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Monitoring flower development can provide useful information for production

management, estimating yield and selecting specific genotypes of crops. The main goal

of this study was to develop a methodology to detect and count cotton flowers, or

blooms, using color images acquired by an unmanned aerial system. The aerial images

were collected from two test fields in 4 days. A convolutional neural network (CNN) was

designed and trained to detect cotton blooms in raw images, and their 3D locations

were calculated using the dense point cloud constructed from the aerial images with

the structure from motion method. The quality of the dense point cloud was analyzed

and plots with poor quality were excluded from data analysis. A constrained clustering

algorithm was developed to register the same bloom detected from different images

based on the 3D location of the bloom. The accuracy and incompleteness of the dense

point cloud were analyzed because they affected the accuracy of the 3D location of the

blooms and thus the accuracy of the bloom registration result. The constrained clustering

algorithm was validated using simulated data, showing good efficiency and accuracy.

The bloom count from the proposed method was comparable with the number counted

manually with an error of−4 to 3 blooms for the field with a single plant per plot. However,

more plots were underestimated in the field with multiple plants per plot due to hidden

blooms that were not captured by the aerial images. The proposedmethodology provides

a high-throughput method to continuously monitor the flowering progress of cotton.

Keywords: cotton, flower, bloom, unmanned aerial vehicle, point cloud, convolutional neural network, phenotyping

INTRODUCTION

Improving cotton yield is one of the main objectives in cotton breeding projects and cotton growth
and production management. Yield can be defined as the product of the number of bolls produced
per unit area and the mass of lint per boll (a common measure of boll size). Cotton yield is
associated with many physiological variables and environmental factors. However, an increase in
cotton yield is generally associated with an increase in the number of bolls regardless of genotype
or environment (Wells and Meredith, 1984; Pettigrew, 1994). Flower and boll retention will affect
the final number of bolls produced. Therefore, processes that affect flower and boll retention will
have a significant impact on yield.
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Flowering is important to cotton yield because pollinated
flowers form cotton bolls. Within a given genotype, seasonal
flower production per unit area is more closely related to yield
than boll retention percentage (Heitholt, 1993, 1995). Since a
cotton flower is white (cream-color for some upland germplasms
and yellow for Pima) on the first day it opens and turns pink
within 24 h, it is unlikely to mistake an old bloom for a new
bloom on separate days. Therefore, if bloom counts are obtained
daily then the seasonal total counts can be calculated. The
flowering time (the time of the first flower opening) and the peak
flowering time can be determined accordingly, both of which are
critical to production management. The timing and duration of
the flowering stage also reflect the difference in growth habits
of different genotypes, which can help breeders select specific
genotypes, for example, short-season or long-season genotypes.
Although manual counting is perhaps the simplest and most
reliable way to count flowers, it is tedious and inefficient and
requires a massive amount of labor, which is not practical for
large fields.

Imaging methods can improve the efficiency of manual
counting. Many studies have been done on flower detection and
classification using color images (Adamsen et al., 2000; Siraj et al.,
2010; Hsu et al., 2011; Biradar and Shrikhande, 2015; Seeland
et al., 2016; Thorp et al., 2016). Flowers usually have distinct color
and texture from the background; therefore, traditional image
processing methods such as color and texture analysis can be
used to segment flower pixels (Thorp et al., 2016). The number
of flowers can be calculated using morphological operations
on the segmented flower pixels or correlated with flower pixel
percentage (Biradar and Shrikhande, 2015; Thorp et al., 2016).
Flower features can be extracted from flower images and are
used to recognize flower species (Hsu et al., 2011). Machine
learning techniques can be used to classify different flower types,
which could be useful to determine the age of cotton flowers
based on differences in color and shape (Seeland et al., 2016).
Deep learning methods such as the convolutional neural network
(CNN) have been demonstrated to be effective in recognizing
flower species (Liu et al., 2016). CNN showed advantages over
traditional machine learning methods because it does not require
extraction of image features.

Although imaging methods are efficient in detecting flowers,
the image collection throughput limits its usage in agriculture
because agriculture usually deals with large fields. To improve
the data collection throughput, the use of an unmanned aerial
vehicle (UAV) is usually preferred over a ground vehicle or
a robot because a UAV can provide superior data collection
speed and larger spatial coverage. UAVs also do not interact
with the plants, so constant data collection will not cause soil
compaction and plant damage, which can happen when using a
ground vehicle. Although many researchers have used UAVs for
agriculture studies in recent years, only a few used UAVs to count
flowers for crops. For example, aerial multispectral imaging has
been used to calculate flower fraction in oilseed rape andmonitor
the peach flower (Fang et al., 2016; Horton et al., 2017). However,
those studies only segmented flowers from the canopy rather than
counting the flowers. To our knowledge, no study has been done
to count flowers using aerial images. The main reason for this is

the low image resolution compared to images taken from ground
platforms, making image processing challenging.

