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Verticillium wilt is a soil-borne disease that can cause devastating losses in cotton

production. Because there is no effective chemical means to combat the disease, the only

effective way to control Verticillium wilt is through genetic improvement. Therefore, the

identification of additional disease-resistance genes will benefit efforts toward the genetic

improvement of cotton resistance to Verticillium wilt. Based on screening of a BAC library

with a partial Ve homologous fragment and expression analysis, a V. dahliae-induced

gene, Gbvdr6, was isolated and cloned from the Verticillium wilt-resistant cotton

G. barbadense cultivar Hai7124. The gene was located in the gene cluster containing

Gbve1 and Gbvdr5 and adjacent to the Verticillium wilt-resistance QTL hotspot. Gbvdr6

was induced by Verticillium dahliae Kleb and by the plant hormones salicylic acid (SA),

methyl jasmonate (MeJA) and ethephon (ETH) but not by abscisic acid (ABA). Gbvdr6

was localized to the plasma membrane. Overexpression of Gbvdr6 in Arabidopsis and

cotton enhanced resistance to V. dahliae. Moreover, the JA/ET signaling pathway-related

genes PR3, PDF 1.2, ERF1 and the SA-related genes PR1 and PR2 were constitutively

expressed in transgenic plants. Gbvdr6-overexpressing Arabidopsis was less sensitive

than the wild-type plant to MeJA. Furthermore, the accumulation of reactive oxygen

species and callose was triggered at early time points after V. dahliae infection. These

results suggest that Gbvdr6 confers resistance to V. dahliae through regulation of the

JA/ET and SA signaling pathways.

Keywords: Gbvdr6, Gossypium, resistance, signaling pathway, Verticillium wilt

INTRODUCTION

Gossypium hirsutum (also known as upland orMexican cotton) is the most widely cultivated cotton
species in the world and is generally susceptible to Verticillium wilt, which is one of the most
destructive diseases caused by the soil-borne fungus Verticillium dahliae Kleb (Zhou et al., 2013;
Zhang J. et al., 2014). In contrast, Gossypium barbadense (also known as Sea Island, Pima, or
Egyptian cotton) is usually resistant or tolerant to Verticillium wilt (Zhang J. et al., 2014). The
genetic improvement of G. hirsutum through introgression from G. barbadense is an effective way
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to control Verticillium wilt (Zhang J. et al., 2012; Fang et al.,
2013; Zhou et al., 2013). However, hybrid breakdown and sterility
in interspecific crosses between G. hirsutum and G. barbadense
are real obstacles to the efficient use of Verticillium wilt
resistance from G. barbadense (Zhang J. et al., 2014). In addition
to conventional breeding, the genetic engineering of disease-
resistance genes is an effective means of controlling Verticillium
wilt in cotton (Wang et al., 2004; Rajasekaran et al., 2005;
Tohidfar et al., 2005; Miao et al., 2010; Parkhi et al., 2010;
Tian et al., 2010). By screening a cotton bacterial artificial
chromosome library using a cotton-expressed sequence tag that
shares 48% similarity with the Verticillium wilt-resistance gene
Ve1, we identified forty independent positive clones and isolated
two Verticillium wilt-resistance genes encoding receptor-like
proteins (RLPs) (Zhang B. et al., 2012; Yang et al., 2015a).
Other proteins, including mitogen-activated protein kinases,
WRKY transcription factors, MYB transcription factors, major
latex proteins, polyamine oxidases, receptor-like kinase, BRI1-
associated receptor kinase, and subtilase are also involved in
the defense response of cotton to V. dahliae (Gao et al., 2013;
Li et al., 2014; Zhang X. et al., 2014; Jun et al., 2015; Mo
et al., 2015; Yang et al., 2015a; Cheng et al., 2016; Duan et al.,
2016). However, the control of Verticillium wilt is extremely
difficult due to the persistence of the microsclerotia in soil
and the lack of an effective chemical means of combating the
pathogens (Klosterman et al., 2009). Therefore, the identification
of additional disease-resistance genes will benefit efforts in the
genetic improvement of cotton’s resistance to Verticillium wilt.

RLPs, two examples of which are the tomato Cladosporium
fulvum (Cf ) resistance genes and the tomato Verticillium wilt-
resistance Ve locus (Kawchuk et al., 2001; Kruijt et al., 2005),
typically possess an extracellular leucine-rich repeat (eLRR),
a single transmembrane domain, and a short cytoplasmic C
terminus. The Ve locus comprises two closely linked inversely
oriented genes, Ve1 and Ve2, that share 84% amino acid identity.
Whereas Ve1 mediates Verticillium resistance by recognizing
the V. dahliae Ave1 effector, Ve2 has no resistance function in
tomato or transgenic Arabidopsis (Fradin et al., 2009, 2011; Jonge
et al., 2012). Domain swaps between Ve1 and Ve2 showed that
the first 30 eLRRs of Ve1 can be replaced by those of Ve2,
whereas the eLRR30-eLRR35 region and the C-terminus of Ve1
are crucial for Verticillium wilt resistance and cannot be replaced
by those of Ve2 (Fradin et al., 2014). Mutational analysis of Ve1
further revealed that the C1 domain eLRR1-eLRR8 and eLRR20-
eLRR23, the C2 domain, and the C3 domain eLRR32-eLRR37 are
required for Ve1 functionality, whereas the GxxxG motif in the
transmembrane domain and two putative endocytosis motifs in
the C-terminus are not (Zhang Z. et al., 2014). The chaperones
HSP70 binding proteins (BiPs) and a lectin-type calreticulin
(CRT) were verified to be involved in Ve1-mediated resistance
to Verticillium (Liebrand et al., 2014).

In response to infection by pathogens, plants have evolved
a series of inducible defenses, including the induction of the
hypersensitive response (HR), the formation of reactive oxygen
species (ROS), the deposition of callose, and the production
and accumulation of antimicrobial proteins, phytoalexins, and
PR proteins (Luo et al., 2014). Ve1-mediated Verticillium wilt

resistance triggers an HR in tomato (Solanum lycopersicum)
and Nicotiana tabacum (Jonge et al., 2012; Zhang et al., 2013a),
generates hydrogen peroxide (H2O2) and increases the activities
of peroxidase, phenylalanine ammonia lyase, and lignins (Gayoso
et al., 2010). The overexpression of other RLPs and polyamine
oxidase genes in transgenic Arabidopsis plants has also been
shown to increase the levels of callose, H2O2, salicylic acid and
phytoalexin duringV. dahliae infection (Zhang B. et al., 2012; Mo
et al., 2015; Yang et al., 2015a).

