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Boron is an essential element for plants but is toxic in excess. Therefore, plants must
adapt to both limiting and excess boron conditions for normal growth. Boron transport in
plants is primarily based on three transport mechanisms across the plasma membrane:
passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export
of borate anion via transporters. Under boron -limiting conditions, boric acid channels
and borate exporters function in the uptake and translocation of boron to support growth
of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the
plasma membrane and polarized toward soil and stele, respectively, in various root
cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient
levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation
and proteolysis through endocytosis, respectively. In addition, borate exporters, such
as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and
cells under conditions of excess boron. Thus, plants actively regulate intracellular
localization and abundance of transport proteins to maintain boron homeostasis. In this
review, the physiological roles and regulatory mechanisms of intracellular localization
and abundance of boron transport proteins are discussed.

Keywords: boron, channel, transporter, NIP, BOR, endocytosis, polar localization

BORON NUTRITION AND TOXICITY IN PLANTS

Boron (B) is an essential micronutrient for plant growth. The available form of B for plants is boric
acid. Boric acid is a weak Lewis acid which forms borate anion: B(OH)3 +H2O � B(OH)4

−
+H+

(pKa = 9.24). Boric acid is relatively soluble and easily leached by rainfall. Therefore, B deficiency
often occurs in high rainfall areas such as Southeast Asia and Southeast China (Shorrocks, 1997).
In plant cells, borate covalently crosslinks two chains of pectin at rhamnogalacturonan II (RG-II)
regions to form a network in the cell wall (Funakawa and Miwa, 2015). Pectin is an abundant
polysaccharide in the primary cell wall and important in determining cell size and shape in higher
plants. The requirement for B in plant species correlates well with pectin content (Hu et al., 1997).
Functions of B in the cytoskeleton and membrane have also been suggested (Bassil et al., 2004;
Voxeur and Fry, 2014).
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Boron is toxic when present in excess. Excessive B
accumulation is mostly found in arid and semi-arid areas
such as South Australia and the Middle East (Nable et al.,
1997). B toxicity affects various aspects of cellular metabolism,
causes DNA damage, and frequently results in tissue necrosis
(Reid et al., 2004; Sakamoto et al., 2011). To avoid B deficiency
and toxicity, plants require B transport systems regulated by B
conditions.

BORON TRANSPORT MECHANISMS

Plant roots take up B as boric acid. Boric acid is a small,
uncharged molecule, and is relatively permeable across
biological membranes (Dordas and Brown, 2000; Stangoulis
et al., 2001). Therefore, the passive diffusion of boric acid is
considered to satisfy the plant demand for B when available
in sufficient quantities. However, when the availability of
boric acid is limited, plants use boric acid channels of the
major intrinsic protein (MIP) family and the BOR family of
borate exporters for transport of B (Takano et al., 2008). In
addition, plants use BOR borate exporters for B exclusion
from tissues under excess B conditions (Miwa et al., 2007;
Sutton et al., 2007; Schnurbusch et al., 2010). The BOR
family has a similar structure to anion transporters (Thurtle-
Schmidt and Stroud, 2016; Coudray et al., 2017). A human
BOR-like transporter, BTR1/SLC4A11, was characterized as
an electrogenic, voltage-regulated Na+-coupled B(OH)4

−

cotransporter by electrophysiology in human embryonic
kidney (HEK) 293 cells (Park et al., 2004). HvBot1, a BOR
homolog in barley that is involved in excess B tolerance, is
a uniporter with high affinity for borate anion in Xenopus
oocytes and patch-clamped proteoliposomes (Nagarajan et al.,
2016). Therefore, BOR homologs likely function as borate
anion uniporters driven by the negative membrane potential
of plant cells. B transport and homeostasis are primarily based
on three mechanisms of transport across the PM: passive
diffusion of boric acid across lipid bilayers, facilitated diffusion
of boric acid via boric acid channels, and export of borate,
which is formed from boric acid in the cytoplasm, via BOR
borate transporters (Figure 1A). Because of the low pH in the
apoplast, borate anion is rapidly converted to uncharged boric
acid, and thus BORs generate an uphill gradient of boric acid
(+ borate).

