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Maize grain yield and related traits are complex and are controlled by a large number

of genes of small effect or quantitative trait loci (QTL). Over the years, a large

number of yield-related QTLs have been identified in maize and deposited in public

databases. However, integrating and re-analyzing these data and mining candidate loci

for yield-related traits has become a major issue in maize. In this study, we collected

information on QTLs conferringmaize yield-related traits from 33 published studies. Then,

999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain

metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based

on a comparative genomics strategy, several maize orthologs of rice yield-related genes

were identified in these MQTL regions. Furthermore, three potential candidate genes

(Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated

with kernel size and weight within three MQTL regions were identified using regional

association mapping, based on the results of the meta-analysis. This strategy, combining

MQTL analysis and regional association mapping, is helpful for functional marker

development and rapid identification of candidate genes or loci.

Keywords: grain yield, kernel size and weight, metaQTL, regional association mapping, maize

INTRODUCTION

Maize is one of the most important cereal crops in the world and plays an important role in
maintaining food security, promoting the development of animal husbandry, and satisfying the
demand for industrial raw materials. Thus, improvement of grain yield is consistently one of the
most important goals for maize breeders. In maize, grain yield is a complex quantitative trait
controlled by many quantitative trait loci (QTL) with a small effect (Wu and Lin, 2006). A better
understanding of the genetic architecture and molecular mechanisms of yield-related traits could
help improve grain yield in maize.

Linkage mapping is an efficient way to identify genetic loci for complex quantitative traits in
maize (Wallace et al., 2014). In the past two decades, many QTLs have been identified for yield
and related traits thus far, such as ear-related traits (ERT) and kernel-related traits (http://www.
maizegdb.org/). Marker-assisted selection (MAS) is a more efficient selection method for yield and
its related traits improvement in the process of crop breeding. The tightly linked markers which
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are found in the genetic population and related with yield and
its related traits should be identified before using in the MAS
for crop breeding process (Xu, 2010). However, it is difficult to
use these loci in the crop improvement process for the following
reasons: (1) the results of QTL mapping for the same trait may
vary due to the different populations used in different studies;
(2) most QTLs explain just a small proportion of phenotypic
variation and are detected only in specific environments; and
(3) the confidence intervals for these QTLs are often large and
contain hundreds of genes, making it very difficult to determine
the candidate gene for the target trait.

QTL meta-analysis is an effective method to identify
the genomic hotspot regions that control target traits more
frequently and narrow down the confidence intervals of these
QTLs to produce the metaQTLs (MQTLs) by integrating
information from different mapping populations (Goffinet and
Gerber, 2000; Arcade et al., 2004). Chardon et al. (2004) identified
62MQTLs related to flowering time in maize by synthesizing 313
QTLs from different mapping populations and two important
MQTL clusters for flowering time in bins 8.05 and 10.04.
Subsequent positional cloning and association mapping analysis
showed thatVgt1, which is located in bin 8.05, plays an important
role in flowering time and the number of nodes (Salvi et al.,
2007, 2011). Another MQTL for flowering time, located in
bin 10.04, was found along with the key flowering time gene
ZmCCT, which contains a CCT domain (Hung et al., 2012).
These successful examples confirm that meta-analysis is a very
useful method for predicting candidate genes and developing
molecular markers for complex quantitative traits in maize. In
fact, previous studies have identified many MQTLs for yield-
related traits by integrating different QTL datasets from maize
and many maize orthologs of rice yield-related genes using
bioinformatic techniques (Semagn et al., 2013; Wang et al.,
2013, 2016; Martinez et al., 2016). However, the number of
QTLs that have been integrated in previous studies is still low,
and methods for effectively mining candidate loci or genes for
yield-related traits from these MQTL regions are still not well-
developed.

A combination of linkage mapping and association mapping
has recently proven to be an efficient method for identifying
candidate loci related to yield-related traits in maize. Multiple
major QTLs related to kernel size and weight, such as
qKS2, qGW4.05, qKL1.07, and qKW7.02, were identified
through linkage mapping, and their locations were subsequently
narrowed down to very small genomic regions through
association mapping (Chen et al., 2016a; Li et al., 2016b;
Qin et al., 2016; Zhang et al., 2017). Similar to this strategy,
combining QTL meta-analysis and regional association mapping
to mine MQTLs and narrow down their associated confidence
intervals has been suggested as a quick and effective way
to identify candidate functional genes or loci (Daware et al.,
2017). Based on this strategy, two potential candidate genes
for grain size and weight were successfully identified in rice
(Daware et al., 2017). Here, we use this strategy in maize to
achieve the following objectives: (1) to synthesize the information
on QTLs for grain yield and related traits published between
2000 and 2016; (2) to mine MQTLs across the entire genome

through QTL meta-analysis; (3) to identify maize orthologs of
rice yield-related genes using a comparative genomics strategy;
and (4) to identify candidate genes or loci for kernel-related
traits by combining meta-analysis with regional association
mapping.

MATERIALS AND METHODS

QTL Data Collection for Maize Yield and
Related Traits
QTL data on maize grain yield (GY) and GY-related traits
were collected from 33 studies published between 2000 and
2016 (Table S1). The GY-related traits included two important
components: (1) ERT, including ear weight (EW), ear length
(EL), ear diameter (ED), cob weight (CW), cob diameter (CD),
and kernel row number (KRN); and (2) kernel-related traits
(KRT), including kernel length (KL), kernel width (KWI), kernel
thickness (KT), kernel number (KN), kernel weight (KW),
kernel ratio (KR), and kernel volume (KV) (Table 1). Detailed
QTL information and the associated literature on maize grain
yield and related traits were collected from three databases,
MaizeGDB (http://www.maizegdb.org), Gramene (http://www.
gramene.org), and the PubMed web server (http://www.ncbi.
nlm.nih.gov/pubmed). In this study, we collected only QTLs that
were identified under normal growth conditions.