Genes with homology to Ve have been identified and cloned
in our laboratory using screening of BAC clones combined
with the genome walking method (Zhang B. et al., 2012; Yang
et al., 2015b). A partial fragment of a Ve-homologous gene
was amplified from the genomic DNA of H7124 using primers
designed according to a cotton EST (TC121084) in the gene
index. The amplified sequence was subsequently used as a
probe to screen a G. hirsutum cv. Maxxa BAC library, and
40 positive clones were identified (Tomkins et al., 2001). The
expression patterns of these genes after inoculation of the plants
with V. dahliae were analyzed by qRT-PCR, and Gbvdr6 was
found to be activated. Therefore, Gbvdr6 was considered to
confer resistance to V. dahliae and was chosen for further
analysis. Gbvdr6-overexpressing Arabidopsis and cotton showed
enhanced resistance to V. dahliae. Interestingly, the transgenic
plants were less sensitive than wild-type plants to MeJA, while
at the same time, the JA/ET signaling pathway was induced.
H2O2 production and callose deposition were also found to be
enhanced in Gbvdr6 transgenic plants at the early infection stage.

MATERIALS AND METHODS

Plants, V. dahliae Strain and Inoculation
Method
Seedlings of the G. barbadense cultivar Hai7124, which is
highly resistant to V. dahliae (Yang et al., 2008), were grown
in chambers under greenhouse conditions. The Arabidopsis
thaliana ecotype Columbia-0 was cultured in pots under
controlled conditions (temperatures of 25◦C during the day and
20◦C at night, 60–70% relative humidity, and light intensity of
200 µmol/m−2/s−1 in a 16/8 h photoperiod). A non-defoliating
isolate of V. dahliae, BP2 (Yang et al., 2008), was activated on
potato dextrose agar and cultured in liquid Czapek medium at
25◦C. Before inoculation, the spore concentration of V. dahliae
was determined by counting its spores under a microscope.
For V. dahliae inoculation, seedlings of Hai7124 at the 2-leaf
stage were inoculated by root irrigation with 10mL of liquid
containing 1× 107 spores per pot (Zhang B. et al., 2012); plantlets
of Arabidopsis thaliana were uprooted and dipped for 1min
in a suspension containing 1 × 107 spores/mL and replanted
in vermiculite (Fradin et al., 2011). For hormone treatment,
the roots of cotton seedlings at the 4-leaf stage were immersed
in 1mM salicylic acid (SA), 5mM ethephon (ETH), 100µM
abscisic acid (ABA) or 100µMmethyl jasmonate (MeJA), (Chen
et al., 2014; Camacho-Cristóbal et al., 2015). Stem tissues from
V. dahliae-infected plants and root tissues from hormone-treated
plants were harvested at appropriate times for RNA extraction.
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Isolation of Gbvdr6
The gene cloning method used in this study followed our
previously described protocol (Zhang B. et al., 2012; Yang
et al., 2015a). Briefly, forty BAC clones were obtained by
screening a G. hirsutum cv. Maxxa BAC library against a
cotton EST (TC121084) that is highly homologous to the
tomato Ve1 gene (Zhang B. et al., 2012). Partial sequences of
the Ve1-homologous gene in one BAC clone were amplified
using the conserved primers VeF1008 (5′-ttgagcaattgacaagaa
tagagct-3′) and VeR2731 (5′-tgaccctgtgaaagcattatgtga-3′), and
the full sequence of this BAC clone was obtained by genome
walking using the specific primers 5′-ttagtgtaagtaagactgagggaag-
3′ and 5′-gcaactcggtcagtggcaataaa-3′ and 5′-ttcccaatgtccgtgtttga
act-3′ and 5′-ggcaaatcccaattcttaaccca-3′ for 5′ and 3′ sequence
amplification, respectively. To clone its ortholog inG. barbadense
cv. Hai7124, the specific primers F-XbaI (5′-tgatctagactcaacct

agtgccattgttatc-3′) and R-SmaI (5′-tgacccgggaatcccaatagttgctagg

tcct-3′), which introduce a 5′ XbaI site and a 3′ SmaI site,
respectively, were designed according to the full sequences of
the Ve1-homologous gene in G. hirsutum. Polymerase chain
reaction (PCR) was conducted with Hai7124 cDNA and DNA
as templates, respectively. The PCR program consisted of 3min
at 94◦C followed by 32 cycles of denaturation for 45 s at 94◦C,
annealing for 45 s at 56◦C, and extension for 3min at 72◦C. The
PCR product was cloned into the pGEM-T vector (Promega) and
sequenced after agarose gel electrophoresis and purification using
a QIAquick PCR Purification Kit (Qiagen).

Alignments of nucleotide and amino acid sequences were
conducted using BioEdit software. A GenBank BLASTX search
was performed on the website of the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov).
Phylogenetic analysis was performed using MEGA6 software
(Tamura et al., 2013). The putative motif and domains were
analyzed with SignalP 4.1 (http://www.cbs.dtu.dk/services/
SignalP/), InterProScan (http://www.ebi.ac.uk/interpro/
scan.html), and SMART (http://smart.embl-heidelberg.de/).
The sequences of the SSR markers that flank Verticillium
wilt-resistance quantitative trait loci (QTL) in cotton were
downloaded from the CottonGen (https://www.cottongen.org)
and CottonQTLdb (http://www2.cottonqtldb.org:8081/search)
websites. The physical locations of genes and markers were
determined by anchoring their sequences onto the island cotton
upland cotton (G. hirsutum) cv. TM-1 genome (Zhang et al.,
2015) through BLASTN with an E-value = 1.0E-100 for genes
and an E-value = 1.0 for markers. To confirm the physical
positions of the marker primers, the distance between one
forward primer hit and one reverse primer hit was determined to
be within 100–500 bp in the same chromosome.