In this paper, we aimed to develop amethodology for counting
cotton blooms using aerial color images. The overall objective of
this paper was to develop a data processing pipeline to detect and
count the number of newly opened cotton flowers using aerial
images. Specific objectives were to: (1) build and train a CNN to
classify flowers, (2) construct dense point clouds from raw images
and evaluate the quality, (3) develop an algorithm to register
flowers, and analyze its accuracy and efficiency using simulated
data, and (4) evaluate the performance of the data processing
pipeline compared with manual counting. To avoid ambiguity,
we used the term bloom to refer to a newly opened flower to
distinguish it from its other growth stages.

MATERIALS AND METHODS

Test Fields
Two test fields were used, both of which were located in
the Plant Science Farm in Watkinsville, GA (33◦43′37.80′′N,
83◦17′57.52′′E) (Figure 1). Field 1 had 132 plots with a single
cotton plant in each plot, arranged in 12 rows and 11 columns
with a 1.5m (5 ft) distance in both row and column directions.
The cotton in field 1 was planted onMay 25, 2016. Field 2 had 128
plots of cotton, arranged in 16 rows and 8 columns (Figure 1).
Each plot was 3m (10 ft) long and 1.5m (5 ft) wide, with a 1.8m
(6 ft) alley between each plot. Fifteen cotton plants were planted
in each plot with equal spacing of 0.15m (6 inches) on June 13,
2016. The plant density varied because of the different number of
plants germinated, resulting in some empty plots in field 1 and
field 2. The number of germinated plants in each plot for field 2
was recorded 2 weeks after planting (June 8, 2016) to be used to
calculate the average number of blooms for each plant.

Data Collection
Aerial color images of the test fields were collected using an
octocopter (s1000+, DJI, China) with a color camera (Lumix
DMC-G6, Panasonic, Japan) on August 12, August 19, August
26, and September 9, 2016 (Table 1). The color camera was
directly mounted on the bottom of the drone with the lens facing
downward. An inertial measurement unit (IMU) with GPS was
mounted on the drone to record the location and orientation
of the camera. Raspberry Pi 2 was used to trigger the camera
and record the IMU/GPS measurement. During the flight, the
camera took images at a frequency of 1Hz. The exposure time
and aperture were manually set for the color camera according to
the light conditions of the field, and auto-settings were used for
other parameters. The drone was flown at a height of 15m above
ground level (AGL) to reduce the ground sample distance (GSD).
One flight was used to collect data from both of the test fields.

The number of blooms in each plot was manually counted as
a reference for the image method. To count the blooms in each
plot, only white flowers were counted in each plot on the same
day that aerial images were collected. Although manual counting
is reliable overall, it is possible for some blooms to be counted
multiple times or not counted. The judgment of whether a flower
is white is subjective and varies from person to person, which
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FIGURE 1 | Plot layout of the two test fields.
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TABLE 1 | Data collection summary.

Date Time

(p.m.)

Flight

height (m)

Flight speed

(m/s)

Focal length

(mm)

Ground pixel

size (mm)

8/12/2016 12:09 15 2.5 18 3.17

8/19/2016 1:43 15 1.5 20 2.23

8/26/2016 1:35 15 3 20 2.69

9/9/2016 1:12 15 2.5 22 2.36

could cause human counting errors. For field 1, blooms in all of
the plots were counted on all 4 days. For field 2, blooms were
counted in all plots on August 12, and in 32 random plots on the
other 3 days.

Data Processing Pipeline
The overall data processing pipeline for bloom counting can be
divided into four key steps: (1) dense point cloud generation,
(2) plot images extraction, (3) bloom detection, and (4) bloom
registration (Figure 2). The final output of the pipeline is the
bloom count for each plot. Other information such as bloom
position can be obtained too.

Dense Point Cloud Generation
A dense point cloud of each test field was generated in
PhotoScan (PhotoScan Professional 1.3.1, Agisoft, Russia) using
the raw color images and the IMU/GPS measurements. The high
accuracy and reference preselection settings were used for photo
alignment, the high-quality setting for dense point cloud build,
and default for other settings. After photo alignment, PhotoScan
constructed a tie point cloud—often called a sparse point cloud
in other software—from the feature points detected in the images.
Before constructing the dense point cloud, the tie point cloud was
used to calculate the accuracy of the dense point cloud.

After building the dense point cloud, it was found that field
1 was not fully covered by the images collected on August 19
and those uncovered plots were excluded from further data
analysis. Additionally, some plots had an incomplete point cloud
for the canopy due to low side-overlap on August 19, August
26, and September 9, when the focal length was enlarged to
reduce the ground pixel size. Point cloud coverage, which is the
percentage of the plot constructed with valid point cloud, was
used to evaluate the completeness of the point cloud. The plots
with point cloud coverage less than 80% were excluded from
further analysis. The method to calculate point cloud coverage
is explained in section Quality of the dense point cloud.