Meta-Analysis
The collected QTLs were projected onto the “IBM2 2008
Neighbors” maize reference map (http://curation.maizegdb.
org/cgi-bin/displaymaprecord.cgi?id=1140201) to generate a
consensusmap. Then, ameta-analysis was performed to integrate
the QTL data from different studies and to refine the confidence
intervals. For the meta-analysis of many QTLs, five different
models (1-, 2-, 3-, 4-, or N-QTL) with different Akaike
information criterion (AIC) values have been proposed using
BioMercator software V4 (http://moulon.inra.fr/index.php/en),
where the model with the lowest AIC-value is considered
optimal. Finally, the consensus QTL presented by the optimum
model is regarded as the MQTL (Arcade et al., 2004).

Identification of Annotated Transcripts and
Gene Ontology Analysis
The physical intervals of these MQTLs were identified using
the MaizeGDB and Gramene databases. The physical locations
of flanking markers for these MQTLs were confirmed on the
IBM2 2008 Neighbors map. The annotated transcripts within
these MQTL regions were mined in the MaizeGDB database.
The physical locations of these MQTL regions were based on
genome annotation version AGPv2 of the maize B73 reference
map (http://curation.maizegdb.org/). The gene sequences located
in the MQTL regions were aligned to the NCBI non-redundant
(nr) database with Blastx, using an E-value of <10−5, with a hit
number threshold of 100. The best functional annotations were
obtained using this process. With the Nr annotation, we used the
Blast2GO program (version: v2.5.0) to obtain the gene ontology
(GO) annotation for these genes.
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TABLE 1 | List of traits evaluated in this study.

Trait name Acronym Traits includeda No. of

populations

No. of

QTLs

Yield Grain Yield GY Grain yield per plant

Grain yield per plot

25 142

EAR-RELATED TRAITS

Cob Weight CW Cob weight

Cob dry weight

3 17

Ear Weight EW Ear weight

Ear dry weight

7 33

Kernel Row

Number

KRN Ear row number

Kernel row number

11 92

Cob Diameter CD Cob diameter 2 15

Ear Length EL Ear length 11 68

Ear Diameter ED Ear diameter 9 52

KERNEL-RELATED TRAITS

Kernel Length KL Kernel length

10-Kernel length

20-Kernel length

7 62

Kernel Width KWI Kernel width

10-Kernel width

20-Kernel width

7 76

Kernel

Thickness

KT Kernel thickness

10-Kernel thickness

20-Kernel thickness

7 76

Kernel

Number

KN Kernel number per plant

Kernel number per row

Kernel number per ear

20 109

Kernel Weight KW Hundred kernel weight

300-Kernel weight

Thousand kernel weight

28 218

Kernel Ratio KR Kernel ratio 3 11

Kernel

Volume

KV Kernel volume 4 28

aTraits identified from the surveyed papers that were included in the same category in our

study.

Mining of Homologous Genes in the MQTL
Regions
In this study, we collected 25 genes related to grain yield and
related traits in rice (Table S3). Homologous genes in maize
were identified as follows: (1) the protein sequences of these
25 collected rice genes were obtained from http://www.ricedata.
cn/gene; (2) BLASTP (protein-protein BLAST) searches using
these protein sequences were performed against the maize “non-
redundant protein sequences” database (https://www.ncbi.nlm.
nih.gov/). The criteria for these searches included an E-value of
<10−10, identity >60%, and a coverage region >60% to select
homologous genes of these rice yield-related genes in maize.

Regional Association Mapping and
Expression Analysis of the Candidate
Genes
An association mapping panel with 627 maize inbred lines
covering highly diverse maize germplasms was applied in this
study to perform regional association mapping. The genotypes
and phenotypes of this association panel have been provided in

our previous reports (Chen et al., 2016a; Qin et al., 2016). We
selected SNP markers with minor allele frequencies >0.05 in
MQTL regions to perform the analysis. The association analysis
was estimated using a mixed linear model (MLM) incorporated
in TASSEL V5.0, controlling for population structure (Q) and
kinship (K). The first three principal components (PCs), which
have been analyzed in previous studies, were used as the covariant
variables to control for the existing population structure in the
association mapping panel. Significant marker-trait associations
were declared at LOD >3. The expression data from different
kernel development values of these candidate genes were
collected from the MaizeGDB database (http://maizegdb.org/)
(Winter et al., 2007; Sekhon et al., 2011).

RESULTS

QTL Collection for Maize Grain Yield and
Its Related Traits
A total of 999 QTLs related to GY, ERT, and KRT were collected
(Table S1). The number of QTLs per trait ranged from 11
(kernel ratio, KR) to 218 (kernel weight, KW) (Table 1). The
999 collected QTLs were distributed unevenly across the ten
chromosomes (Figure 1A). The greatest number of QTLs (182)
were located on chromosome 1, while chromosome 6 exhibited
the fewest, with 68 (Figure 1A), similar to previousmeta-analyses
of maize yield QTLs (Wang et al., 2016). A total of 75.08%
of the collected QTLs for each trait exhibited an R2 < 10%,
implying that the proportion of phenotypic variance explained
by each QTL was very small (Figure 1B). These results suggest
that grain yield and related traits in maize are mainly controlled
by numerous loci of minor effect and display a complex genetic
architecture.

QTL Meta-Analysis
The collected QTLs for maize yield and its related traits were
projected onto the target map IBM2 2008 Neighbors via meta-
analysis to mine MQTLs and refine QTL intervals. A total of 76
MQTLs were identified according to the models with the lowest
AIC-values (Table 2, Figure 2). These MQTLs were distributed
unevenly across the genome, with the number per chromosome
ranging from 4 on chromosome 4–10 on chromosome 5 (Table 2,
Figure 2). TheseMQTLs were named sequentially fromMQTL-1
to MQTL-76 according to their chromosomal locations. MQTL-
31 covered just two QTLs, while MQTL-28 interestingly covered
45 QTLs (Table 2). We also found that 60 MQTLs were related
to GY, while 4 MQTLs were related to only kernel-related traits
(KRT), and MQTL-17, on chromosome 3, was associated with
only ERTs (Table 2).

