embryo growth rate, we
ectopically expressed InvINH1 after endosperm cellularization
using the ZOU promoter, which is preferentially active in the
micropylar endosperm at both the syncytial stage and the
cellularized stage (Yang et al., 2008). Since InvINH1 and InvINH2
share similar expression pattern (Figure 3) and 93.5% similarity
in DNA sequence, there is a possibility that these two genes are
functionally redundant. Moreover, it is difficult to generate a
double mutant to address the redundancy issue, because these
two genes are only 2 kb apart. Therefore, we decided to use
the ectopic expression approach to investigate the function of
InvINH1 during seed development. We generated transgenic
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FIGURE 4 | Prolonged expression of InvINH1 delayed embryo growth. (A) The embryo phenotype of 21 individual T1 plants carrying pZOU-InvINH1 transgene.
(B) The embryo phenotype of 20 individual T1 plants carrying pZou transgene. (C) Dissected embryos from the same silique of a T1 plant carrying pZOU-InvINH1.
(D) Ectopic expression of InvINH1 in pZOU-InvINH1 transgenic plants. The InvINH1 mRNA level in whole siliques was determined by qRT-PCR at 5 dap.
The expression level in wild-type (Col-0) siliques at 3 dap was used as a reference point (100%) to calculate the relative expression level in other samples. Around
50–60 seeds were dissected per line to determine the embryo phenotype. empty, undeveloped ovules; ebc, early-bent-cotyledon stage; mbc, mid-bent-cotyledon
stage; lbc, late-bent-cotyledon stage (lbc). Bar = 500 µm.

plants carrying pZOU-InvINH1 and analyzed seed morphology
in 21 independent T1 lines. Embryo morphology was analyzed
at the late-bent-cotyledon stage. Six out of the 21 T1 lines
had more than 25% delayed embryos within a given silique
(Figure 4A). Within the same silique from a T1 hemizygous
transgenic plant, the normal embryos were at the late-bent-
cotyledon stage, while the delayed embryos ranged from early
torpedo to mid-bent-cotyledon stage (Figure 4C). The delay
in embryo growth was transient. At maturation stage, most
of the seeds contained normal size embryos. Since the delay
in embryo growth was not observed in all the lines, we next
investigated if the expression level of the transgene is variable
among the T1 lines. We analyzed the mRNA level of InvINH1
at 5dap in six selected T1 lines that represented different
degrees of delayed embryo phenotype (Figure 4D). In general,
there was a good correlation between the expression level of
InvINH1 and the severity of the phenotype. As the control,
we generated and analyzed 20 T1 lines carrying the promoter-
only pZOU transgene (Figure 4B). Seeds containing delayed
embryos were observed occasionally. However, none of the
pZOU lines contained more than 25% delayed seeds (Figure 4B).
We also observed semi-sterility lines containing close to 50%
undeveloped ovules for both pZou and pZou-InvINH1 transgene
(Figures 4A,B). Semi-sterility is caused by chromosomal
rearrangement during T-DNA mediated transformation (Nacry
et al., 1998). Since semi-sterility was observed for both pZou

and pZou-InvINH1, this phenotype was not associated with the
ectopic expression of InvINH1. Collectively, our data indicated
that prolonged InvINH1 expression is sufficient to delay embryo
growth.

InvINH1 and InvINH2 Were Up-Regulated
in fis2 Mutant
Since embryo growth was severely suppressed in mea, fis2, fie,
and msi1 mutant (Ohad et al., 1996; Chaudhury et al., 1997;
Kiyosue et al., 1999; Köhler et al., 2003), we next investigated
whether the embryo abortion phenotype in these mutants could
be attributed to any changes in InvINH1 and InvINH2 expression
level. We used qRT-PCR to compare the mRNA level of InvINH1
and InvINH2 between the wild-type and fis2-8 mutant siliques
(Figure 2). In wild-type plants, InvINH1 and InvINH2 were
expressed in 3-dap siliques containing syncytial endosperm,
and down-regulated in 5-dap siliques containing cellularized
endosperm (Figure 2). In fis2 mutant plants, the expression
level of InvINHs1 and InvINH2 were up-regulated at both 3 and
5 dap (Figure 2). More specifically, roughly 2-fold up-regulation
was detected at 3 dap, while at least 80-fold up-regulation was
detected at 5 dap. The elevation in InvINH1 and InvINH2
expression level at 5 dap was not simply the consequence
of extended syncytial stage in fis2 mutant, because elevated
expression was detected as early as 3 dap when there was no
morphological difference between the wild-type and the mutant
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seeds. Our data indicated that FIS2-PRC2 complex was required
to directly or indirectly silence the expression of InvINH1 and
InvINH2, which is expected to increase the activity of cell-wall-
bound enzymes, such as invertase or pectin methylesterase after
endosperm cellularization.

