AUTHOR=Zhao Ben , Ata-Ul-Karim Syed Tahir , Liu Zhandong , Zhang Jiyang , Xiao Junfu , Liu Zugui , Qin Anzhen , Ning Dongfeng , Yang Qiuxia , Zhang Yonghui , Duan Aiwang TITLE=Simple Assessment of Nitrogen Nutrition Index in Summer Maize by Using Chlorophyll Meter Readings JOURNAL=Frontiers in Plant Science VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2018.00011 DOI=10.3389/fpls.2018.00011 ISSN=1664-462X ABSTRACT=

Rapid and non-destructive diagnostic tools to accurately assess crop nitrogen nutrition index (NNI) are imperative for improving crop nitrogen (N) diagnosis and sustaining crop production. This study was aimed to develop the relationships among NNI, leaf N gradient, chlorophyll meter (CM) readings gradient, and positional differences chlorophyll meter index [PDCMI, the ratio of CM readings between different leaf layers (LLs) of crop canopy] and to validate the accuracy and stability of these relationships across the different LLs, years, sites, and cultivars. Six multi-N rates (0–320 kg ha−1) field experiments were conducted with four summer maize cultivars (Zhengdan958, Denghai605, Xundan20, and Denghai661) at two different sites located in China. Six summer maize plants per plot were harvested at each sampling stage to assess NNI, leaf N concentration and CM readings of different LLs during the vegetative growth period. The results showed that the leaf N gradient, CM readings gradient and PDCMI of different LLs decreased, while the NNI values increased with increasing N supply. The leaf N gradient and CM readings gradient increased gradually from top to bottom of the canopy and CM readings of the bottom LL were more sensitive to changes in plant N concentration. The significantly positive relationship between NNI and CM readings of different LLs (LL1 to LL3) was observed, yet these relationships varied across the years. In contrast, the relationships between NNI and PDCMI of different LLs (LL1 to LL3) were significantly negative. The strongest relationship between PDCMI and NNI which was stable across the cultivars and years was observed for PDCMI1−3 (NNI = −5.74 × PDCMI1−3+1.5, R2 = 0.76**). Additionally, the models developed in this study were validated with the data acquired from two independent experiments to assess their accuracy of prediction. The root mean square error value of 0.1 indicated that the most accurate and robust relationship was observed between PDCMI1–3 and NNI. The projected results would help to develop a simple, non-destructive and reliable approach to accurately assess the crop N status for precisely managing N application during the growth period of summer maize crop.