Furthermore, we found that several yield-related MQTLs
tended to show a clustered distribution in the maize genome.
One of these clustered regions was detected in the genomic region
from 38.17 to 69.15Mb onmaize chromosome 5 and consisted of
two MQTLs (MQTL-33 and MQTL-34) (Table 2). Two MQTLs
(MQTL-39 to MQTL-40) were clustered in a 28.5-Mb region on
maize chromosome 6 (Table 2). Other clusters were found on
maize chromosome 7 (from 9.78 to 34.19Mb), chromosome 8
(from 146.89 to 163.31Mb), and chromosome 9 (from 16.24 to
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FIGURE 1 | QTL numbers and associated R2-values (variance explained by a single QTL) distributed across the entire genome. (A) QTL numbers distributed on each

chromosome. (B) The variance explained by a single QTL in the traits included in this study.

22.68Mb) (Table 2). Five MQTLs (from MQTL-72 to MQTL-
76) were clustered in a 16.24-Mb genomic region on maize
chromosome 10 (Table 2).

Identification of Annotated Transcripts and
Go Analysis in MQTL Regions
Among the 76 MQTLs, 44 MQTLs with an interval of less than
5Mb were selected for GO analysis of annotated transcripts. A
total of 4,501 genes were identified in the 44 MQTL regions,
whose detailed gene IDs are presented inTable S2. Multiple genes
associated with yield-related traits in maize were found to be
located in MQTL intervals. Fea2 (Bommert et al., 2013) and Ub2
(Chuck et al., 2014), which are important genes in the control of
kernel row numbers in maize, were located in the MQTL-27 and
MQTL-5 regions, respectively. The UBL1 gene, which plays an
important role in kernel and seedling development by influencing
pre-mRNA splicing (Li et al., 2016a), was located in MQTL-37.
Three genes related to maize kernel development, emp2 (Fu et al.,
2002), ZmZHOUPI (Grimault et al., 2015), and ZmReas1 (Qi
et al., 2016), were located in theMQTL-11,MQTL-9, andMQTL-
43 regions, respectively. According to the two-level WEGO
classification, 2,257 genes were annotated, which were divided
into three categories (cellular component, molecular function,
and biological pathway) and further divided into 48 classes
(Figure 3). We found that more than one thousand genes were
related to the cell, cell part, metabolic process, cellular process,
organelle, binding, and catalytic activity terms (Figure 3).

Homologous Gene Mining in MQTL
Regions
To identify candidate genes related to grain yield in the
MQTL regions, we collected 25 genes that were functionally
characterized as being associated with grain yield and its
components from the rice genome (Table S3). Homologous
genes were not found in the maize genome for four of these rice
genes (APG, GW5, PGL1, qGL3), while eight of the rice genes
(An-1, Bsg1, D2, DEP1, GIF1, GW2, LP, SMG1, SRS3, and SRS5)
exhibited more than one homologous gene, and the other genes
exhibited a single homologous gene in maize (Table S3). Finally,
11 MQTL regions containing 11 maize orthologs of 10 rice genes

related to grain yield and its related traits were identified in this
study.

MQTL-19 contained ZmGS5 (Gene ID: GRMZM2G13815),
an ortholog of the well-characterized rice yield gene GS5
(Table 3). In rice, GS5 encodes a serine carboxypeptidase family
protein that controls grain size and weight by regulating grain
width and filling (Li et al., 2011). One candidate gene (Gene
ID: GRMZM2G097275), homologous to OsSPL14, was identified
in the MQTL-35 region (Table 3). OsSPL14 is a member of the
SBP (squamosa promoter-binding-like transcription activator)
family, and can improve the grain yield by regulating plant
architecture (Miura et al., 2010). GN1a encodes a cytokinin
dehydrogenase 2 protein and regulates grain number to improve
grain yield in rice (Ashikari et al., 2005). A GN1a homolog (Gene
ID: GRMZM2G325612) was identified in maize in the MQTL-
54 region (Table 3). A homologous gene of D61 (Gene ID:
GRMZM2G048294), which encodes a brassinosteroid receptor
kinase and can regulate plant height to produce small grains
in rice (Morinaka et al., 2006), was identified in the MQTL-58
region (Table 3). Homologs of other grain yield-related genes,
such as LP1, SRS5, Ghd7, and DEP1, were also identified in
MQTL regions (Table 3). These homologs of yield-related genes
may play important roles in ear and kernel development inmaize.

Regional Association Analysis Underlying
KRT MQTL Regions
In our study, a total of 10 MQTL regions were found to be
related to KRT alone or to both GY and KRT (Table 2). These 10
MQTL regions were selected to implement a regional association
analysis. The integration of SNP genotyping data from the 10
selected MQTL regions with phenotype information (10-kernel
length, 10KL; 10-kernel width, 10KW; 100-kernel weight, HKW)
for all 627 accessions successfully revealed significant associations
for four MQTL regions (MQTL-10, MQTL-39, MQTL-49, and
MQTL-73).

MQTL-10 Region
We selected SNP markers in an interval (chr2:
62924210∼149111857) corresponding to the MQTL-10 region
in the maize genome. Using a mixed linear model, we identified
two, two and one SNPs associated with variation in kernel
length, kernel width, and hundred kernel weight, respectively
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TABLE 2 | QTL meta-analysis results.