DISCUSSION

Proper seed development requires coordinated growth among
the embryo, the endosperm, and the seed coat (Garcia et al.,
2005; Yang et al., 2008; Ingram, 2010). To determine if embryo
growth rate is correlated with invertase activity, we analyzed
the spatial and temporal expression pattern of invertases
and InvINH/PMEI-related genes during Arabidopsis seed
development. Our analysis revealed distinct gene clusters that
were specifically expressed at the interface between the seed
coat and the endosperm, as well as between the endosperm
and the embryo. Among these genes, two putative InvINHs
(InvINH1 and InvINH2) were specifically expressed in the
syncytial endosperm surrounding the embryo. After endosperm
cellularization, the down-regulation of InvINH1 and InvINH2
was dependent on FIS2 function. Moreover, embryo growth
was suppressed by the ectopic expression of InvINH1 in the
cellularized micropylar endosperm. Collectively, our data
suggested a novel mechanism for the FIS2-PRC2 complex to
control embryo growth rate through the repression of InvINH1
in the micropylar endosperm.

InvINH1 was recently reported as a PMEI (PMEI12)
that conferred pathogen resistance by inhibiting PME and
strengthening the cell wall during infection (Lionetti et al.,
2017). However, this report didn’t directly demonstrate
that InvINH1/PMEI12 inhibited pectin methylesterase.
InvINHs and PMEIs employ similar scaffold to inhibit two
very different enzymes, invertase and pectin methylesterase
(Hothorn et al., 2010). However, the conservation in tertiary
structure between InvINHs and PMEIs is not reflected in any
significant conservation in the primary sequence (Hothorn
et al., 2010). Even though several studies have attempted to
identify conserved sequence motifs that distinguish InvINHs
from PMEIs (Hothorn et al., 2004, 2010; Di Matteo et al., 2005),
there are still exemptions to the rule. For example, the PKF
motif was suggested as a distinguishing feature for InvINHs
(Hothorn et al., 2010). However, this motif is not present in
AtC/VIF2, which has been shown to inhibit cell-wall bound
invertase in vitro (Link et al., 2004). With only a handful
of functionally characterized InvINHs and PMEIs, it is still
unreliable to distinguish InvINHs from PMEIs based on their
primary sequence. Therefore, whether InvINH1 is InvINH
or PMEI still remains to be determined by direct enzymatic
assay.

InvINH1-mediated suppression of embryo growth may
occur via two different mechanisms depending on whether
InvINH1 targets invertase or pectin methylesterase. As a pectin
methylesterase inhibitor, InvINH1 likely restricts embryo
growth via the modification of cell wall composition, since
pectin methylesterase is a cell-wall modification enzyme

that dimethylesterify cell wall polygalacturonans (Micheli,
2001). As an invertase inhibitor, InvINH1 likely restricts
embryo growth by slowing down the flow of sucrose
from the endosperm to the embryo before endosperm
cellularization. Several lines of evidence suggested that the
transport of sucrose from the endosperm to the embryo
is important for embryo growth. Based on [14C]sucrose
tracing experiment, sugar is likely exported as sucrose from
the endosperm into the apoplastic space that surrounds the
embryo (Morley-Smith et al., 2008). In addition, embryo
growth rate was suppressed in mutants that lack functional
sucrose transporters in the endosperm and the seed coat (Baud
et al., 2005; Chen et al., 2015). Since invertase hydrolyzes
sucrose and facilitates sugar transport (Ruan et al., 2010),
InvINH1-mediated inhibition of invertase activity could
explain the slow embryo growth rate before endosperm
cellularization.

The discovery of InvINH1 and InvINH2 provided a missing
link between FIS2-PRC2-mediated developmental transition in
the endosperm and the accelerated embryo growth that follows.
Several attempts have been made to identify the genes targeted
by FIS2-PRC2 complex during endosperm cellularization (Tiwari
et al., 2010; Weinhofer et al., 2010). However, it has been difficult
to tease out the syncytial program from other developmental
programs that are suppressed by the FIS2-PRC2 complex,
such as the flowering and embryonic programs (Makarevich
et al., 2006; Weinhofer et al., 2010). InvINH1 is the first
structural gene from the collection of known FIS2-PRC2 targets
that might offer an explanation why embryo growth during
syncytial endosperm phase is limited. In addition to being
up-regulated in fis mutants such as mea and fis2, InvINH1
and InvINH2 were also up-regulated in interploidy crosses
with excess paternal genome (Erilova et al., 2009; Tiwari
et al., 2010). Since paternal-excess cross leads to prolonged
syncytial stage (Scott et al., 1998), both these studies and
our data suggested that InvINH1 and InvINH2 are specifically
associated with the syncytial endosperm program. Furthermore,
our data suggested that the expression of InvINH1 during the
syncytial stage may be connected to the slow embryo growth
rate observed before endosperm cellularization (Baud et al.,
2008).