To support plant growth and development, B must be
preferentially transported to rapidly growing tissues when the
availability of B is limited. The phloem mobility of B is highly
divergent among plant species. In sugar alcohol-producing
species, borate can bind to sugar alcohols such as mannitol,
sorbitol, and dulcitol; the resulting complexes play a role in
efficient B remobilization from old to young leaves through
the phloem (Brown and Hu, 1996; Brown and Shelp, 1997;
Hu et al., 1997). In sucrose-producing species, bis-sucrose
borate and bis-N-acetyl-serine borate complexes were identified
in wheat and canola phloem exudates, which explained the
moderate phloem mobility of B (Stangoulis et al., 2010). The
presence of these complexes is thought to be required to

reduce leakage from phloem because boric acid can cross
the PM.

FUNCTIONS AND REGULATION OF
BORIC ACID CHANNELS

Boric acid channels are aquaporin homologs belonging to the
MIP family. Members of this family transport water and/or
small, uncharged molecules. In plants, various MIPs transport
boric acid and other small, uncharged molecules with different
substrate specificities (Reid, 2014; Bienert and Bienert, 2017).
MIPs are divided into PM intrinsic proteins (PIPs), nodulin
26-like intrinsic proteins (NIPs), small basic intrinsic proteins
(SIPs), tonoplast intrinsic proteins (TIPs), and X intrinsic
proteins (XIPs). NIPs are further divided into subclasses I, II,
and III, depending on the channel pore structure (Roberts and
Routray, 2017). The physiological role of NIP I proteins is not
well-understood. NIP III proteins have been characterized as
silicic acid channels (Ma and Yamaji, 2006). Here, we focus on
NIP IIs, which are physiologically significant in B transport.

Arabidopsis NIP5;1 was the first identified boric acid channel
(Takano et al., 2006). NIP5;1 loss-of-function mutants show
severe growth reduction accompanied with low B uptake into
roots under B-limiting conditions. NIP5;1 is expressed in the
rhizodermis (outermost cell layers in roots) in the root tip and
the endodermis in the mature root under B-limiting conditions
(Takano et al., 2010; Wang et al., 2017). In the PM of these
cell types, NIP5;1 shows polar localization toward the soil side.
The function of NIP5;1 in B uptake is required only under B
limitation (Takano et al., 2006) and the NIP5;1 mRNA level
is controlled in response to cellular B concentration by post-
transcriptional regulation (Tanaka et al., 2011). This regulation
depends on the minimum upstream open reading frame (uORF),
AUGUAA, in the 5′-untranslated region (5′ UTR) of the mRNA
(Tanaka et al., 2016). Higher B conditions enhance ribosome
stalling at the AUG-stop and lead to suppression of translation
and mRNA degradation. This downregulation is important for
acclimation of plants to excess B conditions (Tanaka et al.,
2011).

AtNIP6;1 is the closest paralog to AtNIP5;1. In NIP6;1
loss-of-function mutants, expansion of young leaves and apical
dominance are disturbed under B-limiting conditions (Tanaka
et al., 2008). NIP6;1 is expressed in phloem companion
cells, parenchyma cells, and sieve elements in nodes, and is
involved in B transfer from xylem to phloem (Tanaka et al.,
2008).