MetaQTL

name

Chr MetaQTL

positiona
Left marker Right

marker

MetaQTL

interval (cM)

Physical

distance (Mb)b
MetaQTL

interval (kb)

QTLsc Traitsd

MQTL-1 1 252.82 umc1222 gpm556 250.4–255.24 10.99∼12.22 1231.72 45 ERT, GY, KRT

MQTL-2 1 411.32 imd1 ts2 407.16–415.48 44.53∼46.68 2150.47 28 ERT, GY, KRT

MQTL-3 1 541.08 dupssr26 IDP1986 536.72–545.44 73.8∼83.43 9632.97 18 ERT, GY, KRT

MQTL-4 1 596.16 AY110396 umc1611 590.48–601.84 147.99∼152.17 4175.67 13 ERT, GY, KRT

MQTL-5 1 685.51 npi429 bnl34 681.18–689.84 187.98∼191.13 3157.88 36 ERT, GY, KRT

MQTL-6 1 959.5 IDP8008 pco106440 957.04–961.96 250.02∼254.38 4363.29 42 ERT, GY, KRT

MQTL-7 2 115.66 umc1542 IDP8711 105.94–125.38 4.67∼5.52 852.21 12 ERT, KRT

MQTL-8 2 299.88 umc34 hct5 291.96–307.8 28.21∼31.83 3619.91 19 ERT, GY, KRT

MQTL-9 2 359.01 IDP1415 umc1861 355.95–362.07 48.42∼52.01 3588.19 10 ERT, GY, KRT

MQTL-10 2 397.49 IDP496 pza03211 385.26–409.72 62.92∼149.11 86187.65 8 KRT

MQTL-11 2 427.36 bnlg1396 emp2 424.56–430.16 154.53∼177.65 23125.51 15 ERT, GY, KRT

MQTL-12 2 458.67 umc1108 pza03529 448.06–469.28 186.53∼189.45 2914.67 6 ERT, KRT

MQTL-13 2 518.88 IDP3824 umc1745 506.08–531.68 199.17∼205.84 6668.02 5 ERT, KRT

MQTL-14 2 568.83 AI668346 IDP136 563.93–573.73 209.83∼211.52 1683.62 8 ERT, KRT

MQTL-15 2 711.39 bnlg469b IDP7539 699.76–723.02 231.21∼233.26 2050.58 5 ERT, GY, KRT

MQTL-16 3 89.42 IDP2399 umc1458 84.74–94.1 3.84∼4.68 840.57 15 ERT, KRT

MQTL-17 3 137.31 IDP5966 lim66 125.74–148.88 7.67∼10.08 2405.79 6 ERT

MQTL-18 3 179.79 ra2 gpm697 176.06–183.52 12.88∼15.04 2159.08 14 ERT, GY, KRT

MQTL-19 3 249.5 bnlg2047 IDP7433 230.84–268.16 31.06∼63.84 32779.45 14 ERT, KRT

MQTL-20 3 317.83 umc1750 cdo250 299.86–335.8 86.75∼136.09 49332.30 10 ERT, GY

MQTL-21 3 382.41 vp1 pza00667 368.13–396.69 162.74∼162.8 63.89 9 ERT, GY, KRT

MQTL-22 3 482.81 bnlg1047a umc1644 465.23–500.39 178.14∼183.89 5743.96 5 KRT, GY

MQTL-23 3 596.27 cl23834_1 AY106518 586.8–605.74 201.17∼205.26 4088.86 17 ERT, GY, KRT

MQTL-24 3 785.31 IDP7267 IDP6978 780.33–790.29 221.62∼222.57 950.52 13 ERT, GY, KRT

MQTL-25 4 234.99 umc1758 phm3301 231.91–238.07 4.75∼5.33 580.77 25 ERT, GY, KRT

MQTL-26 4 316.25 umc2281 bnl5.46a 307.59–324.91 17.24∼17.85 615.25 21 ERT, GY, KRT

MQTL-27 4 446.34 gpm155 AY110355 416.01–476.67 39.32∼144.04 104725.68 33 ERT, GY, KRT

MQTL-28 4 656.15 pzb01461 IDP4308 653.89–658.41 186.37∼188.2 1827.71 45 ERT, GY, KRT

MQTL-29 5 99.91 TIDP3193 sqs1 93.17–106.65 2.8∼3.68 882.55 11 ERT, GY, KRT

MQTL-30 5 159.31 gpm160 pza02753 151.14–167.48 6∼7.67 1674.02 12 ERT, GY, KRT

MQTL-31 5 205.67 umc1587 ago108 189.6–221.74 10.17∼13.61 3432.94 2 ERT, KRT

MQTL-32 5 246.46 smh6 bnl7.56 241.89–251.03 17.1∼20.92 3820.54 6 ERT, KRT

MQTL-33 5 297.2 umc2295 IDP7018 288.85–305.55 38.17∼61.53 23357.32 15 ERT, GY, KRT

MQTL-34 5 317.51 cdpk1 umc1226 314.88–320.14 60.8∼69.15 8346.70 3 ERT, KRT

MQTL-35 5 341.37 csu315a lox11 334–348.74 78.36∼123.21 44843.81 20 ERT, GY, KRT

MQTL-36 5 378.91 TIDP3443 amp3 372.76–385.06 162.84∼167.47 4632.00 11 GY, KRT

MQTL-37 5 488.62 TIDP8870 IDP758 481.3–495.94 188.65∼193.45 4795.04 15 ERT, GY, KRT

MQTL-38 5 597.13 umc68a gpm874b 594.19–600.07 205.44∼207.73 2289.51 15 ERT, GY, KRT

MQTL-39 6 48.85 umc2310 gpm399a 27.67–70.03 0.5∼21.9 21403.88 14 GY, KRT

MQTL-40 6 85.03 TIDP3648 nfa101 82.25–87.81 17.96∼28.25 10292.78 9 ERT, GY, KRT

MQTL-41 6 127.25 mmp108b php20045a 119.25–135.25 36.56∼89.15 52587.33 14 ERT, GY, KRT

MQTL-42 6 240.02 TIDP3136 cl5367_1b 238.19–241.85 118.79∼120.66 1874.75 13 ERT, KRT

MQTL-43 6 359.68 chr116a umc1859 329.64–389.72 146.06∼154.5 8434.75 6 ERT, GY, KRT