It remains to be determined whether InvINH1 and
InvINH2 are direct or indirect targets of the FIS2-PRC2
complex. The FIS2-PRC2 complex maintains gene silencing
and genomic imprinting of several endosperm-expressed
genes through the methylation of H3K27 (Köhler et al.,
2005; Baroux et al., 2006; Fitz Gerald et al., 2009).However,
InvINH1 and InvINH2 have not been identified as imprinted
genes (Gehring et al., 2011; Hsieh et al., 2011; McKeown
et al., 2011; Wolff et al., 2011), nor have they displayed
significant enrichment of methylated H3K27 (Weinhofer
et al., 2010). Therefore, InvINH1 and InvINH2 may not be
directly targeted by FIS2-PRC2 complex. Instead, additional
regulators may exist to connect InvINH1 and InvINH2 to
the FIS2-PRC2 regulatory network. Future studies aimed at
identifying the upstream regulators of InvINH1 and InvINH2
will provide a more definitive answer to this question.
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FIGURE S1 | In silico expression analysis of InvINH1 and InvINH2.
(A) The relative expression level was illustrated as a heatmap containing 87
anatomical features that were hierarchically organized by the Anatomy tool from
Genevestigator. (B) The Perturbations tool from Genevestigator was used to
generate the heatmap displaying the experimental stimuli that induced greater
than 1.5-fold changes in the expression level of InvINH1 and InvINH2. InvINH1 and
InvINH2 are represented by the same Affymetrix probe, 248823_s_at.

REFERENCES
Baroux, C., Gagliardini, V., Page, D. R., and Grossniklaus, U. (2006). Dynamic

regulatory interactions of polycomb group genes: MEDEA autoregulation is
required for imprinted gene expression in Arabidopsis. Genes Dev. 20, 1081–
1086. doi: 10.1101/gad.378106

Baud, S., Dubreucq, B., Miquel, M., Rochat, C., and Lepiniec, L. (2008). Storage
reserve accumulation in Arabidopsis: metabolic and developmental control
of seed filling. Arab. Book Am. Soc. Plant Biol. 6:e0113. doi: 10.1199/tab.
0113

Baud, S., Wuillème, S., Lemoine, R., Kronenberger, J., Caboche, M., Lepiniec, L.,
et al. (2005). The AtSUC5 sucrose transporter specifically expressed in the
endosperm is involved in early seed development in Arabidopsis. Plant J. Cell
Mol. Biol. 43, 824–836. doi: 10.1111/j.1365-313X.2005.02496.x

Belmonte, M. F., Kirkbride, R. C., Stone, S. L., Pelletier, J. M., Bui, A. Q., Yeung,
E. C., et al. (2013). Comprehensive developmental profiles of gene activity in
regions and subregions of the Arabidopsis seed. Proc. Natl. Acad. Sci. U.S.A.
110, E435–E444. doi: 10.1073/pnas.1222061110

Berger, F., Hamamura, Y., Ingouff, M., and Higashiyama, T. (2008). Double
fertilization - caught in the act. Trends Plant Sci. 13, 437–443. doi: 10.1016/j.
tplants.2008.05.011

Bhojwani, S. P. B. S. S. (2009). The Embryology Of Angiosperms, 5E. Available at:
https://books.google.com.np/books?id=dD5NvUGbnaYC&hl=en

Blum, T., Briesemeister, S., and Kohlbacher, O. (2009). MultiLoc2: integrating
phylogeny and gene ontology terms improves subcellular protein localization
prediction. BMC Bioinformat. 10:274. doi: 10.1186/1471-2105-10-274

Boisnard-Lorig, C., Colon-Carmona, A., Bauch, M., Hodge, S., Doerner, P.,
Bancharel, E., et al. (2001). Dynamic analyses of the expression of the
HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm
is divided in mitotic domains. Plant Cell 13, 495–509. doi: 10.1105/tpc.13.3.495

Briesemeister, S., Rahnenführer, J., and Kohlbacher, O. (2010). Going from where
to why–interpretable prediction of protein subcellular localization. Bioinforma.
Oxf. Engl. 26, 1232–1238. doi: 10.1093/bioinformatics/btq115

Camardella, L., Carratore, V., Ciardiello, M. A., Servillo, L., Balestrieri, C., and
Giovane, A. (2000). Kiwi protein inhibitor of pectin methylesterase amino-acid
sequence and structural importance of two disulfide bridges. Eur. J. Biochem.
267, 4561–4565. doi: 10.1046/j.1432-1327.2000.01510.x

Chaudhury, A. M., Ming, L., Miller, C., Craig, S., Dennis, E. S., and Peacock, W. J.
(1997). Fertilization-independent seed development in Arabidopsis thaliana.
Proc. Natl. Acad. Sci. U.S.A. 94, 4223–4228. doi: 10.1073/pnas.94.8.4223

Chen, L.-Q., Lin, I. W., Qu, X.-Q., Sosso, D., McFarlane, H. E., Londoñ;o, A., et al.
(2015). A cascade of sequentially expressed sucrose transporters in the seed coat
and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27,
607–619. doi: 10.1105/tpc.114.134585