Plot Images Extraction
The main purpose of the plot images extraction step is to export
plot images from the raw images such that one plot image
contains only one plot or part of the plot. Since one plot can
be imaged several times, one plot has multiple plot images from
different raw images. This is helpful for detecting blooms inside
the canopy because different raw images provide views of each
plot from different angles, which greatly improves the chance of
one bloom being imaged compared to the ortho-image, which
only shows the top view of the canopy. To extract the plot

images, plot boundaries were first manually drawn for each plot
and stored as quadrangle shapes in PhotoScan. Then the four
vertices of each shape were projected to each raw image to get
the pixel location of the vertices in each image. One image was
considered to cover part of the plot if two or three vertices
were in the image (pixel location is within the boundary of the
image), and the whole plot if four vertices were in the image.
The pixel location of the four vertices was recorded and plot
images were extracted from the raw image accordingly. The step
was processed in PhotoScan using built-in Python functions. The
image file name, plot number, and pixel locations of the four
vertices were saved in a text file and imported into MATLAB
(MATLAB 2017a, MathWorks, USA) to extract plot images from
raw images.

Bloom Detection
The bloom detection process contains two steps. The first step is
to screen out the locations that most likely contain cotton blooms
based on the fact that cotton blooms usually have the highest
pixel intensity because of their white color. The plot image was
first transferred into CIELAB color space and then the screening
was performed using the L channel. A threshold of 0.75 on the
normalized L channel (normalized by the maximum value in
L channel) was used to extract bright objects. The number of
pixels for each object was counted and noisy small objects less
than 15 pixels were removed. Objects separated by a distance
of less than the diameter of a flower—which is about 20 pixels
for our dataset—were combined into one object because some
flowers were split into two objects by the leaves. Images with a
size of 36 by 36 pixels around the center of the remaining objects
were extracted from the plot image. Those images were treated as
potential bloom images.

The second step is to classify the potential bloom images into
bloom and non-bloom class using the pre-trained CNN (detailed
information on the CNN and training process is described in
section Convolutional neural network). After classification, the
images classified as bloom class were kept and the pixel location
of those images in the raw color images was recorded.

Bloom Registration
Since the same bloom can be detected in several images, it is
necessary to register the bloom before counting the blooms to
prevent counting the same bloom more than once. Registration
methods based on image features were not useful because very
few features could be detected from the bloom images due to the
resolution limit. Therefore, we first projected the pixel location
of each detected bloom into the 3D location in the dense point
cloud, and then clustered the blooms based on the locations
because the same bloom should have the same 3D location in
the dense point cloud. The projection was done in PhotoScan.
Because each pixel in the image has a corresponding image ray,
any point in the image ray will appear as the same pixel in the
image, and the 3D location of that pixel in the point cloud is the
intersection between the image ray and the point cloud. If there
is no intersection between the image ray and the point cloud,
PhotoScan will return the closest point to the image ray.

Frontiers in Plant Science | www.frontiersin.org 4 February 2018 | Volume 8 | Article 2235

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Xu et al. UAV Images for Bloom Detection

FIGURE 2 | Overall flowchart of the bloom detection algorithm, demonstrating the output of each step for field 1.

Due to the accuracy of the point cloud and pixel location, the
3D location of the bloom may deviate from the true location,
which increases the chance of incorrect bloom registration solely
based on the location. However, since multiple blooms detected
in the same image are different blooms and cannot be in the same
cluster, the bloom registration based on the 3D position can be
generalized as a constrained clustering problem as follows:

Given the set of data points and the set of their corresponding

classes, form the data points into clusters so that no data points in

the same class will be in the same cluster and the distance between

any two clusters are not smaller than a threshold.

In the case of bloom registration, the data point is the
bloom position and the class is the image number to indicate
in which image the bloom was detected. Although existing
constrained clustering algorithms can solve the problem, most
of the algorithms are for general clustering problems and
are not efficient for this specific problem. Therefore, inspired
by hierarchical clustering, a deterministic clustering algorithm
was designed specifically for the bloom registration problem.
The algorithm initializes with each data point as one cluster. The
algorithm involves cluster selection and merging. First, for each
cluster i, a set of clusters, S , was selected from all of the clusters
such that no data points in S had the same class as any data
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point assigned to cluster i. Second, the distance between cluster
i and every cluster in S was calculated and cluster i was merged
to the closest cluster in S if their distance was smaller than the
threshold λ. The algorithm repeats the selection and merging
until no merging happens. The algorithm has a similar effect as
the regular hierarchical clustering algorithms when the distance
between two clusters is measured using Equation (1).

dist
(

µi,µj

)

=
{

dist
′ (

µi,µj

)

, if Ei ∩ Ej = ∅

+∞, otherwise
(1)

where µi and µj are the center of the cluster i and j, dist
′ (

µi,µj

)

is the distance metric used in the hierarchical clustering
algorithms, and Ei and Ej are the set of classes of the data points
assigned to cluster i and j. Compared to the regular hierarchical
clustering algorithms, the efficiency of our algorithm is improved

because the distance calculation is only performed on a subset of
the clusters.