Expression Pattern Analysis of Gbvdr6
To characterize the expression patterns of the Gbvdr6 gene
in various tissues in response to V. dahliae infection and
phytohormones, total RNA was extracted from root, stem and
leaf tissues using an RNAiso Kit (TaKaRa) and transcribed
into cDNA using a Primscript RT-PCR kit (TaKaRa) according
to the manufacturer’s instructions. A quantitative reverse

transcription-polymerase chain reaction (qRT-PCR) was
performed using a SYBR Premix ExTaqTM II Kit (TaKaRa) in
a real-time PCR thermal cycler (qTOWER 2.0/2.2, Analytik
Jena, Germany). The Gbvdr6-specific primers for qRT-PCR were
F2952 (5′-tcgtcaccacctaaagaagacag-3′) and R3097 (5′-cacgatcg
acacgctcaaaatac-3′), which corresponded to the 3′ end region
of Gbvdr6 mRNA. The cotton polyubiquitin 14 gene served as
an internal control, with the specific primers 5′-caacgctccatcttg
tcctt-3′ and 5′-tgatcgtctttcccgtaagc-3′ (Artico et al., 2010). The
PCR program consisted of an initial denaturation step of 1min
at 95◦C followed by denaturation for 15 s at 95◦C, annealing
for 20 s at 60◦C, and extension for 20 s at 72◦C for 40 cycles.
All qRT-PCR results are expressed as the relative expression
levels determined using three biological replicates. The Gbvdr6
promoter cassette was constructed by inserting the 1.66-Kb
fragment upstream of the start codon of Hai7124 into PbI101
using the primers pGbvdr6HinIIIF (5′-tccaagcttcagacttaccagg
agataacattc-3′) and pGbvdr6BamHIR (5′-agtggatccaatacaacaa
agaattatgaagaa-3′). Histochemical localization of GUS activity
in Arabidopsis transfected with the Gbvdr6 promoter construct
was performed as previously described (Jefferson et al., 1987).
The relative expression levels were calculated using the 2−11CT

method (Livak and Schmittgen, 2001). The relative transcript
levels of Gbvdr6 were normalized to the transcript levels of the
polyubiquitin 14 (UBQ14) gene. In each case, three technical
replicates were performed for each of at least three independent
biological replicates.

Subcellular Localization Analysis of Gbvdr6
Gbvdr6 was PCR-amplified using the primers 5′-cggggtaccatg

aggatttcactcttttc-3′ and 5′-cgcggatccggtcctcctttggttctg-3′, which

introduce a 5′ KpnI site and a 3′ BamHI site, respectively, and
fused to the N-terminus of GFP in the pBinGFP4 vector under
the control of the CaMV35S promoter (Liu et al., 2014). The
Gbvdr6-GFP fusion and the plasma membrane marker mCherry
(Nelson et al., 2007) were co-agroinfiltrated into N. benthamiana
leaves. Fluorescence was imaged at 48 h post-infiltration using
a Zeiss LSM710 confocal microscope (Zeiss Microsystems) at
specific excitation and emission wavelengths (GFP, 488 and 495–
530 nm; mCherry, 587 and 600–650 nm).

Pathogen Inoculation Assay of Transgenic
Arabidopsis and Cotton
A binary vector containing an overexpression cassette of Gbvdr6
under control of the CaMV35S promoter was transformed into
Arabidopsis Columbia and Gossypium hirsutum var. 03298 by
floral dip and Agrobacterium-mediated transformation of cotton
hypocotyl, respectively (Umbeck et al., 1987; Bent, 2006). The
expression of Gbvdr6 in transgenic plants was investigated by
qRT-PCR using the specific primers F1785 (5′-gcaacaagtctcga
gtacctaaat-3′) and R2140 (5′-ccaagagacacgttcatctgaaag-3′). The
Arabidopsis β-tubulin gene and the cotton polyubiquitin 14 gene
were used as internal controls (Hiratsu et al., 2003).

The Verticillium wilt resistance of T3 transgenic Gbvdr6
Arabidopsiswas evaluated based on the phenotypes ofV. dahliae-
inoculated plants using 3 disease grades: healthy, stunted or dead.
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The T3 plants of transgenic cotton were challenged by V. dahliae
inoculation according to a previously described method (Zhang
B. et al., 2012). The V. dahliae-inoculated cotton plants were
scored and classified into five grades as described in our previous
report (Zhang B. et al., 2012). The quantification of V. dahliae
biomass was performed as described previously (Fradin et al.,
2011).

Expression Analysis of Defense-Related
Genes in Transgenic Arabidopsis
The expression levels of seven pathogenesis-related genes in
Arabidopsis (PR1, PR2, PR3, PR5, PDF1.2, ERF1, and GST2)
(Mazarei et al., 2007) were investigated 7 days after V. dahliae
inoculation by qRT-PCR as described above with the β-tubulin
gene as a reference (Hiratsu et al., 2003). The primers used for
qRT-PCR were as follows: PR1-F (5′-gctcttgtaggtgctcttgttcttccct-
3′) and PR1-R (5′-ctggttgtgaacccttagataatcttgtgg-3′); PR2-F (5′-c
aatctcccttgctcgtgaatctctaccc-3′) and PR2-R (5′-cgttatcaacagtggac
tgggcgg-3′); PR3-F (5′-ttaacggcctcctcgaagctgctattt-3′) and PR3-
R (5′-cgcaacataaacagtgaaacatcattggaa-3′); PR5-F (5′-caagaacgctt
gccctgacgccta-3′) and PR5-R (5′-gctccggtacaagtgaaggtgctcgtt-3′);
PDF1.2-F (5′-caagtgggacatggtcaggggtt-3′) and PDF1.2-R (5′-cact
tgtgtgctgggaagacatagttgc-3′); ERF1-F (5′-agcagtccacgcaacaaaccta
t-3′) and ERF1-R (5′-aaagcgactcttgaactctctcc-3′); GST2-F (5′-cc
agcttccgagaaggttcagtgagaa-3′) and GST2-R (5′-gaaattgggcaatgag
aaagccgctt-3′); and β-tubulin-F (5′-cgtggatcacagcaatacagagcc-3′)
and β-tubulin-R (5′-cctcctgcacttccacttcgtcttc-3′).

Detection of Reactive Oxygen and Callose
Formation in Transgenic Cotton
Cotton roots were inoculated with a solution of V. dahliae (1 ×

107 conidia/ml) and incubated at 25◦C in a humidified incubator
for 5 days. Histochemical assays of H2O2 accumulation and
callose deposition in infected roots were performed according
to the method of Choi et al. (2012); the results were visualized
with a fluorescence microscope under bright light and UV light,
respectively.