MQTL-44 6 471.13 dupssr15 asg47 466.31–475.95 162.24∼163.11 870.04 12 ERT, GY, KRT

MQTL-45 7 93.44 psk1 bnlg2132 89.69–97.19 3.02∼3.25 223.13 7 ERT, GY, KRT

MQTL-46 7 175.66 pco086679 in1 161.5–189.82 9.78∼19.36 9577.94 4 ERT, KRT

MQTL-47 7 233.31 psr371b TIDP2647 226.64–239.98 19.44∼34.19 14743.05 18 ERT, GY, KRT

MQTL-48 7 301.69 umc1138 IDP4794 291.09–312.29 105.91∼122.71 16803.73 20 ERT, GY, KRT

MQTL-49 7 367.49 TIDP2699 mmp152 347.16–387.82 131.79∼140.69 8900.18 20 KRT

MQTL-50 7 431.93 psr371a rz596a 425.01–438.85 147.02∼154.31 7295.23 4 ERT, GY, KRT

(Continued)
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TABLE 2 | Continued

MetaQTL

name

Chr MetaQTL

positiona
Left marker Right

marker

MetaQTL

interval (cM)

Physical

distance (Mb)b
MetaQTL

interval (kb)

QTLsc Traitsd

MQTL-51 7 486.95 IDP6922 IDP5024 480.55–493.35 160.14∼161.84 1699.20 15 ERT, GY, KRT

MQTL-52 7 656.1 umc168 kin1 651.64–660.56 170.25∼176.22 5970.54 5 ERT, GY, KRT

MQTL-53 8 154.62 mmp85 phm9695 142.15–167.09 8.1∼12.29 4189.31 8 GY, KRT

MQTL-54 8 235.1 IDP7228 fps1 227.58–242.62 22.98∼63.28 40298.35 15 ERT, GY, KRT

MQTL-55 8 299.61 IDP8347 gpm599b 290.08–309.14 96.17∼100.91 4737.17 7 GY, KRT

MQTL-56 8 364.84 AY110056 hox1 351–378.68 112.68∼123.91 11235.54 9 ERT, GY, KRT

MQTL-57 8 408.35 phm10525 thi1 397.46–419.24 126.08∼138.14 12067.77 10 ERT, GY, KRT

MQTL-58 8 430.67 csu31a umc2210 429.13–432.21 146.89∼160.45 13555.71 7 ERT, GY, KRT

MQTL-59 8 465.26 umc1149 ald2 455.7–474.82 160.3∼163.31 3012.28 7 ERT, GY, KRT

MQTL-60 8 541.64 csu110c npi414a 532.71–550.57 168.25∼169.79 1538.48 5 ERT, GY, KRT

MQTL-61 8 639.57 AY110127 phi233376 637.02–642.12 173.41∼175.44 2034.87 3 ERT, GY

MQTL-62 9 74.32 bnlg1724 php10005a 66.04–82.6 4.3∼5.73 1427.18 9 GY, KRT

MQTL-63 9 196.6 klp1c pza00860 188.89–204.31 16.24∼18.61 2365.98 7 ERT, GY, KRT

MQTL-64 9 229.76 umc1698 eps1 225.67–233.85 19.2∼22.68 3481.87 7 ERT, KRT

MQTL-65 9 307.2 magi67004 gpm165 294.85–319.55 90.84∼107.89 17045.02 11 ERT, GY, KRT

MQTL-66 9 371.1 umc1492 umc1387 361.61–380.59 120.2∼133.6 13393.58 16 ERT, GY, KRT

MQTL-67 9 493.46 IDP3889 mmp131 477.47–509.45 140.18∼144.79 4605.29 14 ERT, GY, KRT

MQTL-68 9 631.76 IDP2142 rld1 579.19–684.33 147.35∼154.65 7298.10 5 ERT, GY, KRT

MQTL-69 10 206.79 npi105a umc1962 197.75–215.83 13.06∼24.61 11558.08 12 ERT, GY, KRT

MQTL-70 10 277.58 bnlg640 umc1246 272.86–282.3 85.27∼102.52 17256.90 15 ERT, GY, KRT

MQTL-71 10 324.42 lox7 magi13270 316.63–332.21 120.22∼126.49 6277.80 12 ERT, GY, KRT

MQTL-72 10 385.24 IDP6861 gpm522b 378.31–392.17 133.55∼136.1 2550.91 17 ERT, GY, KRT

MQTL-73 10 434.86 TIDP4639 IDP4016 405.79–463.93 136.94∼143.07 6125.36 4 KRT

MQTL-74 10 492.99 AY110016 IDP167 485.02–500.96 144.47∼148.54 4067.76 12 ERT, GY, KRT

MQTL-75 10 508.33 IDP2352 csu300b 506.4–510.26 148.88∼149.07 192.64 13 ERT, GY, KRT

MQTL-76 10 594.48 gpm23b umc1645 578.71-610.25 147.97∼149.79 1821.60 6 KRT

aThe most likely position of the MQTL in the IBM2 2008 Neighbors map.
bThe physical confidence intervals of the MQTLs are based on B73 ref V2 and the corresponding position on B73 ref V4 are listed in Table S5.
cThe number of QTLs contained in the MQTL regions.
dGY, grain yield; ERT, ear-related traits; and KRT, kernel-related traits. If an MQTL contained only a QTL for kernel-related traits, we referred to it as a KRT MQTL.

(Table 4, Figure 4A). These significant SNP loci explained
2.72–3.80% of the observed phenotypic variation in kernel
size and weight in this association mapping panel (Table 4).
We also identified one SNP (PZE-102096886) located in the
GRMZM2G359974 gene that was associated with the variation
in kernel weight and 10-kernel width (Figure 4A). Comparisons
of these significant P-values with the P-value distribution of
600 randomly chosen SNPs from this region suggested that
these significant associations were not due to false positives
(Figure 4B).

