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Landscape genomics is a relatively new discipline that aims to reveal the relationship
between adaptive genetic imprints in genomes and environmental heterogeneity among
natural populations. Although the interest in landscape genomics has increased since
this term was coined, studies on this topic remain scarce. Landscape genomics has
become a powerful method to scan and determine the genes responsible for the
complex adaptive evolution of species at population (mostly) and individual (more rarely)
level. This review outlines the sampling strategies, molecular marker types and research
categories in 37 articles published during the first 10 years of this field (i.e., 2007–2016).
We also address major challenges and future directions for landscape genomics. This
review aims to promote interest in conducting additional studies in landscape genomics.
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INTRODUCTION

Rapid global climate change is an important factor that affects biodiversity (Hoffmann and Sgrò,
2011). Adjusting their distribution range or local adaptation is the usual coping strategy of species
toward rapid climate change (Aitken et al., 2008). Local adaptation requires the species to face
long-term spatial environmental heterogeneity and eventually leads to adaptive differentiation of
phenotypes. These changes might be due to phenotypic plasticity or heritable phenotypic variation.
Exploring the adaptive evolution of species in response to spatial environmental heterogeneity will
be useful in understanding initial adaptive divergence and evolutionary potential of a target species
(Pluess et al., 2016). Landscape genomics is a powerful research field for investigating the adaptive
evolution of species in response to spatial environmental heterogeneity (Vincent et al., 2013).

Joost et al. (2007) proposed landscape genomics as a relatively new discipline that aims to
reveal the relationship between the adaptive genetic imprints in genomes and the environmental
heterogeneity. Different from landscape genetics, landscape genomics requires a sufficient
number of molecular markers to cover the entire genome. Emphasis is placed on adaptive
evolution at the genome level (Miao et al., 2017). Landscape genetics, however, is biased
toward using a relatively small number of molecular markers to reveal the relationship
between environmental factors and the spatial genetic structure of populations (Dionne
et al., 2008; Poelchau and Hamrick, 2012; Manel and Holderegger, 2013). Landscape genomic
studies on many plant and animal species have been recently conducted (Berg et al., 2015;
Manthey and Moyle, 2015; Leamy et al., 2016; Vangestel et al., 2016). These studies have
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achieved considerable progress on understanding of the relative
roles of adaptive and non-adaptive processes in shaping patterns
of genomic variation and the effects of environmental variables
on adaptive differentiation at the genomic level. Although
landscape genomics has been pursued for a decade, the studies,
basic theoretical frameworks, and universal hypotheses in this
field are still scarce. Thus, additional landscape genomic studies
are needed to assist the construction of basic theoretical
frameworks and formulation of universal hypotheses. This review
summarizes the progress of landscape genomic studies such as
conceptual and methodological developments as well as applied
contributions during the previous decade. We then outline
expected future directions in the field and encourage researchers
to participate in this field.

METHODS

By searching the theme “landscape genomics” in the database of
web of science1, and further looking through the related papers
carefully, 37 articles focused on adaptive genetic imprints in
genomes driven by environmental factors were finally selected.
Supplementary Table S1 lists the molecular markers, sampling
strategies, statistical methods, and research categories addressed
in these articles.

SAMPLING STRATEGIES IN LANDSCAPE
GENOMICS

Sampling strategies in landscape genomics are divided into two
major categories: random and stratified. The random sampling
design includes scattered and clustered sampling. In the scattered
sampling design, samples are randomly collected from across the
species distribution range, while in the clustered sampling design,
populations are divided into clusters according to environmental
or genetic factors and samples are randomly taken from each
cluster. A stratified sampling design can be performed to capture
the range of variability across landscape variable(s) of interest.
Thus, this sampling design requires a large amount of biological
and environmental information of a target species. The optimal
sampling scheme will be obtained by model calculation (Manel
et al., 2012). The two sampling strategies mentioned above
can be implemented at the individual or population level. The
advantage of population sampling is more conducive to detect
variation in gene frequency among populations than individual
sampling. The most controversial topic in population sampling
is multiple samples in fewer populations versus fewer samples in
multiple populations. The former strategy is more representative
in landscape genomic studies, but its accuracy in estimating
genetic parameters is often questioned. In population genetics
studies, the minimum sample size of a population should not
be less than 20 individuals, 25–30 individuals are considered to
be more reasonable (Hale et al., 2012). Therefore, it is necessary
to ensure a minimum population sample size in the landscape

1http://www.isiknowledge.com/

genomic studies. Compared to population-based sampling, the
application of individual sampling in landscape genomic studies
is relatively scarce, but nonetheless suitable for clinal populations
or those with unclear population structure (Jones et al., 2013).