Tolerance of Arabidopsis Transgenic Plants
to MeJA
The seeds of WT and Gbvdr6-overexpressing lines were surface-
sterilized with 70% ethanol for 30 s followed by exposure to
5.6% NaClO for 5min; the seeds were then washed at least five
times with sterile distilled water. The seeds were placed in 1/2MS
medium with or without 20µM MeJA. Germination rates were
calculated as the percentage of seeds with radicles protruding
through the seed coat. The assays were replicated three times
with 50 seeds each time. The root lengths of the seedlings (the
distance to the root tip) were also measured using a ruler; at least
50 seeds were measured in each of three replicates (Gibson and
Todd, 2015).

Physiological Analysis of
Gbvdr6-Overexpressing Plants
Approximately 1 g of fresh root tissue fromV. dahliae-inoculated
or control plants was ground thoroughly in liquid nitrogen. The

supernatant was used for analysis of PAL (EC 4.3.1.5) and CAT
(EC 1.11.1.6) activity according to the instructions provided with
the kit (Nanjing Jiancheng Bioengineering Institute). All enzyme
activities are expressed as units mg−1 protein.

Statistical Analysis
All statistical analyses were performed using the “ANOVA
analysis” software designed by the Nanjing Agricultural
University. The Chi-square test and Fisher’s exact test were used
to evaluate the Verticillium wilt resistance of transgenic Gbvdr6
Arabidopsis and cotton, respectively. The Kruskal-Wallis test
was conducted using the R language to analyze the expression of
Gbvdr6 by the induction of V. dahliae, and Duncan’s multiple
range test was performed on the basis of the ANOVA analysis
in SPSS 19.0 to compare the expression of Gbvdr6 in different
organs and the expression of pathogenesis-related genes in
transgenic Arabidopsis. In the graphs, asterisks and different
letters indicate significant differences between treatments
(∗P < 0.05; ∗∗P < 0.01), and letters shared in common between
or among the experimental groups indicate no significant
difference.

RESULTS

Gbvdr6 Is Located in a Gene Cluster
Adjacent to the Verticillium
Wilt-Resistance QTL Hotspot
Gbvdr6 cDNA consists of 3,328 bp (GenBank accession:
KT809405), including an ORF of 3,204 bp that encodes a
polypeptide comprising 1,067 amino acid (aa) residues with
a calculated molecular weight of 119.28 kDa and a predicted
isoelectric point of 6.97. The 3,328 bp of cDNA sequence were
mapped into the genomic region of 41706732-41710044 of the
At_chr9 chromosome of upland cotton (G. hirsutum) cv. TM-1
(Li et al., 2015) with 99% identity and a 3-bp gap (Figure S1),
indicating that no intron exists in this gene. The sequences
obtained by PCR amplification of the Hai7124 DNA template
further confirmed that Gbvdr6 contains no intron. A BLASTX
search of the non-redundant protein sequences database of
NCBI revealed that the Gbvdr6 cDNA shared the highest identity
(93%) with a receptor-like protein in G. raimondii and with
a series of receptor-like proteins associated with Verticillium
wilt disease resistance in G. barbadense, Medicago truncatula,
Humulus lupulus, Glycine max, Solanum torvum, and Solanum
lycopersicoides. Phylogenetic analysis further demonstrated
that Gbvdr6 is most closely related evolutionarily to cotton
Verticillium wilt disease-resistance proteins (Figure 1A).
SMART analysis indicated that Gbvdr6 possesses distinct
domains corresponding to those of receptor-like proteins,
including a signal peptide, multiple LRRs, a transmembrane
domain and a cytoplasmic region (Figure 1B and Figure S1).

Sequence mapping through a BLASTN search of the genome
of upland cotton (G. hirsutum) cv. TM-1 (Zhang et al., 2015)
revealed that Gbvdr6 had two homologs in G. hirsutum. One was
on the A01 (C1) chromosome, and the other was on the D01
(c15) chromosome. Similarly, GbVe1 and Gbvdr5 had homologs
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FIGURE 1 | Phylogenetic and structural analysis of Gbvdr6 gene. (A) Phylogenetic relationship of Gbvdr6 with other Ve-like proteins by MEGA6 software with the

neighbor-joining (NJ) algorithm under 1,000 replicates of bootstrap. The numbers on the internal nodes are the percentage bootstrap support values. (B) Schematic

diagram of Gbvdr6 protein domain architecture showing signal peptide (SP) at N-terminus, followed by extracellular leucine-rich repeat (eLRRs), transmembrane (TM)

domain and cytoplasmic domain (CD) at C-terminus. The numbers indicate the domain regions. (C) Schematic diagram of physical locations of Gbvdr6, Gbvdr5, and

GbVe1 and the SSR markers flanking the known Verticillium wilt-resistant QTLs in the chromosomes of tetraploid cotton. The numbers in brackets indicate the

physical positions in the chromosome. NAU2741 and CGR5056a are the SSR markers that flank Verticillium wilt resistance QTLs qVW-A1-1 and qVW-C15-4 in the

A01(c1) and D01(c15) chromosomes, respectively.
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FIGURE 2 | Expression pattern analysis of the Gbvdr6 gene. (A) The transcript levels of Gbvdr6 in different tissues of Hai7124. Values were expressed as fold

changes of transcript levels in the different tissues with respect to that of leaves with the 2−11CT Method. Error bars represented SE of three biological replicates.

Duncan’s multiple range test was conducted, and the different letters in graphs indicate significant differences between treatments (P < 0.05). (B) Gus activities in

transgenic Arabidopsis plantlets containing the pGbvdr6: Gus construct. (C) The expression patterns of Gbvdr6 in response to infection by V. dahliae. The transcript

levels of Gbvdr6 were measured by real-time reverse-transcription PCR with the UBQ14 gene as the internal control. Values were expressed as fold changes of

transcript levels in the V. dahliae inoculated samples at fixed point of time with respect to that in non-inoculated samples at 0 dpi with the 2−11CT Method. Error bars

represented SE of three biological replicates. Kruskal-Wallis test was conducted, and the different letters in graphs indicate significant differences between treatments

(P < 0.01). (D) The expression patterns of Gbvdr6 in response to phytohormones. Values were expressed as fold changes of transcript levels in the phytohormones

treated root samples at fixed point of time with respect to the transcript levels in the mock samples. Error bars represented SE of three biological replicates and the

different letters in graphs indicate significant differences after treatments (P < 0.05).