MQTL-39 Region
Two significant SNPs associated with HKW and 10KW were
identified in this region, while explained 2.80 and 1.81% of
the observed phenotypic variation, respectively (Table 4). A
significant SNP (SYN11458) related to kernel weight variation
was located in the GRMZM2G301884 gene (Figure 5A). For
SYN11458, two alleles (A/G) were present in the association
panel, with the G allele being associated with a higher kernel
weight (Figure 5B). The PZE-106021411 SNP, located in an
intergenic region, was significantly associated with kernel width.
Two alleles for this SNP (A/G) were present in this panel, with

the A allele being associated with greater kernel width (Table 4,
Figure 5C).

MQTL-49 Region
Only one significant SNP (SYN35079) located in the
GRMZM2G083894 gene was found to be associated with
kernel width in this region (Figure 6A). This SNP explained
2.85% of the variation in kernel width and exhibited two
alleles (A/G) in this association panel (Table 4). Significant
differences in kernel width were found between these two alleles
of SYN35079 (Figure 6B).

MQTL-73 Region
One SNP (PZE-110091041), located in the intergenic region, was
significantly associated with hundred kernel weight (Figure 7A).
This SNP explained 3.01% of the variation in kernel weight, and
the T allele of this SNP was associated with a higher kernel weight
(Table 4, Figure 7B).

And, we found that the inbred lines which harbor the positive
allele in the linkage population also have the SNP allele can
increase the corresponding trait (Table S6). HBqkwid2 is a QTL
related with kernel width and found by using the RIL population

Frontiers in Plant Science | www.frontiersin.org 6 December 2017 | Volume 8 | Article 2190

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. Meta-Analysis and Association Mapping in Maize

FIGURE 2 | Chromosomal locations of MQTLs identified in this study. The red

segments on the chromosome represent MQTLs related to grain yield (GY),

ear-related traits (ERT), and kernel-related traits (KRT), while the green

segments represent MQTLs related to KRT alone or to GY and KRT

simultaneously.

from the cross of Huangzaosi and Huobai and a positive effect
from Huangzaosi (Li et al., 2013). Using regional association
mapping, we identified an SNP (A/G) significantly related with
kernel width, and Huangzaosi has an “A” allele, which can
increase kernel width. The MQTL-73 region contains a hundred
kernel weight QTL (Zqkwei10), which is found in the RIL
populations from Huangzaosi and Zheng58, and the positive
effect from Zheng58 can increase the hundred kernel weight
(Li et al., 2013). A significant SNP (A/T) was identified using
regional association mapping in this region; Zheng58 contains
the “T” allele and can increase the kernel weight, and Huangzaosi
contains the “A” allele and can decrease the kernel weight.

Expression Pattern Analysis of Candidate
Genes
The combination of meta-analysis and regional association
mapping indicated that three genes (GRMZM2G359974,
GRMZM2G301884, and GRMZM2G083894) may play
important roles in maize kernel development. The expression
data for the three candidate genes were collected from the
MaizeGDB database (http://www.maizegdb.org/). We found that
these genes were all expressed at different stages of maize kernel
development. For instance, GRMZM2G359974, which encodes a
transferase family protein, was highly expressed in endosperm-
20 DAP, while GRMZM2G301884 was highly expressed at
the early stage of grain development, and GRMZM2G083894,

FIGURE 3 | Gene ontology analysis of the genes located within a 5Mb interval of the MQTL regions.
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TABLE 3 | Candidate genes associated with yield-related traits in metaQTL regions.

Gene

name

Accession number Gene product Trait in rice Homologous

gene ID in maize

Corresponding

metaQTL region

References

Bsg1 LOC_Os02g56610 DUF640 domain containing

protein

Grain size and grain weight GRMZM2G147241 MQTL-8 Ren et al., 2016

An-1 LOC_Os04g28280 Basic helix-loop-helix

protein

Awn development, grain size,

and grain number

GRMZM2G137541 MQTL-12 Luo et al., 2013

GS5 LOC_Os05g06660 Peptidase S10, serine

carboxypeptidase family

protein

Grain size and grain weight GRMZM2G13815 MQTL-19 Li et al., 2011

OsSPL14 LOC_Os08g39890 Squamosa

promoter-binding-like

transcription activator

Grain yield, plant architecture GRMZM2G097275 MQTL-35 Miura et al., 2010

DEP1 LOC_Os09g26999 Phosphatidylethanolamine-

binding protein (PEBP) like

domain protein

Grain yield, panicle length,

and grain size

GRMZM2G172320 MQTL-48 Sun et al., 2014

SRS5 LOC_Os11g14220 Alpha-tubulin protein Grain size GRMZM2G083243 MQTL-51 Segami et al., 2012

GRMZM2G051782 MQTL-67

GN1a LOC_Os01g10110 Cytokinin dehydrogenase 2 Grain number and grain yield GRMZM2G325612 MQTL-54 Ashikari et al., 2005

D61 LOC_Os01g52050 Brassinosteroid LRR

receptor kinase

Grain yield and plant height GRMZM2G048294 MQTL-58 Morinaka et al., 2006

LP1 LOC_Os09g28300 Remorin, C-terminal region

domain containing protein

Panicle length GRMZM2G442489 MQTL-65 Liu et al., 2016

Ghd7 LOC_Os07g15770 CCT domain protein Grain number, plant height

and flowering time

GRMZM2G381691 MQTL-70 Xue et al., 2008

TABLE 4 | Summary of SNP-based regional association analysis in metaQTL regions.