MOLECULAR MARKERS IN LANDSCAPE
GENOMICS

Landscape genomic studies require molecular markers that are
sufficiently spread throughout the genome (Balkenhol et al.,
2009). However, most non-model species do not have established
genomic information to appropriately place sufficient markers
across the genome. Therefore, two characteristics, i.e., no
requirement for a priori genome knowledge and a high covering
density in genomes, are indispensable for the use of these
molecular markers in landscape genomics (Yang et al., 2017).

Two types of molecular markers are suitable for landscape
genomic studies. Type-I markers have no DNA sequence
information, such as amplified fragment length polymorphisms,
inter-simple sequence repeats, and start codon targeted
polymorphisms. Type-II markers contain DNA sequence
information, such as single-nucleotide polymorphisms (SNPs).
Type-I markers require low generation cost but have few
defects. Although these type-I markers may allow detecting
loci potentially responsible for adaptation using outlier locus
detection and environmental association analysis (EAA), the
gene function of those loci cannot be easily validated, and thus
might be false-positives. Type-II markers usually display high
scanning density but have higher generation cost than type-I
markers. However, type-II markers exhibit several advantages
because these markers contain DNA sequence information.
This information can help us annotate and map these markers
on the genome. Based on the landscape genomic studies
that we have selected (see Supplementary Table S1), SNP
genotyping was mainly achieved through DNA microarrays.
However, the use of DNA microarrays requires a large amount
of prior gene information (Teng and Xiao, 2009). The recently
developed reduced-representation genome sequencing (RRGS)
is based on next-generation sequencing (NGS), which includes
genotyping by sequencing (Elshire et al., 2011), restricted site
associated DNA (Miller et al., 2007), and specific-locus amplified
fragment sequencing (Sun et al., 2013). RRGS reduces the cost
of sequencing, maintains high coverage of the genome, and
does not require a priori genomic information. Thus, the use
of RRGS is beneficial in landscape genomic research (Brauer
et al., 2016). Most of the RRGS methods are currently based
on Illumina sequencing platforms, which have an advantage
of high accuracy and throughput and a disadvantage of short
reading lengths. Third generation sequencing (TGS), such as
MinION device by Oxford Nanopores and PacBio Sequel by
Pacific BioSciences, has been recently developed to compensate
for the short reading length of NGS. Although TGS maintains
the speed and flux advantages of NGS, this method still exhibits
some problems, such as high cost and error rate, which must
be addressed (Mikheyev and Tin, 2014). In summary, the use
of type-II markers to conduct landscape genomic studies can

Frontiers in Plant Science | www.frontiersin.org 2 December 2017 | Volume 8 | Article 2136

http://www.isiknowledge.com/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-02136 December 10, 2017 Time: 16:5 # 3

Li et al. Ten Years of Landscape Genomics

facilitate the indirect validation of loci potentially responsible for
adaptation.

MAJOR RESEARCH CATEGORIES IN
LANDSCAPE GENOMICS

There are a wide variety of questions in ecology and evolution
that can be addressed using a landscape genomic approach.
We group these questions under two major research categories:
(1) quantifying influence of spatial environmental variables on
genomic divergence; (2) uncovering the environmental factors
that shape adaptive genetic variation and the genetic basis of
adaptive change.

QUANTIFYING INFLUENCE OF SPATIAL
ENVIRONMENTAL VARIABLES ON
GENOMIC DIVERGENCE

Isolation by distance (IBD) describes the local accumulation
of genetic differences when dispersal between populations is
geographically restricted (Slatkin, 1993). For IBD, gene flow path
is assumed to be in a linear geographic distance. However, in
natural landscapes, the paths of gene flow between populations
are often non-linear and complex. In fact, populations that have
identical habitats or small distances may also diverge when
intervening landscape features inhibit dispersal between them
(Isolation by Resistance, IBR; McRae, 2006; Ruiz-Gonzalez et al.,
2015). Nevertheless, local genetic adaptation can also reduce gene
flow among natural populations. This adaptive reduction in the
effective rate of gene flow can contribute to a pattern of “isolation
by environment” (IBE; Wang and Summers, 2010; Wang and
Bradburd, 2014; Mosca et al., 2016). A strong pattern of IBE
indicates that divergent selection is maintaining population
differentiation in the face of possible dispersal (Schluter, 1998;
Kawecki and Ebert, 2004). IBE can also arise from divergent
habitat choice or other forms of biased dispersal (Armsworth
and Roughgarden, 2008; Bolnick and Otto, 2013). Therefore,
these different processes affect the spatial distribution of genetic
variation and landscape genetic structure. Recently developed
analytical methods can partition the often confounded patterns
of IBD, IBE, and IBR when explaining genetic divergence across
a landscape (Supplementary Table S1). The basic strategy is to
use IBD as a null hypothesis against which IBE (or IBR) can be
tested. Partial Mantel tests have been widely used in landscape
genomics studies to evaluate the relative influence of different
ecological and evolutionary factors on genetic differentiation.
However, such tests have low statistical power and are prone to
false positives (Guillot and Rousset, 2013). Recently, structural
equation modelling (SEM) (Wang et al., 2013) and multiple
matrix regression with randomization (MMRR) (Wang, 2013)
have been used to quantitatively compare how much genetic
divergence depends on IBD versus IBE (Zhang et al., 2016). In
addition, the BEDASSLE package (Bradburd et al., 2013) is also
used to estimate the relative contributions of IBD and IBE to
genetic differentiation This Bayesian method models the allele