Euclidean distance was used to measure the cluster
dissimilarity. However, because of the large error of the 3D
position projection on the z-axis, the Euclidean distance was
modified by adding a weight term on the z-axis to adjust the
influence of z-axis on the distance. The weighted Euclidean
distance between a =

(

ax, ay, az
)

and b =
(

bx, by, bz
)

was
calculated using Equation (2). The final program used 0.5 for w.

dist
(

a, b
)

=
√

(

ax − bx
)2 +

(

ay − by
)2 + w2

(

az − bz
)2

(2)

Bloom registration algorithm

Input: Set of data points D = {xi}ni , class E = {ei}ni , and distance threshold λ.
Result: The assignment variables for the data points, z = [z1, z2, . . . , zn].
Initialization: each point is assigned as one cluster, z1 = 1, z2 = 2, · · · , zi = i, · · · , zn = n
while not converged do

for i = 1 : n do
Find cluster i and its center µi

if cluster i exists then
S ← ∅ ;
Given the current assignment of points, find the set of classes of the data points assigned to cluster i,
Ei = {ek ∈ E|zk = i} ;
for j = 1 : n do

Find cluster j and its center µj

if cluster j exists then
Given the current assignment of points, find the classes of the data points assigned to cluster j,
Ej =

{

ek ∈ E
∣

∣zk = j
}

;
if Ei ∩ Ek = ∅ then

// Add the current cluster to the selected clusters.
S ←

{

S∪µk

}

;
end

end

end
end
[

dmin, imin

]

← min
{

dist
(

µi, s1
)

, · · · , dist
(

µi, s|S|
)}

;
if dmin < λ then

//Merge cluster i with imin and update the assignment variables;
Assign imin to the assignment variables for the data points in cluster i;

end

end
for k = 1 : n do

Given the current assignment of points, find the set of points assigned to cluster k, Dk =
{

xi ∈ D
∣

∣zi = k
}

:
if |Dk| > 0 then

µk ←
∑

xi∈Dk
xi

|Dk|
else

Remove the cluster and apply the changes to the related variables ;
end

end

end

Convolutional Neural Network
The CNN was used to classify potential bloom images. The
network had seven layers, one input layer, two convolutional
layers, two max pooling layers, and two fully connected
layers (Figure 3). Since the classification was performed on
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the potential bloom images, the potential bloom images were
first extracted from individual data sets and manually labeled
into bloom and non-bloom classes. Then the labeled potential
bloom images were used to construct the image database.
In total, ∼14,000 images for the bloom class and ∼60,000
images for the non-bloom class were extracted. Two thirds
of the bloom images (roughly 9,000 images) and the same
number of non-bloom images were randomly selected as
training samples. The remaining images were used as testing
samples. The CNN was trained for 30 epochs. The learning
rate was set to 0.01 at the first epoch and decreased by a
factor of 10 every 10 epochs. The mini batch size was set
to 256. The regularization factor was set to 0.01 to prevent
overfitting.

Quality of the Dense Point Cloud
The quality of the dense point cloud of the canopy greatly affects
the accuracy of the 3D position of each bloom, and thus the
clustering results, and ultimately the bloom numbers. The quality
of the dense point cloud can be evaluated from two aspects—the
accuracy and the completeness of the dense point cloud.

The position accuracy of each point in the point cloud is
difficult to calculate because the geometry of the canopy is
unknown. Instead, the projection and reprojection error were
calculated for the tie points to estimate the overall accuracy of
the dense point cloud. The projection error was calculated as the
distance between the projection of the feature points to the point
cloud and their corresponding tie points. The reprojection error
was calculated as the pixel distance between the projection of the
tie points on the images and their original corresponding feature
points. The projection error was analyzed on each single axis
(easting, northing, and elevation) and the summation of three
axes.

The completeness of the dense point cloud quantifies how
completely the point cloud represents the real object or scene,
and can be measured by the density of the point cloud.
The completeness of the point cloud on the easting-northing

plane was calculated since the camera only captures the top
view. First, the point cloud was rasterized into a 2D elevation
map using grid steps of 1.3 cm without interpolating the
empty cells. The elevation map was divided into each plot.
For each plot, the ground surface was calculated using the
Maximum Likelihood Estimation SAmple Consensus (MLESAC)
(Torr and Zisserman, 2000). The plot was divided into
ground and canopy using the elevation map based on the
distance to the ground surface with a threshold of 0.1m.
The point cloud coverage (PCC) for the canopy is defined in
Equation (3).