Cheng, W.-H., and Chourey, P. S. (1999). Genetic evidence that invertase-
mediated release of hexoses is critical for appropriate carbon partitioning
and normal seed development in maize. Theor. Appl. Genet. 98, 485–495.
doi: 10.1007/s001220051096

Cheng, W. H., Taliercio, E. W., and Chourey, P. S. (1996). The miniature1 seed
locus of maize encodes a cell wall invertase required for normal development
of endosperm and maternal cells in the pedicel. Plant Cell 8, 971–983.
doi: 10.1105/tpc.8.6.971

Christensen, C. A., King, E. J., Jordan, J. R., and Drews, G. N. (1997).
Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex. Plant
Reprod. 10, 49–64. doi: 10.1007/s004970050067

Clough, S. J., and Bent, A. F. (1998). Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell
Mol. Biol. 16, 735–743. doi: 10.1046/j.1365-313x.1998.00343.x

de Hoon, M. J. L., Imoto, S., Nolan, J., and Miyano, S. (2004). Open source
clustering software. Bioinforma. Oxf. Engl. 20, 1453–1454. doi: 10.1093/
bioinformatics/bth078

Debeaujon, I., Lepiniec, L., Pourcel, L., and Routaboul, J.-M. (2007). “Seed coat
development and dormancy,” in Annual Plant Reviews: Seed Development,
Dormancy and Germination, Vol. 27, eds K. J. Bradford and H. Nonogaki
(Hoboken, NJ: Blackwell Publishing Ltd), 25–49. doi: 10.1002/9780470988
848.ch2

Di Matteo, A., Giovane, A., Raiola, A., Camardella, L., Bonivento, D., Lorenzo,
G. D., et al. (2005). Structural basis for the interaction between pectin
methylesterase and a specific inhibitor protein. Plant Cell Online 17, 849–858.
doi: 10.1105/tpc.104.028886

Erilova, A., Brownfield, L., Exner, V., Rosa, M., Twell, D., Mittelsten Scheid, O.,
et al. (2009). Imprinting of the polycomb group gene MEDEA serves as a
ploidy sensor in Arabidopsis. PLOS Genet. 5:e1000663. doi: 10.1371/journal.
pgen.1000663

Fitz Gerald, J. N., Hui, P. S., and Berger, F. (2009). Polycomb group-
dependent imprinting of the actin regulator AtFH5 regulates morphogenesis
in Arabidopsis thaliana. Dev. Camb. Engl. 136, 3399–3404. doi: 10.1242/dev.
036921

Folsom, J. J., Begcy, K., Hao, X., Wang, D., and Walia, H. (2014). Rice fertilization-
independent endosperm1 regulates seed size under heat stress by controlling
early endosperm development. Plant Physiol. 165, 238–248. doi: 10.1104/pp.
113.232413

Friedman, W. E. (1998). The evolution of double fertilization and endosperm:
an “historical” perspective. Sex. Plant Reprod. 11, 6–16. doi: 10.1007/
s004970050114

Garcia, D., Gerald, J. N. F., and Berger, F. (2005). Maternal control of integument
cell elongation and zygotic control of endosperm growth are coordinated to
determine seed size in Arabidopsis. Plant Cell 17, 52–60. doi: 10.1105/tpc.104.
027136

Gehring, M., Missirian, V., and Henikoff, S. (2011). Genomic analysis of parent-
of-origin allelic expression in Arabidopsis thaliana seeds. PLOS ONE 6:e23687.
doi: 10.1371/journal.pone.0023687

Goldberg, R. B., de Paiva, G., and Yadegari, R. (1994). Plant embryogenesis: zygote
to seed. Science 266, 605–614. doi: 10.1126/science.266.5185.605

Hehenberger, E., Kradolfer, D., and Kohler, C. (2012). Endosperm cellularization
defines an important developmental transition for embryo development.
Development 139, 2031–2039. doi: 10.1242/dev.077057

Holec, S., and Berger, F. (2012). Polycomb group complexes mediate
developmental transitions in plants. Plant Physiol. 158, 35–43. doi:
10.1104/pp.111.186445

Hothorn, M., Van den Ende, W., Lammens, W., Rybin, V., and Scheffzek, K. (2010).
Structural insights into the pH-controlled targeting of plant cell-wall invertase
by a specific inhibitor protein. Proc. Natl. Acad. Sci. U.S.A. 107, 17427–17432.
doi: 10.1073/pnas.1004481107