frequencies in a set of populations at a set of unlinked loci as
spatially correlated Gaussian processes, in which the covariance
structure is a decreasing function of both geographic and
ecological distance (Bradburd et al., 2013). In landscape genomic
studies, multivariate statistical models are more appropriate
when multidimensional niches are analyzed to identify ecological
drivers of population genetic variation (Orsini et al., 2013).
Redundancy analysis (RDA) (Legendre and Legendre, 2012)
and canonical correlation analysis (CCA) (Parisod and Christin,
2008; Hecht et al., 2015) are commonly used to estimate the
relative contribution of spatial and environmental variables. The
CCA method can control for demographic effects if spatial
autocorrelation is included in the model design, while RDA and
partial RDA analyses are alternative and robust approaches that
can control for spatial effects while analyzing others (Sork et al.,
2013).

UNCOVERING THE ENVIRONMENTAL
FACTORS THAT SHAPE ADAPTIVE
GENETIC VARIATION AND THE GENETIC
BASIS OF ADAPTIVE CHANGE

Polymorphic sites across species genomes will establish their
adaptive differentiation to acclimatize to the heterogeneous
environment. Landscape genomics attempts to detect these
adaptive loci under selection and reveal potential environmental
drivers of selection by using correlative methods. The detection
of loci responsible for adaptation usually involves two steps.
One is to detect the outlier loci; and the other is to associate
the outlier loci with environment variables, referred to as EAA.
The commonly used methods for detecting the outlier loci
are ARLEQUIN (Excoffier et al., 2009), BAYESCAN (Foll and
Gaggiotti, 2008), FLK (Bonhomme et al., 2010), and spatial
ancestry analysis (SPA) (Yang et al., 2012). ARLEQUIN is applied
to simulate a null distribution of FST values under a hierarchical
island model, which is insensitive to the hierarchically subdivided
population samples or those with a recently shared history.
BAYESCAN is an FST-based model to identify outlier loci
according to Bayesian posterior probability. FLK deals with
variation in effective population size and historical branching
of populations by incorporating a population kinship matrix
into the Lewontin and Krakauer (LK) statistic (Lewontin and
Krakauer, 1973). SPA is a probabilistic model for the spatial
structure of genetic variation that is used to identify loci showing
extreme patterns of spatial differentiation. Compared with the
two FST-based approaches, SPA is particularly sensitive to strong
spatial patterns in allele frequency and works at the individual
level rather than at the population level. These methods are
usually combined to distinguish the selected loci from the neutral
loci and thus effectively reduce the false-positive rate (Wang
et al., 2016). EAA, followed by outlier analysis, will be conducted
to test whether these outlier loci are associated with particular
environmental factors and under adaptive evolution.