PCC =
Area of the canopy

Area of the canopy+ Area of the empty cells
(3)

The area of the empty cells was included in the denominator
because the empty cells were usually part of the canopy. The PCC
estimates the completeness with which the canopy is represented
by the dense point cloud, which can greatly affect the bloom
registration result.

Evaluation of the Bloom Registration
Algorithm
To evaluate the efficiency and accuracy of the bloom registration
algorithm, artificial data was generated in three steps. First, a data
point with three dimensions was generated by randomly drawing
integers from 0 to 9 for each axis. This step was repeated until
125 different data points were generated. The same class number
was assigned to the 125 data points to simulate that they were
from the same image. Second, the first step was repeated 10 times,
generating in total 1,250 data points. A new class number was
assigned to the 125 data points at each repeat to simulate that the
data points from each repeat were from different images. The data
points with the same coordinates were set in the same cluster,
which is the true clustering result. Third, a random error that

followed N

(

0,
√
3
3 σ

)

was added to each axis of each data point,

thus the position error (vector summation of the errors of the

FIGURE 3 | Structure of the convolutional neural network.
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three axis) followed N (0, σ). Different σ was used to simulate
the noise level of the 3D position of the bloom. The 1,250 data
points were clustered using the bloom registration algorithm and
compared with the true clustering result.

Since the clustering result will depend on the noise level of the
data and threshold for the clustering algorithms, 10 different σ

values from 0.1 to 0.5 with an interval of 0.05, and 5 threshold
values were tested. The threshold values were σ, 1.5σ, 2σ, 2.5σ,
and 3σ and they covered from 68 to 99.7% of the position error.
To acquire statistics of the result, the third step of generating
artificial data was repeated 10 times to generate 10 sets of artificial
data for each noise level and threshold. The mean and standard
deviation of the clustering error and runtime on the 10 data
sets were analyzed. The misclustering rate was defined using
equation 4.

misclustering rate =
number of misclustered points

total number of points
(4)

Since it is difficult to relate the clustering result with the ground
truth, the misclustered points were considered as the points that
were in the same cluster from the clustering result but not in the
same cluster from the ground truth. The number of misclustered
points was calculated with two approaches. The first approach—
referred to as misclustering rate by reference—used the true
clustering result as the ground truth, and the second approach—
referred to as misclustering rate by result—used the clustering
results as the ground truth. The first approach was good at
evaluating the clustering error when the clustering algorithm
over clustered the data points, while the second approach was
suitable for under-clustering errors.

RESULT

Quality of the Dense Point Cloud
The point cloud accuracy was analyzed using the dataset collected
on 8/12.More than 99% of the reprojection errors of the tie points
were less than 1.7 pixels and only a few were larger than 2 pixels
(Figure 4). The mean reprojection error was 0.5 pixels. The tie
points had overall larger projection error on the elevation than
the easting and northing (Figure 5). The mean projection error
for the easting and northing was 0m because the positive and
negative errors were canceled out, whereas the mean projection
error for the elevation was 0.014m, which is reasonable since
the depth generated from multi-view stereo is usually the least
accurate. The elevation also had larger variation than the easting
and northing. The mean projection error for the three axes
combined was 0.022m, and 99% of the errors were between 0 and
0.127m (Figure 5D). The large projection error on the elevation
validates the rationale to assign a weight to the elevation when
calculating the cluster distance in bloom registration.

In the event of an incomplete dense point cloud for the
canopy, some blooms may not be able to get 3D point positions
and thus cannot be counted. If the blooms equally distribute over
the canopy, the point cloud coverage can be considered as the
probability of a bloom having a valid point in the dense point
cloud. Assuming a canopy has n blooms and point cloud coverage

FIGURE 4 | Histogram of the reprojection error for the tie points generated

from 8/12/2016 dataset.

of p, then k (k = 1, 2, . . . , n) blooms not having valid points
(which cannot be counted using the imaging method) follow
a binomial distribution B

(

n, 1− p
)

. The mean count error is
n

(

1− p
)

and the relative error is
(

1− p
)

. Therefore, the point
cloud coverage should be close to 1 to make the counting error
small.