Frontiers in Plant Science | www.frontiersin.org 9 January 2018 | Volume 9 | Article 61

https://www.frontiersin.org/articles/10.3389/fpls.2018.00061/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2018.00061/full#supplementary-material
https://doi.org/10.1101/gad.378106
https://doi.org/10.1199/tab.0113
https://doi.org/10.1199/tab.0113
https://doi.org/10.1111/j.1365-313X.2005.02496.x
https://doi.org/10.1073/pnas.1222061110
https://doi.org/10.1016/j.tplants.2008.05.011
https://doi.org/10.1016/j.tplants.2008.05.011
https://books.google.com.np/books?id=dD5NvUGbnaYC&hl=en
https://doi.org/10.1186/1471-2105-10-274
https://doi.org/10.1105/tpc.13.3.495
https://doi.org/10.1093/bioinformatics/btq115
https://doi.org/10.1046/j.1432-1327.2000.01510.x
https://doi.org/10.1073/pnas.94.8.4223
https://doi.org/10.1105/tpc.114.134585
https://doi.org/10.1007/s001220051096
https://doi.org/10.1105/tpc.8.6.971
https://doi.org/10.1007/s004970050067
https://doi.org/10.1046/j.1365-313x.1998.00343.x
https://doi.org/10.1093/bioinformatics/bth078
https://doi.org/10.1093/bioinformatics/bth078
https://doi.org/10.1002/9780470988848.ch2
https://doi.org/10.1002/9780470988848.ch2
https://doi.org/10.1105/tpc.104.028886
https://doi.org/10.1371/journal.pgen.1000663
https://doi.org/10.1371/journal.pgen.1000663
https://doi.org/10.1242/dev.036921
https://doi.org/10.1242/dev.036921
https://doi.org/10.1104/pp.113.232413
https://doi.org/10.1104/pp.113.232413
https://doi.org/10.1007/s004970050114
https://doi.org/10.1007/s004970050114
https://doi.org/10.1105/tpc.104.027136
https://doi.org/10.1105/tpc.104.027136
https://doi.org/10.1371/journal.pone.0023687
https://doi.org/10.1126/science.266.5185.605
https://doi.org/10.1242/dev.077057
https://doi.org/10.1104/pp.111.186445
https://doi.org/10.1104/pp.111.186445
https://doi.org/10.1073/pnas.1004481107
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00061 January 25, 2018 Time: 18:5 # 10

Zuma et al. Invertase Inhibitors Regulate Embryo Growth

Hothorn, M., Wolf, S., Aloy, P., Greiner, S., and Scheffzek, K. (2004). Structural
insights into the target specificity of plant invertase and pectin methylesterase
inhibitory proteins. Plant Cell 16, 3437–3447. doi: 10.1105/tpc.104.025684

Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., et al. (2008).
Genevestigator v3: a reference expression database for the meta-analysis of
transcriptomes. Adv. Bioinforma. 2008:420747. doi: 10.1155/2008/420747

Hsieh, T.-F., Shin, J., Uzawa, R., Silva, P., Cohen, S., Bauer, M. J., et al. (2011).
Regulation of imprinted gene expression in Arabidopsis endosperm. Proc. Natl.
Acad. Sci. U.S.A. 108, 1755–1762. doi: 10.1073/pnas.1019273108

Ingram, G. C. (2010). Family life at close quarters: communication and constraint
in angiosperm seed development. Protoplasma 247, 195–214. doi: 10.1007/
s00709-010-0184-y

Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R., and Jamet, E. (2008). A new
picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana:
confirmed actors and newcomers. BMC Plant Biol. 8:94. doi: 10.1186/1471-
2229-8-94

Kiyosue, T., Ohad, N., Yadegari, R., Hannon, M., Dinneny, J., Wells, D., et al.
(1999). Control of fertilization-independent endosperm development by the
MEDEA polycomb gene in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 96, 4186–
4191. doi: 10.1073/pnas.96.7.4186

Köhler, C., Hennig, L., Bouveret, R., Gheyselinck, J., Grossniklaus, U., and
Gruissem, W. (2003). Arabidopsis MSI1 is a component of the MEA/FIE
Polycomb group complex and required for seed development. EMBO J. 22,
4804–4814. doi: 10.1093/emboj/cdg444

Köhler, C., Page, D. R., Gagliardini, V., and Grossniklaus, U. (2005). The
Arabidopsis thaliana MEDEA polycomb group protein controls expression of
PHERES1 by parental imprinting. Nat. Genet. 37, 28–30. doi: 10.1038/ng1495

Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls
the tissue-specific expression of chimaeric genes carried by a novel type of
Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396. doi: 10.1007/
BF00331014

Lammens, W., Le Roy, K., Schroeven, L., Van Laere, A., Rabijns, A., and Van den
Ende, W. (2009). Structural insights into glycoside hydrolase family 32 and 68
enzymes: functional implications. J. Exp. Bot. 60, 727–740. doi: 10.1093/jxb/
ern333

Li, J., and Berger, F. (2012). Endosperm: food for humankind and fodder for
scientific discoveries. New Phytol. 195, 290–305. doi: 10.1111/j.1469-8137.2012.
04182.x

Link, M., Rausch, T., and Greiner, S. (2004). In Arabidopsis thaliana, the invertase
inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and
expression profiles. FEBS Lett. 573, 105–109. doi: 10.1016/j.febslet.2004.07.062

Linkies, A., Graeber, K., Knight, C., and Leubner-Metzger, G. (2010). The
evolution of seeds. New Phytol. 186, 817–831. doi: 10.1111/j.1469-8137.2010.
03249.x