on the A01 (C1) and D01 (c15) chromosomes of G. hirsutum.
The physical positions of these cotton RLPs further revealed that
the homologs of Gbvdr6 were physically clustered with those of
GbVe1 and Gbvdr5 on the A01 or D01 chromosome of upland
cotton (Figure 1C). At the same time, one Verticillium wilt-
resistance QTL hotspot, C15-VW-QTL-rich-1, including qVW-
C15-2, qVW-C15-3, and qVW-C15-4, and four QTLs including
qVW-A1-1, qRV07DF2-A1-1, qDL52T2-c15, and qRD8092-D1-
1 were detected on the A01 (C1) and D01 (c15) chromosomes of
tetraploid cotton, respectively (Ning et al., 2013; Fang et al., 2014;
Wang et al., 2014; Shi et al., 2016). The flanked markers of these
QTLs were anchored to the TM-1 genome through BLASTN.
The physical positions of these markers on the chromosome
further revealed that the SSR marker CGR5056a, which was
linked to qVW-C15-4, was approximately 3.9Mb from the gene
cluster of Gbvdr6-Gbvdr5-GbVe1 homologs on the D01 (C15)
chromosome, whereas the SSR marker NAU2741 that flanked
qVW-A1-1 was only 6Mb upstream of the gene cluster on the
A01 (C1) chromosome (Figure 1C).

Gbvdr6 Is Highly Expressed in Root and Is
Induced by V. dahliae, SA, MeJA, and ETH
Treatment
The expression patterns of Gbvdr6 in various cotton tissues were
examined by quantitative real-time PCR (qRT-PCR) analysis.

Gbvdr6 was ubiquitously expressed in all tested tissues, and its
transcripts accumulated to the highest level in root (Figure 2A).
Gbvdr6 promoter-driving GUS activity was also found mostly in
the root of transgenic Arabidopsis (Figure 2B), consistent with
the results of qRT-PCR. To further investigate the involvement
ofGbvdr6 in the response toV. dahliae infection, gene expression
was analyzed after inoculation of cotton seedlings withV. dahliae.
The expression of Gbvdr6 was induced until 4 days post-
inoculation (dpi), reached maximum levels at 4–8 dpi, and then
returned to the control levels at 12 dpi (Figure 2C). SA, MeJA,
and ETH but not ABA markedly increased Gbvdr6 transcript
levels in roots and the transcript levels increased during the early
stages of treatment and decreased thereafter (Figure 2D).

Gbvdr6 Protein Is Localized on the Plasma
Membrane
To investigate the subcellular localization of Gbvdr6, Gbvdr6
was fused with to the N-terminus of GFP and transiently
co-expressed with the plasma membrane marker mCherry in
N. benthamiana leaves. Confocal microscopy revealed that the
green fluorescent signal from the Gbvdr6-GFP fusion and
the red fluorescent signal from mCherry were co-localized
(Figure 3), indicating that Gbvdr6 is localized on the plasma
membrane.
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FIGURE 3 | Subcellular localization of Gbvdr6 in epidermal cells of N. tabacum

leaves. The Gbvdr6-GFP fusion was transiently co-expressed with the plasma

membrane marker mCherry. The images were taken under a confocal

microscope at 48 h after agro-infiltration. GFP: fluorescence of Gbvdr6-GFP

fusion, mCherry: fluorescence of the plasma membrane marker mCherry, DIC,

differential interference contrast; merged, a merged image. Scale bar = 60µm.

Overexpression of Gbvdr6 Enhances
Resistance to Verticillium in Arabidopsis
To explore the function of Gbvdr6, an overexpression cassette
in the background of the binary vector pCAMBIA2301
under the control of the CaMV35S promoter was introduced
into the Arabidopsis thaliana genome. The transgenic plants
were screened on kanamycin plates and confirmed by semi-
quantitative RT-PCR (Figure 4A). The T3 transgenic Arabidopsis
lines were challenged with V. dahliae. At 28 dpi, the healthy,
stunted and dead phenotypes of Arabidopsis plants in response
to V. dahliae infection were scored. Overexpression of Gbvdr6
in transgenic Arabidopsis significantly improved resistance to
V. dahliae, the death rate of 46.7% observed in wild-type
Arabidopsis plantlets was reduced to 3.3% in the transgenic
plants (Figure 4B). However, transgenic Gbvdr6 Arabidopsis
was not immune to V. dahliae, and its growth was stunted
(Figure 4C).

Overexpression of Gbvdr6 Significantly
Activates Defense Genes in Arabidopsis
The expression levels of PR1, PR2, and PR5, which are marker
genes for SA signaling, those of PDF1.2 and ERF1, genes involved
in ET- and JA-signaling and that of GST2, a gene involved
in ET signaling, were investigated by qRT-PCR. After mock
inoculation, the selected pathogenesis-related genes PR1, PR2,
PR5, PR3, ERF1, and PDF1.2 were significantly upregulated in
Gbvdr6-overexpressing Arabidopsis (Figure 5). The expression

FIGURE 4 | Gbvdr6 over-expressed Arabidopsis enhanced resistance to

V. dahliae. (A) The semi-quantitative RT-PCR of Gbvdr6 over-expressed

Arabidopsis. The β-tubulin was the internal control, and L1-L6 are the

transgenic Arabidopsis lines. (B) The numbers of healthy, stunted and dead

Arabidopsis plants were scored and statistically analyzed. Thirty plantlets were

tested in each line. The experiment was conducted twice with similar results.

The chi-squared test is used to determine whether there is a significant

difference. The asterisk indicated above the columns means **P < 0.01.

(C) The phenotype of the transgenic and non-transgenic cotton induced by

Verticillium dahliae. The photos were taken at 28 days post-inoculation with

V. dahliae. The red circles indicated the dead plants.

levels of PR1, PR2, PR5, PR3, ERF1, and PDF1.2 were further
elevated in plants after V. dahliae infection. In contrast, the ET
signaling marker gene GST2 was not affected by overexpression
of Gbvdr6 or by infection with V. dahliae. The transcript
abundances of PR1, PR2, PR3, and PR5 in the V. dahliae-
infected transgenic plants were approximately 2.5-, 6-, 18-
and 4.5-fold, respectively, those of the infected control plants.
The transcript abundances of ERF1 and PDF1.2 increased
approximately 2- and 5-fold, respectively, in the V. dahliae-
infected transgenic plants compared to the infected control
plants. These results indicate that overexpression of Gbvdr6
significantly activates the expression of defense genes and
suggests that it might be involved in the SA and JA/ET-mediated
signaling pathways.
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FIGURE 5 | Upregulation of pathogenesis-related genes in the Gbvdr6

over-expressed Arabidopsis. The expression levels of marker genes PR1, PR2,

and PR5 in SA signaling, PR3, PDF1.2, and ERF1 in ET/JA signaling, and

GST2 in ET signaling were measured by real-time reverse-transcription PCR

with β-tubulin gene as the internal control. Data were the means ± SE of three

biological replicates. Duncan’s multiple range test was carried out within

genes, and different letters in the graphs indicate significant differences

between treatments (P < 0.05).