Figure 6 showed that the 8/12 dataset had good point cloud
coverage (> 0.9) on most of the plots for both test fields.
However, the other three datasets showed low point cloud
coverage on both fields, except that the 8/19 dataset had some
plots with good point cloud coverage. The low point cloud
coverage was mainly due to the insufficient image side-overlap
(<60%); the PhotoScan was unable to construct valid 3D points
for areas that were covered by less than three images. Therefore,
increasing the image overlap can improve the point cloud
coverage. The depth filter inside the PhotoScan removed noisy
points due to the movement of the plants and image noise, which
was another reason for the low coverage. To achieve low image
counting error, the plots with point cloud coverage lower than
0.8 were excluded from data analysis, which removed 16 plots in
field 1 for the 8/12 dataset, 18 plots in field 1 and 103 plots in field
2 for the 8/19 dataset, all the plots in field 1 and 112 plots in field
2 for the 8/26 dataset, and 127 plots in field 1 and 97 plots in field
2 for the 9/9 dataset.

Training Result of the Convolutional Neural
Network (CNN)
With more than 28,000 training images and mini batch size of
256, the CNN was trained about 114 iterations every epoch.
Because of the large training sample size and relatively simple
structure, the training process converged quickly and the training
accuracy reached 0.94 in the first epoch. As shown in Figure 7,
the training accuracy for bloom and non-bloom class increased
in the first few epochs. The training accuracy for the non-bloom
class reached a maximum on the 8th epoch, and the training
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FIGURE 5 | Histogram of the projection error for the tie points generated from the 8/12/2016 dataset. (A) Error histogram for easting. (B) Error histogram for northing.

(C) Error histogram for elevation. (D) Error histogram for the summation of the three axes.

FIGURE 6 | Point cloud coverage for field 1 (A) and field 2 (B). The red line indicates the 0.8 threshold.

accuracy for the bloom class reached a maximum on the 12th
epoch. The accuracy for both classes decreased after reaching
the maximum value, fluctuated a bit, but then reached a stable
accuracy with small variation after 20 epochs. The training loss
decreased quickly over the first few epochs, which indicates

the quick convergence of the training. After 10 epochs, where
the learning rate changed from 0.01 to 0.001, the training loss
kept decreasing but the change rate was small. After 20 epochs,
the training loss reached the minimum with a certain level
of oscillation, which indicates that the training process should
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FIGURE 7 | CNN training setting and result. (A) Training and testing accuracy of the CNN on two classes over training epoch. (B) Training loss over epoch.

(C) Learning rate over epoch.

stop at the 20th epoch because no further improvement of the
CNN can be gained from the last 10 epochs. Therefore, the
training result at the 20th epoch was used to classify the potential
bloom images. The testing accuracy was smaller than the training
accuracy for both classes after 7 epochs but the difference between
them was less than 0.01, which showed the CNN worked well on
both the training and testing sets.

The classification result for each dataset using the trained
CNN varied due to the different lighting conditions and
flowering stages (Table 2). The classification result showed high
precision (>0.9) for both classes across all datasets. However,
the recall (true positive rate) for the bloom class was low for
the 8/19 and 9/9 datasets. The CNN can cause overestimation
or underestimation when comparing the number of predicted
blooms and the number of actual blooms. For example, in
the 8/12 dataset, the number of predicted bloom images was
789, but the actual number of bloom images was 719, thus
the classification result overestimated the number of blooms by
10%. Similarly, the classification result overestimated the number
of blooms by 23 and 29% in the 8/19 and 9/9 datasets, and
underestimated the number of blooms by 2% in the 8/26 dataset.
Objects such as cotton bolls, specular highlights on leaves, and
pink flowers weremisclassified as blooms because their shape and
color appeared like a bloom in the aerial image due to the limited
resolution (Figure 8). The misclassified blooms caused by objects
(e.g., label sticks) on the ground could be removed based on
the height from the ground, but the misclassified blooms caused

by the plants (e.g., leaves, pink flowers, and cotton bolls) were
difficult to eliminate using the height. Small blooms or partly
hidden blooms can easily be misclassified as non-blooms because
of their size. Blooms in the shade can also be misclassified as
non-blooms because their intensity is reduced. Including those
misclassified images into the training set may further improve the
CNN performance.

Efficiency and Accuracy of the Bloom
Registration Algorithm
To cluster the 1,250 data points, the bloom registration algorithm
used 13.3 to 48.4 s, which is 0.0106 to 0.0387 s per data point
(Figure 9A). Using a larger threshold and larger noise level
reduced the runtime because they resulted in a smaller number
of clusters and thus the number of distance calculations. The
bloom registration algorithm produced a near-zero misclustering
rate by result at smaller noise level no matter what threshold
was used because the distance between two reference clusters
was still larger than the spread of the data points due to the
noise (Figure 9B). As the noise level increased, the misclustering
rate by result increased and larger threshold values had larger
misclustering rates. This was mainly because of over-clustering
when the noise of the points became large enough that certain
portions of two clusters overlapped with each other and the
algorithm could cluster them into one cluster. The misclustering
rate by reference did not change significantly as the noise level
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9 increased (Figure 9). Smaller thresholds had larger misclustering

rates by reference.
At low noise level, the under-clustering takes the main effect

because the bloom registration algorithm can split one cluster
into smaller clusters at low noise level, generating a larger number
of clusters compared to the real cluster number (Figure 9D). As
the noise increased, a smaller number of clusters than the real
number of clusters was generated, resulting in over-clustering.
The bloom registration algorithm had a smaller cluster number
with larger threshold at the same noise level, indicating that it is
more prone to under-clustering but less prone to over-clustering.