Lionetti, V., Fabri, E., De Caroli, M., Hansen, A. R., Willats, W. G. T.,
Piro, G., et al. (2017). Three pectin methylesterase inhibitors protect cell wall
integrity for Arabidopsis immunity to Botrytis. Plant Physiol. 173, 1844–1863.
doi: 10.1104/pp.16.01185

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data
using real-time quantitative PCR and the 2−11CT method. Methods San Diego
Calif. 25, 402–408. doi: 10.1006/meth.2001.1262

Makarevich, G., Leroy, O., Akinci, U., Schubert, D., Clarenz, O., Goodrich, J., et al.
(2006). Different Polycomb group complexes regulate common target genes in
Arabidopsis. EMBO Rep. 7, 947–952. doi: 10.1038/sj.embor.7400760

McKeown, P. C., Laouielle-Duprat, S., Prins, P., Wolff, P., Schmid, M. W.,
Donoghue, M. T., et al. (2011). Identification of imprinted genes subject to
parent-of-origin specific expression in Arabidopsis thaliana seeds. BMC Plant
Biol. 11:113. doi: 10.1186/1471-2229-11-113

Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles
in plant physiology. Trends Plant Sci. 6, 414–419. doi: 10.1016/S1360-1385(01)
02045-3

Morley-Smith, E. R., Pike, M. J., Findlay, K., Köckenberger, W., Hill, L. M., Smith,
A. M., et al. (2008). The transport of sugars to developing embryos is not
via the bulk endosperm in oilseed rape seeds. Plant Physiol. 147, 2121–2130.
doi: 10.1104/pp.108.124644

Nacry, P., Camilleri, C., Courtial, B., Caboche, M., and Bouchez, D. (1998).
Major chromosomal rearrangements induced by T-DNA transformation in
Arabidopsis. Genetics 149, 641–650.

Nakai, K., and Kanehisa, M. (1991). Expert system for predicting protein
localization sites in gram-negative bacteria. Proteins 11, 95–110. doi: 10.1002/
prot.340110203

Narsai, R., Law, S. R., Carrie, C., Xu, L., and Whelan, J. (2011). In-depth temporal
transcriptome profiling reveals a crucial developmental switch with roles for
RNA processing and organelle metabolism that are essential for germination in
Arabidopsis. Plant Physiol. 157, 1342–1362. doi: 10.1104/pp.111.183129

Ohad, N., Margossian, L., Hsu, Y. C., Williams, C., Repetti, P., and Fischer, R. L.
(1996). A mutation that allows endosperm development without fertilization.
Proc. Natl. Acad. Sci. U.S.A. 93, 5319–5324. doi: 10.1073/pnas.93.11.5319

Olsen, O.-A. (2004). Nuclear endosperm development in cereals and Arabidopsis
thaliana. Plant Cell Online 16, S214–S227. doi: 10.1105/tpc.017111

Pommerrenig, B., Popko, J., Heilmann, M., Schulmeister, S., Dietel, K., Schmitt, B.,
et al. (2013). SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos
with biotin and affects triacylglycerol accumulation. Plant J. 73, 392–404.
doi: 10.1111/tpj.12037

Ruan, Y.-L., Jin, Y., Yang, Y.-J., Li, G.-J., and Boyer, J. S. (2010). Sugar input,
metabolism, and signaling mediated by invertase: roles in development,
yield potential, and response to drought and heat. Mol. Plant 3, 942–955.
doi: 10.1093/mp/ssq044

Saldanha, A. J. (2004). Java Treeview—extensible visualization of microarray data.
Bioinformatics 20, 3246–3248. doi: 10.1093/bioinformatics/bth349

Sanders, A., Collier, R., Trethewy, A., Gould, G., Sieker, R., and Tegeder, M.
(2009). AAP1 regulates import of amino acids into developing Arabidopsis
embryos. Plant J. Cell Mol. Biol. 59, 540–552. doi: 10.1111/j.1365-313X.2009.0
3890.x

Schneitz, K., Hülskamp, M., and Pruitt, R. E. (1995). Wild-type ovule development
in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue.
Plant J. 7, 731–749. doi: 10.1046/j.1365-313X.1995.07050731.x

Schubert, D., Clarenz, O., and Goodrich, J. (2005). Epigenetic control of plant
development by Polycomb-group proteins. Curr. Opin. Plant Biol. 8, 553–561.
doi: 10.1016/j.pbi.2005.07.005

Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B., and Cavalli, G.
(2007). Genome regulation by polycomb and trithorax proteins. Cell 128,
735–745. doi: 10.1016/j.cell.2007.02.009

Scott, R. J., Spielman, M., Bailey, J., and Dickinson, H. G. (1998). Parent-of-origin
effects on seed development in Arabidopsis thaliana. Dev. Camb. Engl. 125,
3329–3341.