MQTL name Traita SNP Chr Pos LOD PVE % Allele Structural annotation

MQTL-10 HKW PZE-102096886 2 111583492 4.31 3.80 A/G GRMZM2G359974

10KL PZE-103095280 2 85861839 3.11 2.81 A/G Intergenic

10KL PZE-102084262 2 72146069 3.04 2.74 A/C Intergenic

10KW PZE-102083125 2 69945211 3.24 2.92 A/G Intergenic

10KW PZE-102096886 2 111583492 3.01 2.72 A/G GRMZM2G359974

MQTL-39 HKW SYN11458 6 9494055 3.10 2.80 A/G GRMZM2G301884

10KW PZE-106021411 6 18990406 3.01 1.81 A/G Intergenic

MQTL-49 10KW SYN35079 7 132632787 3.17 2.85 A/G GRMZM2G083894

MQTL-73 HKW PZE-110091041 10 140189920 3.35 3.01 A/T Intergenic

aHKW, Hundred kernel weight; 10KL, 10-kernel length; 10-KW, 10-kernel width.

which encodes an AN1-like zinc finger protein, was expressed
at different levels in different stages of kernel development in
maize (Figure S1). Therefore, these genes should be considered
the most promising candidates for involvement in maize kernel
development for further functional validation.

DISCUSSION

Meta-Analysis of Yield-Related Trait QTLs
in Maize
In maize, most important agronomic traits, such as grain yield,
ERT, and kernel-related traits, are complex, quantitative and
controlled by numerous small effect QTLs. With increasing

numbers of identified QTLs, researchers tend to compare
the results of QTL analysis from different backgrounds and

environments (Peng et al., 2011; Li et al., 2013). However, the

results of QTL mapping are often inconsistent due to different

population types, population sizes, mappingmethods and genetic

backgrounds. Therefore, QTLs localized to inconsistent genomic
regions should be investigated further to validate these QTLs and

verify their precise positions. Integrating QTL data from different

studies and using meta-analysis to identify MQTL regions will

pave the way for further fine mapping of QTLs and gene cloning

(Wang et al., 2013, 2016; Martinez et al., 2016). In this study,
999 QTLs for maize yield and related traits were collected from
different populations (Table S1). Through meta-analysis, a total
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FIGURE 4 | Regional association analysis of the MQTL-10 region. (A) Association analysis between the SNPs located within the MQTL-10 region and kernel size and

weight. The green, blue, and yellow circles represent different SNPs, whereas the red line represents the significance threshold. An LOD >3 indicates that a SNP is

significantly related to kernel size or weight. One SNP located in the gene (GRMZM2G359974) was found to be associated with kernel width and weight.

(B) Permutation test for the identified significantly associated SNP markers. Comparison of the most highly significant SNP (n = 560/64, P = 7.08 × 10−5) with the

association results for 600 randomly selected SNPs for the same trait. These results suggested that the significant association was a real association and was not

caused by a false positive.

of 76 maize yield MQTLs were identified in this study (Table 2,
Figure 2). Compared with previous studies, we identified many
MQTL regions that were highly consistent across different studies
(Table S4). We also identified nine genomic regions for yield-
related traits that had been identified in previous studies (Wang
et al., 2013, 2016; Martinez et al., 2016) (Table S4). Intriguingly,
we found that a major QTL (qGW4.05) for maize kernel size and
weight that we recently fine-mapped was located in theMQTL-27
region on maize chromosome 4. On the same chromosome, a
QTL for maize grain yield, qYPP4-1, was recently identified using
a high-density genetic map, which was placed in the MQTL-28
region by our meta-analysis (Chen et al., 2016b). These results
suggest that someMQTL regions identified in our study can serve
as major QTLs for fine mapping and gene cloning of important
yield genes.

Homologous Gene Cloning of Maize Yield
and Related Traits
In crops with large and complex genomes, such as maize and
wheat, homology-based cloning methods are useful tools for
identifying important genes related to complex traits. In recent
years, many crop genome sequences have been released based on

the wide application of next-generation sequencing technologies
(Liu et al., 2015). These public genome sequences aid in the
identification of conserved genomic regions and key genes in
different crops.

With the numerous grain yield-related genes identified in
rice, many homologous genes related to grain yield have been
cloned in maize based on a comparative genomics strategy. In
maize, multiple genes related to kernel size and weight have been
identified, and their function has been validated through linkage
analysis and association mapping analysis (Li et al., 2010a,b; Liu
et al., 2015). ZmGS5, a maize homolog of the rice grain size
and weight gene GS5 was identified in the MQTL-19 region in
this study (Table 3). Previous studies have demonstrated that
brassinosteroids such as brd2, dwf11, and d61 play an important
role in seed development in rice. One gene homologous to D61
was identified in MQTL-58 (Table 3). The dwarf d61 mutant
of rice exhibits smaller grains and a lower grain weight due to
defects in brassinolide metabolism (Morinaka et al., 2006). The
members of the SBP gene family are important transcription
factors in plants, involved in plant growth and development.
OsSPL14, which encodes an SBP transcription factor, controls
shoot branching in the vegetative stage, and a higher grain
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FIGURE 5 | Regional association analysis of the MQTL-39 region. (A) Association analysis between the SNPs located in the MQTL-39 region and kernel size and

weight. A SNP (SYN11458) associated with kernel weight was found in this gene (GRMZM2G301884), and another SNP (PZE-106021411) associated with kernel

width was identified in the intergenic region. (B) The SYN11458 SNP was significantly related to kernel weight (n = 278/345, P = 6.51 × 10−4). SYN11458 has two

alleles (A and G), and the G allele is associated with a greater kernel weight. (C) The SNP PZE-106021411 was significantly related to kernel width (n = 37/590,

P = 6.34 × 10−4). PZE-106021411 had two alleles (A and G), and the A allele was associated with a wider kernel. The red dashed line represent the significance

threshold (LOD = 3).