The methods for conducting EAA can be divided into
five broadly defined categories, including categorical tests,
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logistic regressions, matrix correlations, general linear models,
and mixed effects models (Rellstab et al., 2015). A first
category contains categorical tests, which compares allele
frequencies of individuals or populations from different types
of environments. The different types of environment are
introduced as categorical variables in parametric or non-
parametric tests. A second category comprises the statistical
methods of logistic regressions, such as SAM, Samβada. The
spatial analysis method (SAM; Joost et al., 2007) is the first
implementation of logistic regression in EAA. SAM can compute
multiple simultaneous univariate logistic regressions to test
for association between allelic frequencies and environmental
variables. However, this approach ignores neutral genetic
structure, possibly leading to high false-positive rates under
various demographic scenarios (De Mita et al., 2013; Frichot
et al., 2013). Nevertheless, an extended version of SAM,
Samβada (Joost et al., 2007) improves the performance of this
method by adding neutral genetic structure as an additional
factor (Rellstab et al., 2015). A third category contains a
linear approach, matrix correlations, in which the effects of
environmental factors and neutral genetic structure on allele
frequencies are simultaneously estimated. The most widely
used methods include a simple Mantel test and the partial
Mantel test (Mantel, 1967). However, variations of the (partial)
Mantel test may circumvent certain bias and autocorrelation
problems (Legendre, 1993; Legendre et al., 2002). A fourth
important category of statistical methods is general linear
models in which a response variable is modeled as a linear
function of some set of explanatory variables. The general
linear model framework can be extended to models with
multivariate response variables to account for the polygenic
architecture of adaptive traits (Rellstab et al., 2015). The
statistical methods include multiple linear regressions and
univariate general linear models (Carl and Kuhn, 2007; Eckert
et al., 2009) and canonical correlations and multivariate linear
regressions, e.g., CCA (ter Braak and Smilauer, 2002; Legendre
and Legendre, 2012) and RDA (Legendre and Legendre, 2012;
Hecht et al., 2015). A fifth important category of statistical
methods comprises the mixed effects models, such as BAYENV
(Coop et al., 2010), LFMMs (Frichot et al., 2013), TASSEL
(Bradbury et al., 2007), and EMMA (Kang et al., 2008).
These approaches provide a unified statistical framework for
controlling for the effects of neutral genetic structure (Rellstab
et al., 2015). For example, BAYENV, based on a Bayesian
generalized linear mixed model, is applied to test the correlation
between allelic frequencies and environmental variables after
correcting for population structure and size (Günther and Coop,
2013). Latent factor mixed models (LFMMs) implemented fast
algorithms using a hierarchical Bayesian mixed model based
on a variant of principal component analysis (PCA), in which
the residual population structure is introduced via unobserved
or latent factors (Frichot et al., 2013; Caye et al., 2016).
In addition, a linear mixed-model method implemented in
TASSEL (Bradbury et al., 2007) is used to identify candidate
loci responsible for adaptation according to the association
between the genotypes and climate variables (Yoder et al., 2014).
Based on linear mixed models, Kang et al. (2008) developed

an efficient mixed-model association (EMMA) method. As
previously mentioned, in order to reduce the false-positive
rate, it is desirable to combine more than two statistical
methods to identify the environment-associated loci (Yang et al.,
2017).

MAJOR CHALLENGES

Although great progress in landscape genomics has been achieved
in the past decade, two major challenges remain to be solved
in the future. One is the presence of false positives, which have
been a major problem in landscape genomics because of the
lack of validation for adaptive loci. Three solutions will help
solve this major challenge. First, robust detection methods must
be developed, and multiple detection methods must be used
to reduce the false-positive rates. Second, type-II markers that
contain DNA sequence information must be selected. Although
type-I markers may allow detecting loci potentially responsible
for adaptation, the gene function of these detected loci are
difficult to be validated. Type-II markers have DNA sequence
information, which can be indirectly validated through the
annotation of gene function. Third, a part of the loci responsible
for adaptation must be validated using gene transfer and
gene knockout technologies. Since most of previous landscape
genomics studies have focused on non-model species, the
detected loci responsible for adaptation do not have functional
verification. Thus, in future, more experiments are needed to
validate the function and adaptive generality of the detecting loci
responsible for adaptation. In addition, most previous studies
have showed great concern on gene differentiation rather than
phenotypic differentiation (Manthey and Moyle, 2015; Di Pierro
et al., 2016). The acquisition of adaptive phenotypic data has
been conducted in a few recent landscape genomic studies (De
Kort et al., 2014; Roschanski et al., 2016). Thus, obtaining
the phenotypic data through common garden experiments
and reciprocal transplant experiments should be considered in
future.

RECOMMENDATIONS FOR FUTURE
RESEARCH

The present landscape genomics mainly addresses two issues,
i.e., influence of spatial environmental variables on genomic
divergence and effects of the environmental factors on adaptive
genetic variation. The following concerns need to be addressed in
landscape genomic studies. (1) Previous studies have determined
the specific genes that undergo adaptive changes and the
environmental factors that contribute to these changes. However,
the specific reason why these particular genes or environmental
variables exhibit these functions remains unknown. (2) Type-II
markers can help us reveal these specific genes. However,
the metabolic pathways of the involved genes and the
adaptive phenotypes controlled by these genes need to be
identified. (3) Regional species in extreme environments usually
establish some convergent adaptive changes in their genes or

Frontiers in Plant Science | www.frontiersin.org 4 December 2017 | Volume 8 | Article 2136

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-02136 December 10, 2017 Time: 16:5 # 5

Li et al. Ten Years of Landscape Genomics

phenotypes. However, most regional species not living in extreme
environments have various adaptive differentiations. Thus, the
commonalities behind these diverse adaptive differentiations
must be determined. (4) The distribution range of species
and their ability to respond to climate change largely depend
on their landscape adaptability, which is usually determined
by the potential adaptive differentiation of the genome and
the gene dispersal ability of the species. Thus, a landscape
adaptation index must be established to measure the adaptability
of species. In summary, landscape genomics is an efficient
method to study the adaptive evolution of species. We hope
that this review of studies on landscape genomics over the
past 10 years will assist in promoting future research in this
field.
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