Sherson, S. M., Alford, H. L., Forbes, S. M., Wallace, G., and Smith, S. M. (2003).
Roles of cell-wall invertases and monosaccharide transporters in the growth and
development of Arabidopsis. J. Exp. Bot. 54, 525–531. doi: 10.1093/jxb/erg055

Smyth, D. R., Bowman, J. L., and Meyerowitz, E. M. (1990). Early flower
development in Arabidopsis. Plant Cell 2, 755–767. doi: 10.1105/tpc.2.8.755

Sørensen, M. B., Chaudhury, A. M., Robert, H., Bancharel, E., and Berger, F. (2001).
Polycomb group genes control pattern formation in plant seed. Curr. Biol. 11,
277–281. doi: 10.1016/S0960-9822(01)00072-0

Sosso, D., Luo, D., Li, Q.-B., Sasse, J., Yang, J., Gendrot, G., et al. (2015). Seed filling
in domesticated maize and rice depends on SWEET-mediated hexose transport.
Nat. Genet. 47, 1489–1493. doi: 10.1038/ng.3422

Stadler, R., Lauterbach, C., and Sauer, N. (2005). Cell-to-cell movement of green
fluorescent protein reveals post-phloem transport in the outer integument and
identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol.
139, 701–712. doi: 10.1104/pp.105.065607

Stokes, M. E., Chattopadhyay, A., Wilkins, O., Nambara, E., and Campbell, M. M.
(2013). Interplay between sucrose and folate modulates auxin signaling in
Arabidopsis. Plant Physiol. 162, 1552–1565. doi: 10.1104/pp.113.215095

Sturm, A. (1999). Invertases. Primary structures, functions, and roles in plant
development and sucrose partitioning. Plant Physiol. 121, 1–8. doi: 10.1104/pp.
121.1.1

Sturm, A., Hess, D., Lee, H.-S., and Lienhard, S. (1999). Neutral invertase is a
novel type of sucrose-cleaving enzyme. Physiol. Plant. Den. 107, 159–165. doi:
10.1034/j.1399-3054.1999.100202.x

Tiwari, S., Spielman, M., Schulz, R., Oakey, R. J., Kelsey, G., Salazar, A., et al.
(2010). Transcriptional profiles underlying parent-of-origin effects in seeds of
Arabidopsis thaliana. BMC Plant Biol. 10:72. doi: 10.1186/1471-2229-10-72

Wan, C. Y., and Wilkins, T. A. (1994). A modified hot borate method significantly
enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.).
Anal. Biochem. 223, 7–12. doi: 10.1006/abio.1994.1538

Frontiers in Plant Science | www.frontiersin.org 10 January 2018 | Volume 9 | Article 61

https://doi.org/10.1105/tpc.104.025684
https://doi.org/10.1155/2008/420747
https://doi.org/10.1073/pnas.1019273108
https://doi.org/10.1007/s00709-010-0184-y
https://doi.org/10.1007/s00709-010-0184-y
https://doi.org/10.1186/1471-2229-8-94
https://doi.org/10.1186/1471-2229-8-94
https://doi.org/10.1073/pnas.96.7.4186
https://doi.org/10.1093/emboj/cdg444
https://doi.org/10.1038/ng1495
https://doi.org/10.1007/BF00331014
https://doi.org/10.1007/BF00331014
https://doi.org/10.1093/jxb/ern333
https://doi.org/10.1093/jxb/ern333
https://doi.org/10.1111/j.1469-8137.2012.04182.x
https://doi.org/10.1111/j.1469-8137.2012.04182.x
https://doi.org/10.1016/j.febslet.2004.07.062
https://doi.org/10.1111/j.1469-8137.2010.03249.x
https://doi.org/10.1111/j.1469-8137.2010.03249.x
https://doi.org/10.1104/pp.16.01185
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1038/sj.embor.7400760
https://doi.org/10.1186/1471-2229-11-113
https://doi.org/10.1016/S1360-1385(01)02045-3
https://doi.org/10.1016/S1360-1385(01)02045-3
https://doi.org/10.1104/pp.108.124644
https://doi.org/10.1002/prot.340110203
https://doi.org/10.1002/prot.340110203
https://doi.org/10.1104/pp.111.183129
https://doi.org/10.1073/pnas.93.11.5319
https://doi.org/10.1105/tpc.017111
https://doi.org/10.1111/tpj.12037
https://doi.org/10.1093/mp/ssq044
https://doi.org/10.1093/bioinformatics/bth349
https://doi.org/10.1111/j.1365-313X.2009.03890.x
https://doi.org/10.1111/j.1365-313X.2009.03890.x
https://doi.org/10.1046/j.1365-313X.1995.07050731.x
https://doi.org/10.1016/j.pbi.2005.07.005
https://doi.org/10.1016/j.cell.2007.02.009
https://doi.org/10.1093/jxb/erg055
https://doi.org/10.1105/tpc.2.8.755
https://doi.org/10.1016/S0960-9822(01)00072-0
https://doi.org/10.1038/ng.3422
https://doi.org/10.1104/pp.105.065607
https://doi.org/10.1104/pp.113.215095
https://doi.org/10.1104/pp.121.1.1
https://doi.org/10.1104/pp.121.1.1
https://doi.org/10.1034/j.1399-3054.1999.100202.x
https://doi.org/10.1034/j.1399-3054.1999.100202.x
https://doi.org/10.1186/1471-2229-10-72
https://doi.org/10.1006/abio.1994.1538
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00061 January 25, 2018 Time: 18:5 # 11