Bloom Count Result
This section shows the bloom count results after removing the
plots with point cloud coverage less than 0.8. The image count
and manual count had the same trend for both fields (Figure 10).
The error of the image count was between −4 and 3 for field 1,
and the between −10 and 5 for field 2, showing that field 2 had
more underestimated plots than field 1 (Figure 11). This may be
due to the single plant per plot layout in field 1. The single plant
per plot layout allows the plant to be seen from all directions
without being blocked by other plants in the plot. Therefore,
blooms in field 1 were more likely to be captured in the aerial
images.

The overestimation was caused for two major reasons. One
reason is the classification error of the CNN. For example,
some leaves with specular highlights were classified as blooms
(Figure 12A). The other reason is the quality of the point cloud,
which causes the error of the bloom’s 3D position and thus make
the bloom registration incorrect (the same bloom from different
images was registered as different blooms) (Figure 12B). The
underestimation was caused by hidden blooms that were not
shown in the aerial images, or blooms that were shown in the
images but were not classified correctly by the CNN.

With enough datasets, it is possible to monitor the
development of the flowers over time, which is one of the
advantages of the proposed method. Figure 13 demonstrates the
trend of the bloom development. It shows that the number of
blooms was low at the early flowering stage, reached the peak
in the middle flowering stage, and then decreased at the late
flowering stage. This trend is also consistent with the trend from
manual counting (Figures S1–S5).

DISCUSSION

This paper demonstrated a high-throughput methodology to
count cotton blooms using aerial color images. Continuously
monitoring the cotton blooms over time can provide information
about the cotton growth status, such as the flowering time
and peak flowering time, which can be used for production
management and yield estimation. It is also helpful for breeding
programs to identify short season or long season genotypes.

Unlike sorghum or corn, whose flowers open at top of the
stem, cotton flowers open from the bottom and progress up the
plant. At the early cotton flowering stage, blooms at the bottom
can be covered by the leaves and may not be able to be captured
by the aerial images. Therefore, it is expected that image counting
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FIGURE 8 | Example images of the classification result.

can underestimate the real bloom count. Instead of using the
ortho-images which only take the top view of the canopy, we
utilized all the raw images that take different views of a plot to
get the bloom count in order to improve the underestimation to
a certain extent. The inability to detect hidden blooms inside the
canopy from aerial images is the major limitation of the proposed
methodology. This issue could be addressed by using oblique
aerial images or ground side-view images. The underestimation
could be improved at the middle and later flowering stages since
the flowers that open at the middle and top of the canopy are
more likely to be imaged in the aerial images.

Besides the inability to detect hidden flowers, the proposed
bloom counting method can generate errors from two aspects:
the bloom detection error and the bloom registration error. The
bloom detection error was affected by the image quality, the
threshold to select the potential bloom images, and the accuracy
of the CNN. The image quality was affected by the illumination
condition at the time of data collection. Ideally, the best image
quality can be obtained when the illumination is uniform from
all directions so there are no shadows or specular highlights. The
ideal condition is hard to obtain in the field, but the approximate
ideal condition can be obtained on a cloudy day. When the
sunlight directly shines on the canopy without being scattered
by clouds, shadows and specular highlights can be found in the
aerial images, which cause non-uniformed intensity changes of
the plot. Those changes will affect the selection of the potential
bloom positions.

The threshold to select the potential bloom positions was
arbitrary and mainly based on the images. A high threshold can

eliminate some blooms that have low intensity due to shadows. A
low threshold can include more non-bloom objects (such as the
specular highlights), which can increase the processing time and
be misclassified by the CNN. The classification of the potential
bloom images relied on the CNN but misclassifying a bloom
image as a non-bloom image affected the result differently from
misclassifying a non-bloom image. When a bloom was classified
as a non-bloom in one image, it was possible to be correctly
classified as a bloom in other images given a different perspective
of the flower; therefore, this flower could be included in the
final result. However, when a non-bloom image was classified
as a bloom, this false bloom was counted and there was no
approach to remove it in the current method. The training
samples for the CNN were selected from images collected on
only 4 different days, so the trained CNN may not be suitable
for data collected in different growth stages, especially when the
color of the cotton leaves changes over the season. Therefore,
including more training samples from different dates over the
growth season could improve the accuracy and robustness of
the CNN. The different appearances of the cotton flower caused
by genotype differences—for instance, the Pima cotton has
yellow bloom in contrast with white bloom for some upland
cotton varieties—should also be considered when constructing
the training samples.