Gbvdr6-Overexpressing Plants Are
Insensitive to MeJA
Because JA is involved in regulating the response to abiotic and
biotic stresses as well as in many aspects of plant growth and
development, Gbvdr6-overexpressing and wild-type Arabidopsis
seedlings were treated with MeJA. Although most seeds of WT
plants were unable to germinate after this treatment, all of the
seeds from transgenic plants germinated (Figure 6A). The seed
germination rate of the WT plants fell sharply to less than
30%, whereas that of the Gbvdr6-overexpressing plants remained
unchanged (Figure 6B). The roots of Gbvdr6-overexpressing
plants were also significantly longer than those of WT plants
after MeJA treatment (Figure 6C). This suggests that theGbvdr6-
overexpressing plants were less sensitive to MeJA-mediated
inhibition of root growth than the control plants.

Overexpression of Gbvdr6 Enhances
Verticillium Resistance in Cotton and
Enhances the Immune Response
The resistance conferred by Gbvdr6 overexpression was further
investigated in 5 Gbvdr6 transgenic cotton lines. Three of these
lines (L-1/5/9) significantly overexpressed Gbvdr6 (Figure 7A).
The leaves (Figure 7B) and seedlings (Figure 7C) of wild-type
plants and plants of the T3 transgenic line L1 were inoculated in
vitrowith theVerticillium isolate BP2. Four days after inoculation
of the leaves in vitro, the leaves of wild-type plants showed
severe chlorosis; in contrast, the leaves of L1 displayed only a
small amount of yellowing at 5 dpi (Figure 7B). At 30 dpi, the
wild-type seedlings displayed chlorosis and necrosis, whereas
only a few leaves of the L1 plants displayed a yellow phenotype
(Figure 7C). The disease index of the five transgenic lines and
the wild-type plants was also evaluated. At 30 dpi, the disease
index of the wild-type plants was approximately 56, whereas that
of the Gbvdr6-overexpressing (OE) plants ranged from 22.1 to

45.2 (Figure 7D). The fungal biomass present in the V. dahliae-
infected plants was further analyzed by qPCR. The biomass of
Verticillium was approximately 8-fold higher in the wild-type
plants than in the L1 plants at 30 dpi (Figure 7E), confirming
that Gbvdr6 overexpression confers resistance to Verticillium
in cotton. In addition, the activities of catalase (CAT) and
phenylalanine ammonia lyase (PAL) weremeasured; the activities
of the two enzymes in wild-type and L1 transgenic plants showed
no difference before infection. The activity of these enzymes was
much higher in the transgenic line L1 than in the wild-type strain
at 1–7 days after infection (Figure 7F).

The accumulation of reactive oxygen species (ROS) in the host
during the early stage of pathogen infection is helpful in fighting
against pathogens and in activating cellular programs that help
the plant cope with pathogens. At 5 days post-inoculation (dpi)
with V. dahliae, the roots of Gbvdr6-overexpressing cotton
accumulated significantly higher levels of H2O2 than those of
WT plants (Figure 8, upper). Callose deposition is another
immune response to pathogen challenge. At 5 dpi, the roots of
Gbvdr6-overexpressing cotton deposited more callose at the site
of infection than those of wild-typeArabidopsis (Figure 8, lower).

DISCUSSION

We used the genome walking method to clone the full-length
sequence of Gbvdr6 from G. barbadense Hai7124 cDNA and
genomic DNA. Sequence analysis of Gbvdr6 cDNA and DNA
revealed no introns within this gene, similar to the reported
Verticillium wilt-resistance genes Ve1 in tomato and GbVe,
GbVe1, and Gbvdr5 in G. barbadense (Kawchuk et al., 2001;
Zhang et al., 2011; Zhang B. et al., 2012; Yang et al., 2015a). The
release of the genome sequence of upland cotton (G. hirsutum)
cv. TM-1 (Li et al., 2015) made it possible for us to compare
the Gbvdr6 gene from G. barbadense Hai7124 with that of
a Verticillium wilt-sensitive strain. Twenty-two nucleotides of
the Gbvdr6 gene sequence and seventeen amino acids of
the Gbvdr6 protein differed between the resistant strain cv.
Hai7124 and the susceptible strain cv.TM-1, suggesting that the
three-nucleotide deletion in Gbvdr6 of Hai7124 did not affect
its translation (Figure S1). Single-nucleotide polymorphisms
between the resistant and susceptible cultivars have also been
detected in cotton GbVe and Gbvdr5 (Zhang et al., 2011; Yang
et al., 2015a) and tomato Ve1 (Fradin et al., 2009). However,
the amino acid sequences of GbVe in the resistant cv. Pima 90-
53 and GhVe in the susceptible cv. CRI8 are identical (Zhang
et al., 2011). In contrast, compared with Gbvdr5 from the
resistant cv. Hai7124, a single-nucleotide deletion that results
in termination of translation was found in Ghvdr5 from the
susceptible cotton genotype Yuman1 (Yang et al., 2015a). The
Ve1 sequence also differs in resistant and susceptible tomato
cultivars, with a single nucleotide deletion accompanied by
premature termination in susceptible tomato genotypes (Fradin
et al., 2009). Multiple alignment analysis further showed that
the Gbvdr6 protein shared high homology with other Ve1-
homologous RLPs in cotton. These cotton Ve1 homologs possess
similar domains, such as a signal peptide domain, multiple
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FIGURE 6 | Gbvdr6 over-expressed Arabidopsis is more insensitive to MeJA compared with the wild type. (A) The phenotype of Gbvdr6 over-expressed Arabidopsis

(Gbvdr6-OE) and wild type after MeJA treatment. The WT and Gbvdr6-OE are the seedlings grown on the plate without MeJA, and the WT-MeJA and