Zuma et al. Invertase Inhibitors Regulate Embryo Growth

Wang, D., Tyson, M. D., Jackson, S. S., and Yadegari, R. (2006). Partially redundant
functions of two SET-domain polycomb-group proteins in controlling
initiation of seed development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 103,
13244–13249. doi: 10.1073/pnas.0605551103

Wang, D., Zhang, C., Hearn, D. J., Kang, I.-H., Punwani, J. A., Skaggs, M. I., et al.
(2010). Identification of transcription-factor genes expressed in the Arabidopsis
female gametophyte. BMC Plant Biol. 10:110. doi: 10.1186/1471-2229-
10-110

Weber, H., Borisjuk, L., and Wobus, U. (1996). Controlling seed development
and seed size in Vicia faba: a role for seed coat-associated invertases and
carbohydrate state. Plant J. 10, 823–834. doi: 10.1046/j.1365-313X.1996.
10050823.x

Weinhofer, I., Hehenberger, E., Roszak, P., Hennig, L., and Köhler, C. (2010).
H3K27me3 profiling of the endosperm implies exclusion of polycomb group
protein targeting by DNA methylation. PLOS Genet. 6:e1001152. doi: 10.1371/
journal.pgen.1001152

Wilson, D., Pethica, R., Zhou, Y., Talbot, C., Vogel, C., Madera, M., et al.
(2009). SUPERFAMILY–sophisticated comparative genomics, data mining,
visualization and phylogeny. Nucleic Acids Res. 37, D380–D386. doi: 10.1093/
nar/gkn762

Wolff, P., Weinhofer, I., Seguin, J., Roszak, P., Beisel, C., Donoghue, M. T. A., et al.
(2011). High-resolution analysis of parent-of-origin allelic expression in the
Arabidopsis endosperm. PLOS Genet. 7:e1002126. doi: 10.1371/journal.pgen.
1002126

Wu, Z., Irizarry, R. A., Gentleman, R., Martinez-Murillo, F., and Spencer, F.
(2004). A model-based background adjustment for oligonucleotide expression
arrays. J. Am. Stat. Assoc. 99, 909–917. doi: 10.1198/0162145040000
00683

Yang, S., Johnston, N., Talideh, E., Mitchell, S., Jeffree, C., Goodrich, J.,
et al. (2008). The endosperm-specific ZHOUPI gene of Arabidopsis thaliana
regulates endosperm breakdown and embryonic epidermal. Development 135,
3501–3509. doi: 10.1242/dev.026708

Zheng, B., and Chen, X. (2011). Dynamics of histone H3 lysine 27 trimethylation
in plant development. Curr. Opin. Plant Biol. 14, 123–129. doi: 10.1016/j.pbi.
2011.01.001

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer T-FH and handling Editor declared their shared affiliation.

Copyright © 2018 Zuma, Dana and Wang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 11 January 2018 | Volume 9 | Article 61

https://doi.org/10.1073/pnas.0605551103
https://doi.org/10.1186/1471-2229-10-110
https://doi.org/10.1186/1471-2229-10-110
https://doi.org/10.1046/j.1365-313X.1996.10050823.x
https://doi.org/10.1046/j.1365-313X.1996.10050823.x
https://doi.org/10.1371/journal.pgen.1001152
https://doi.org/10.1371/journal.pgen.1001152
https://doi.org/10.1093/nar/gkn762
https://doi.org/10.1093/nar/gkn762
https://doi.org/10.1371/journal.pgen.1002126
https://doi.org/10.1371/journal.pgen.1002126
https://doi.org/10.1198/016214504000000683
https://doi.org/10.1198/016214504000000683
https://doi.org/10.1242/dev.026708
https://doi.org/10.1016/j.pbi.2011.01.001
https://doi.org/10.1016/j.pbi.2011.01.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Prolonged Expression of a Putative Invertase Inhibitor in Micropylar Endosperm Suppressed Embryo Growth in Arabidopsis
	Introduction
	Materials and Methods
	Plant Materials and Growth Conditions
	Microarray Data Analysis
	Bioinformatics Analyses
	RNA Isolation and Quantitative RT-PCR
	Constructs and Plant Transformation
	Image Collection and Processing

	Results
	Expression Profiling of Invertases and InvINHs/PMEIs during Seed Development
	InvINH1 and InvINH2 Were Specifically Expressed in Reproductive Tissues
	InvINH1 and InvINH2 Were Specifically Expressed in Syncytial Micropylar Endosperm
	Embryo Growth Was Inhibited by Ectopically Expressed InvINH1
	InvINH1 and InvINH2 Were Up-Regulated in fis2 Mutant

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