The accuracy of the bloom registration was affected by the
3D position of the bloom and the registration algorithm. The
3D position of the bloom was affected by the pixel location and
the dense point cloud. Therefore, the accuracy of the dense point
cloud has an important impact on the accuracy of a bloom’s 3D
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FIGURE 9 | (A) Run time of the bloom registration algorithm on the simulation data. (B) Misclustering rate by result. (C) Misclustering rate by reference. (D) Number of

clusters using modified hierarchy clustering. The horizontal line is the true number of clusters.

position, and thus affects the bloom registration results. A larger
error of the 3D position can cause the bloom registration to
under-cluster or over-cluster the blooms. Under-clustering can
count the same bloom more than once and over-clustering may
count several blooms as one bloom, making the bloom count
unreliable. The completeness of the point cloud also affects the
registration result. If the dense point cloud cannot cover the
whole canopy, some blooms that are detected in the images may
not have a valid projection on the dense point cloud. Those
blooms will not be registered and underestimation of the bloom
count will occur. Therefore, adequate image overlap is critical in
data collection to capture the whole canopy. Increasing the image
overlap can improve the completeness, but also requires more
data collection and processing time. Oblique imagery can also
improve the completeness of the point cloud by providing more
views of a plot and potentially can image more occluded flowers.

Although the proposed bloom counting methodology usually
provides an underestimated bloom count compared to manual
counting, it has the advantage in throughput over manual
counting. It saves manual labor and makes continuously
monitoring the flowering possible. Without such throughput,
it is impossible to continuously monitor the flowering stage
and determine the flowering time, peak flowering time, and
seasonal bloom count. For farmers and breeders, it is helpful to
estimate the fiber yield because some studies have shown the
fiber yield is correlated with seasonal bloom count (Heitholt,
1993, 1995). However, additional studies on how well the
proposed methodology can estimate fiber yield are needed.
The methodology is also helpful for differentiating the growth
behavior among different genotypes, which can be used to
select certain genotypes, such as short-season or long-season
genotypes. Compared to other flower detection methods that are
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FIGURE 10 | Comparison between image count and manual count for field 1 (A) and field 2 (B) after removing plots with point cloud coverage less than 0.8.

FIGURE 11 | Histogram of the image count error for field 1 (A) and field 2 (B).

based on the percentage of flower pixels, the method proposed in
this study can directly provide flower count without exploring the
correlation between pixel percentage and flower count (Adamsen
et al., 2000). The proposed method also can provide the locations
of flowers as byproducts, which could be used to correlate with
the cotton bolls (Figure 14).

To implement the proposedmethod, farmers and breeders can
use commercial aerial photogrammetry systems or build custom
systems to collect aerial images. The data processing pipeline
can be used as long as the image quality (such as the ground
resolution) meets the requirements. This study used small fields
of 920 m2 (0.22 acre) and the data collection throughput is not

enough for commercial farms or breeding programs with large
fields. Although the throughput can be increased by increasing
the flight altitude, the reduced ground resolution may not meet
the requirement for the pipeline to correctly recognize cotton
flowers. Alternative solution is to use high-resolution cameras
to maintain the ground resolution when imaging at higher
altitudes.

CONCLUSION

This study developed a high throughput methodology for cotton
bloom detection using aerial images, which can be potentially
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FIGURE 12 | The bloom detection results for plot 0110 (A) and plot 1011 (B) in field 1 on 8/12/2016 dataset. The left images show the point cloud and detected

blooms and right images show the corresponding blooms in the raw images.

FIGURE 13 | Boxplot of the image count per plot over time for field 1 (A) and field 2 (B).

used to monitor cotton flowering over the season for cotton
production management and yield estimation. The method
generally underestimated the bloom count due to the inability to

count hidden flowers, but the bloom count for the single plant
layout was less likely to be underestimated than the multiple
plant layout. The accuracy and completeness of the dense point
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FIGURE 14 | Top view of the two test fields with red dots indicating the flower locations using 8/12/2016 dataset. The image was rendered from dense point cloud.

cloud has an impact on the bloom count result, so generating
a good dense point cloud can improve the results significantly.
The bloom registration algorithm developed in this study was
efficient in terms of runtime and was more prone to under-
clustering but less prone to over-clustering. The trained CNN
correctly classifiedmore than 97% of the training and test images,
and more than 90% of the potential flowers extracted from
individual datasets. Since the false classification from the CNN
can result in false bloom count, designing a robust CNN that can
handle images taken under different field illumination conditions
and cotton growth stages will be included in future studies. In

addition, oblique imagery will be explored to improve the quality
of the dense point cloud.
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