Gbvdr6-OE-MeJA indicates the seedling on the plate with 20 um MeJA. The photos were taken at 30 days after sowing. (B) Assay of seed germination rate of Gbvdr6

over-expressed Arabidopsis (Gbvdr6-OE) and wild type in the presence of exogenous MeJA. Germination rates of the seeds were analyzed at the indicated time

points. The data represent means ± SD of three independent replicates with at least 50 seeds counted per replicate. (C) Assay of root length of Gbvdr6

over-expressed Arabidopsis (Gbvdr6-OE) and wild type in the presence of exogenous MeJA at 30 days after sowing. Significant difference between different lines is

indicated by different letters (P < 0.05).

eLRRs, a transmembrane domain and a cytoplasmic tail. These
characterized domains, particularly the eLRRs, appear to provide
a structural framework for functionality in Verticillium wilt
resistance (Zhang et al., 2011). Recent studies of the functional
determinants of Ve1 through domain swapping and site-directed
mutagenesis have revealed that three consecutive eLRR regions
(i.e., eLRR1-eLRR8, eLRR20-eLRR23, and eLRR32-eLRR37), the
non-LRR island domain (C2), the transmembrane region and the
cytoplasmic tail are critical for Ve1 functionality (Fradin et al.,
2014; Zhang Z. et al., 2014). However, the Gbvdr6 domains and
the regions responsible for Verticillium wilt resistance remain to
be further investigated.

V. dahliae is a soil-borne pathogen that can successfully
penetrate the root epidermis to invade the cortical tissues and
cause systemic infection in plants (Klosterman et al., 2009).
Analysis of the expression of Gbvdr6 in various tissues revealed
that the highest expression occurs in cotton root, which may
allow the plant to set up a protective barrier against infection by
V. dahliae. The locations of proteins are critically linked to their
functionality. In this study, Gbvdr6 was found to be localized
to the plasma membrane, as expected. This is consistent with
the results of previous studies in which the proteins encoded by
Verticillium wilt-resistance genes such as Ve1,GbVe, andGbvdr5
were all shown to be localized to the plasma membrane (Zhang
et al., 2011; Fradin et al., 2014; Yang et al., 2015a).

The strong homology between Gbvdr6 and the reported
genes encoding cotton RLPs, including GbVe (Zhang et al.,
2011), GbVe1 (Zhang B. et al., 2012), and Gbvdr5 (Yang et al.,
2015a), enabled us to investigate their physical locations. Notably,
Gbvdr6, GbVe1 and Gbvdr5 were found to be physically clustered
on the same chromosome. Previous studies have shown that Cf
genes are highly homologous and are generally located in clusters
(Kruijt et al., 2005). A few cf homologs have protective functions
against C. fulvum, whereas others may serve as a reservoir of
novel Cf genes through sequence exchange between homologs
(Kruijt et al., 2005). Dozens of Verticillium wilt-resistance
QTLs have been detected in most of the 26 tetraploid cotton
chromosomes of various cotton populations (Zhang J. et al.,
2014). This enabled us to investigate whether Gbvdr6 is related
to the known Verticillium wilt- resistance QTLs. Interestingly, a
Verticillium wilt-resistance QTL hotspot was identified adjacent
to a gene cluster with homology to Gbvdr6-Gbvdr5-GbVe1 in
the A01 (C1) and D01 (c15) chromosomes of tetraploid cotton,
supporting the idea that this gene cluster is vital to Verticillium
wilt resistance.

Transcriptome profiling of G. barbadense inoculated with
V. dahliae revealed large accumulations of defense-related
transcripts, including transcripts of the PR1, PR2, PR3, PR5,
and BAG-like genes and transcripts encoding dynamin-related
proteins (Zhang et al., 2013), suggesting a role in resistance
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FIGURE 7 | Gbvdr6 over-expressed cotton enhanced resistance to V. dahliae. (A) Varied expressional levels of Gbvdr6 in the transformed plants. Gbvdr6 relative

expressional levels of the T3 generation were measured by qRT-PCR and calculated in relation to the wild type plants according to the 11Ct method with the UBQ14

gene as the internal control. L1, L4, L5, L9, and L12 are the transgenic cotton lines. Different letters on the bars designate statistically significant differences (P < 0.05)

according to Duncan’s multiple range test. (B) Leaves of Gbvdr6 over-expressed cotton (L1) and wild type inoculated with V. dahliae in vitro. The photos were taken at

5 days after inoculation. (C) The Gbvdr6 over-expressed cotton inoculated with V. dahliae in vivo. The photos were taken at 15 days after inoculation. (D) Assay of

disease index of transgenic lines and wild type by the V. dahliae isolate BP2. The degree of disease was divided into five grades with disease scores ranging between

0 and 4, and fisher’s exact test was conducted to determine whether there is a significant difference between the WT and transgenic lines. The asterisk indicated

above the columns means **P < 0.01. (E) Fungal biomass upon inoculation with V. dahliae isolate BP2. It was determined by qRT-PCR, and the bars represent

Verticillium ITS transcript levels relative to the cotton UBQ14 gene. Data were the means ± SE of three biological replicates and significant differences by Student’s

test for P < 0.01 are indicated by double asterisks. (F) Enzyme activity of PAL and CAT of the Gbvdr6 over-expressed and WT plants after the inoculation of V. dahliae

isolate BP2. Duncan’s multiple range test was conducted, and the different letters in graphs indicate significant differences (P < 0.05).

to V. dahliae. Overexpression of Gbvdr6 in Arabidopsis also
enhanced the expression of the pathogenesis-related genes PR1,
PR2, PR5, PR3, ERF1, and PDF1.2, and these genes were further
upregulated when transgenic Gbvdr6 Arabidopsis was subjected
to V. dahliae infection. Because PR1, PR2 and PR5 are marker
genes for SA signaling and PR3, ERF1, and PDF1.2 are marker
genes for JA/ET signaling (Mazarei et al., 2007), the findings
suggest that Gbvdr6 plays a role in activating both SA signaling
and JA/ET signaling. In contrast, the expression of the marker
gene GST2 in ET signaling was similar in transgenic and WT
plants, even when the plants were infected with. V. dahliae.
This finding is inconsistent with previous results obtained in
Gbvdr5- and GbVe1-overexpressing transgenic Arabidopsis, in
which GST1 was significantly more upregulated in the transgenic
than in the WT plants after V. dahliae infection (Zhang B. et al.,
2012; Yang et al., 2015a).