FIGURE 6 | Regional association analysis of the MQTL-49 region. (A) Association analysis between the SNPs located in the MQTL-49 region and kernel size and

weight. Only one SNP (SYN35079) was found to be associated with kernel width in this gene (GRMZM2G083894). (B) The SNP SYN35079 was significantly related

to kernel width (n = 344/277, P = 1.39 × 10−6). SYN35079 had two alleles (A and G), and the A allele was associated with a wider kernel. The red dashed line

represent the significance threshold (LOD = 3).

yield can be achieved in rice via over-expression of this gene
in the reproductive stage (Miura et al., 2010). One candidate
gene (GRMZM2G097275) was identified in theMQTL-35 region,
which was homologous to OsSPL14 (Table 3). The rice gene
GN1a, which encodes a cytokinin oxidase, can increase grain

number and improve grain yield. When the expression of GN1a
is reduced, the cytokinin accumulates in inflorescencemeristems,
and the number of reproductive organs is increased (Ashikari
et al., 2005). Furthermore, GRMZM2G325612, a homolog of
GN1a, was mapped to the MQTL-54 region (Table 3). The
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FIGURE 7 | Regional association analysis of the MQTL-73 region. (A) Association analysis between the SNPs located in the MQTL-73 region and kernel size and

weight. Only one SNP (PZE-110091041) was found to be associated with kernel weight in the intergenic region. (B) The PZE-110091041 SNP was significantly

related to kernel weight (n = 371/252, P = 4.08 × 10−14). PZE-110091041 had two alleles (A and T), and the T allele was associated with a greater kernel weight.

The red dashed line represent the significance threshold (LOD = 3).

homologs of the 10 genes in the MQTL regions have been
shown to improve grain yield in rice, suggesting their possible
roles in maize. As in previous studies, multiple methods
of analysis, such as expression pattern analysis, phylogenetic
analysis, linkage analysis, candidate gene mapping analysis, and
transgenic analysis, should be used to validate the function of
homologous genes. These homologous genes in MQTL regions
should to be validated in the future using a number of the
techniques mentioned above.

Combining Regional Association Mapping
and MQTL Results to Mine Candidate
Genes for Kernel Size and Weight
Association mapping and linkage mapping are two effective
strategies for dissection of the genetic basis of complex
quantitative traits in crops. These two methods each have
particular advantages, such as a higher relative power and
lower false positive rate for linkage mapping and a relatively
higher mapping resolution for association analysis (Sneller
et al., 2009). In recent years, the combination of linkage and
association mapping strategies has been widely used in crops.
One strategy is to construct integratedmapping populations such
as MAGIC (multiparent advanced generation inter-crosses) and
NAM (nested association mapping) populations (Buckler et al.,
2009; Meng et al., 2016). Based on these types of populations,
many complex quantitative traits have been resolved, such as
flowering time, plant height, and disease resistance (Buckler et al.,
2009; Peiffer et al., 2014; Ding et al., 2015). Another strategy is to
first determine confidence intervals related to target traits based
on linkage mapping analysis. Then, genome-wide association
mapping or regional associationmappingmethods can be used to
narrow down the confidence intervals ofmajor QTLs and identify
candidate genes or loci. Many major QTLs related to kernel size
and weight have been finely mapped to candidate genes in maize
(Chen et al., 2016a; Li et al., 2016b; Qin et al., 2016) or rapeseed
(Li et al., 2014).

Combining meta-analysis and regional association mapping
can rapidly identify candidate genes associated with complex
agronomic traits, such as grain size and weight, in rice
(Daware et al., 2017). In this study, we identified three
candidate genes (GRMZM2G359974, GRMZM2G301884,
and GRMZM2G083894) for kernel size and weight by
combining meta-analysis and regional association mapping
(Table 4, Figures 4–6). One gene (GRMZM2G359974) located
in MQTL-10 region encoding a transferase family protein
was found to be significantly associated with kernel width
and weight through regional association analysis (Table 4,
Figure 4). GRMZM2G083894, which encodes an AN1-like
zinc finger domain protein, was found to be associated with
kernel width and exhibited different expression levels in
different stages of kernel development (Table 4, Table S4).
The three genes (GRMZM2G359974, GRMZM2G301884,
and GRMZM2G083894) are identified by combined the meta
analysis and regional association mapping. And, we found the
three genes were all expressed at different stages of maize kernel
development. To date, many GWAS studies have been done
for maize yield and its related traits, but these results are very
different for many reasons such as the mapping population,
the phenotype variation and the population structure. The
three genes identified in our study were near by the significant
SNPs with GWAS for kernel size and weight traits through
combining 10 RIL populations (Liu et al., 2017). For example,
GRMZM2G359974 were significant associated with kernel
width and weight in this study and a SNP which located on
0.9Mb upstream of this gene were also found significantly
associated with kernel width by GWAS (Liu et al., 2017), and
a SNP associated with kernel width was located on 1.5Mb
upstream of GRMZM2G083894. GRMZM2G083894 were
located in the QTL interval which is found by using the
RIL population from the cross of B73 and BY804 (Liu et al.,
2017). Based on these results, these three candidate genes
should be considered the most promising candidates related
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to kernel size and weight in maize for further functional
validation.

CONCLUSION

Grain yield and related traits are complex quantitative traits
controlled by numerous QTLs of small effect in maize. The
integration and meta-analysis of a large set of QTLs provides
valuable information for QTL fine mapping and key genes for
cloning. In this study, we collected 999 QTLs related to yield
and related traits and identified 76 MQTLs across the maize
genome. Based on a comparative genomic strategy, several maize
orthologs of rice yield-related genes were identified in the MQTL
regions. We then mined the candidate genes or loci for kernel
size and weight through regional association mapping based on
the results of the meta-analysis. Consequently, three potential
candidate genes associated with kernel size and weight within
three MQTL regions were identified in this study. These results
confirmed that combiningmeta-analysis and regional association
mapping is helpful for functional marker development and rapid
determination of candidate genes or loci, and the candidate
loci identified in this study contribute to our understanding
of the genetic architecture of grain yield and related traits in
maize.
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