The relationship between SA and JA is not always antagonistic
and may sometimes be collaborative (Mur et al., 2006; Liu et al.,
2016). Moreover, enhanced JA levels concomitant with increased

SA production and heightened expression of SA-responsive PR
genes have been found under some conditions (Thaler et al.,
2012; Tong et al., 2012). A noncanonical mechanism has been
reported in which the JA signaling pathway can be activated
following SA accumulation and through the SA receptors NPR3
and NPR4 (Liu et al., 2016). In addition, Verticillium wilt is a
kind of hemibiotrophic pathogen that colonizes its hosts as a
biotroph during the first part of its life cycle in the xylem, killing
them during the subsequent necrotrophic phase (Klosterman
et al., 2011). The SA- and JA-dependent signaling pathways are
thought to interact synergistically during plants’ responses to
hemibiotrophic pathogens (Edgar et al., 2006; Pan et al., 2014;
Yi et al., 2014; Zhu et al., 2017). The secreted isochorismatase
VdIsc1 contributes to the full pathogenesis ofVerticillium dahliae
by impairing SA synthesis (Liu et al., 2014). Plants infected
with wild-type V. dahliae isolates accumulate more free JA
and SA than those infected with the icsh1 mutant (Zhu et al.,
2017). VdSCP7 of V. dahliae can activate both SA and JA
signaling, and such signaling alters the plants’ susceptibility
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FIGURE 8 | Hydrogen peroxide and callose accumulation in the Gbvdr6

over-expressed cotton and WT plant in response to V. dahliae. Roots from the

transgenic and the WT at 5 days post-inoculation with V. dahliae were stained

with 3,3′-diaminobenzidinetetrahydrochloride (DAB), and photos were taken

under a fluorescence microscope with bright light. Scale bar = 100µm

(upper). Callose accumulation (lower). Roots from the transgenic and the WT

at 5 days post-inoculation with V. dahliae were stained with aniline blue, and

photos were taken under a fluorescence microscope with UV light. Scale

bar = 100µm.

to Botrytis cinerea and Phytophthora capsici (Zhang et al.,
2017).

Unlike wild-type plants, the Gbvdr6-overexpressing plants in
our study were not sensitive to MeJA, suggesting that the JA
signaling pathway in these plants may be blocked; however, JA-
sensitive genes were more highly expressed in the transgenic
plants. These facts seem contradictory and puzzling. The JA
signaling pathway is complex, and some mutants, such as
coi1 and jin1, both of which are insensitive to MeJA, show
discrepancies. However, PDF1.2 was observed to be induced
much more strongly in jin1-1 plants throughout the infection
process, whereas it was repressed in coi1 plants. In addition,
JIN1 has been shown to negatively regulate the expression of
PDF1.2 in response to MeJA treatment (Boter et al., 2004;
Lorenzo et al., 2004; Laurie-Berry et al., 2006). The Gbvdr6-
overexpressing plants were insensitive to JA but expressed high
levels of PDF1.2, suggesting that a mediator such as JIN1 may
be repressed and that this repression may be involved in the
resistance mediated by Gbvdr6. In addition, the Arabidopsis
mutant cev1 has constitutively active JA/ET signal pathways but
is insensitive to JA, as shown by the fact that its morphological
traits were unchanged when treated with JA (Ellis and Turner,
2001).

In response to pathogens, plants have evolved a series of
inducible responses including HR, the production of ROS and
callose, and the production and accumulation of PR proteins,

phytoalexins, and antimicrobial proteins (Luo et al., 2014). Ve1-
mediated Verticillium resistance was activated by the V. dahliae
effector protein Ave1 and triggered an HR in tomato (Jonge et al.,
2012). However, Ve1-mediated HR may be determined by the
plant species because no HR was found in N. benthamiana or
Arabidopsis, suggesting that the HR is not absolutely required
for Verticillium wilt resistance (Zhang et al., 2013a,b). Moreover,
Ve1-mediated resistance involved the induction of ROS and
increased the activities of peroxidase, phenylalanine ammonia
lyase, and lignins (Gayoso et al., 2010). The significant induction
of ROS in Gbvdr6-overexpressing Arabidopsis at the early time
points of Verticillium infection is consistent with the findings
for Ve1. The rapid increase in ROS levels observed in transgenic
Gbvdr6 Arabidopsis plants is likely related to several of the
plant’s known defense functions, including the production of a
compound that is toxic to microbes and the participation of ROS
in cell wall reinforcement, lipid peroxidation, signal transduction
cascades and the triggering of defensive responses (Gayoso
et al., 2010). Callose deposition facilitates the host’s defenses
against pathogen penetration at early time points of infection
(Blümke et al., 2013; Ellinger et al., 2013). The deposition of
higher amounts of callose in Gbvdr6-overexpressing cotton roots
at 5 days post-inoculation suggested increased resistance to
V. dahliae penetration. This finding is consistent with previously
reported findings forGbvdr5, the overexpression of which caused
more callose to be deposited at the site of infection (Yang et al.,
2015a).

Our observations suggest that Gbvdr6 contributes to
Verticillium wilt resistance. Gbvdr6 is a receptor-like protein
located on the plasma membrane and has been suggested to
detect extracellular microbe-derived ligands. Receptor-like
proteins are hypothesized to interact with receptor-like kinases
(RLKs) or other membrane proteins to activate downstream
signaling (Jeong et al., 1999; Humphries et al., 2011; Yang et al.,
2012; Postma et al., 2016). However, although the increased
survival rate of Gbvdr6-overexpressing Arabidopsis plantlets
after V. dahliae infection suggests a role of Gbvdr6 in defense
against pathogens, the transgenic plants were not immune to
this pathogen, unlike transgenic Ve1 Arabidopsis, which was
immune to infection by the V. dahliae isolate race1 (Fradin
et al., 2011). The overexpression of Gbvdr6 in Arabidopsis
activated marker genes for SA signaling and JA/ET signaling
and triggered ROS production and callose deposition at early
time points after infection in transgenic cotton. Gbvdr6 was
physically clustered with GbVe1 and Gbvdr5, another two
Verticillium wilt-resistance genes on the same chromosomes
in tetraploid cotton. However, the relationships between
these RLP gene clusters and their nearby Verticillium wilt-
resistance QTLs on the same chromosomes remain to be further
explored.
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