AtNIP7;1 was first reported as an arsenite transporter
(Isayenkov and Maathuis, 2008), and then characterized
as an anther-specific boric acid channel (Li et al., 2011).
NIP7;1 is expressed only in developing pollen microspores.
Interestingly, the B transport activity of NIP7;1 is lower
than that of NIP5;1 and NIP6;1 in Xenopus oocytes.
However, substitution of Tyr-81 in the transport pore to
Cys conferred on NIP7;1 higher B transport activity than
that of NIP5;1 or NIP6;1. The authors proposed that the pore
size of NIP7;1 might be controlled by pH, phosphorylation,
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FIGURE 1 | Models of Boron transport pathways. (A) Boron (B) transport across the plasma membrane. Boron transport and homeostasis are primarily based on
three transport mechanisms across the plasma membrane (PM). The first is simple diffusion of uncharged boric acid across lipid bilayers. The second is facilitated
diffusion of boric acid via NIP II boric acid channels, e.g., Arabidopsis NIP5;1. The third is export of borate via borate transporters, e.g., Arabidopsis BOR1 and
BOR2. The boric acid channels transport boric acid into cells under physiological conditions. In the cytoplasm, which has a relatively high pH, boric acid is
dissociated to borate anion and exported by borate uniporters driven by the electrochemical gradient. In the apoplast, which has a low pH, borate anion is rapidly
converted to boric acid, and thus BORs can generate an uphill gradient of boric acid. (B) Cell-type specific expression patterns of NIP5;1, BOR1, and BOR2 in
Arabidopsis roots under low-B conditions. NIP5;1 is expressed in lateral root cap and epidermis in the meristematic zone and epidermis and endodermis in the
maturation zone (Wang et al., 2017). BOR1 is expressed in epidermis in meristem and endodermis in both meristematic and maturation zones (Yoshinari et al.,
2016). BOR2 is expressed in lateral root cap and epidermis in both meristematic and maturation zones (Miwa et al., 2013). NIP5;1 is polarly localized in the soil-side
PM domain (Takano et al., 2010). BOR1 and BOR2 are polarly localized in the stele-side PM domain (Takano et al., 2010; Miwa et al., 2013). The PM of endodermal
cells is separated by the Casparian strip domain (Alassimone et al., 2010), and NIP5;1 and BOR1 are strictly separated to the two domains. Boric acid/borate is
transported transcellulary from the soil to the xylem. In mature portions of roots, BOR1 at the stele side of endodermal cells is responsible for keeping boric
acid/borate in the apoplasm in the stele.
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and protein–protein interactions (Li et al., 2011). The
physiological function of NIP7;1 in pollen remains to be
studied.

In rice and maize, the NIP II proteins OsNIP3;1 and ZmTLS1
function as boric acid channels and are required for B transport
under B-limiting conditions during vegetative and reproductive
growth (Durbak et al., 2014; Hanaoka et al., 2014; Leonard et al.,
2014). The conservation of NIP II in higher plants indicates
the importance of boric acid channels for plant growth under
B-limiting conditions.

PHYSIOLOGICAL FUNCTIONS OF BOR
BORATE EXPORTERS

The Arabidopsis thaliana genome harbors seven genes encoding
BOR-type borate transporters (BOR1–BOR7) (Takano et al.,
2002, 2008). In angiosperms, BORs can be divided into two
distinct evolutionary clades (clades I and II) (Wakuta et al., 2015).
Microarray analyses showed that BOR genes are expressed in
various tissues during all developmental stages in Arabidopsis
(Schmid et al., 2005; Winter et al., 2007).

AtBOR1, the prototype of clade I, was identified through
analysis of the bor1-1 (requires high boron 1-1) mutant (Noguchi
et al., 1997; Takano et al., 2002). The loss-of-function mutant
bor1-1 showed severely reduced shoot growth under B-limiting
conditions and sterility under normal-B conditions (Noguchi
et al., 1997; Takano et al., 2001). These defects were associated
with low-B accumulation in shoot tissues and were recovered
by higher-B supply. In Arabidopsis thaliana seedlings, BOR1
is expressed in roots, hypocotyls, and cotyledons (Takano
et al., 2010; Yoshinari et al., 2016). BOR1 is ubiquitously
expressed in root tip cells and shows relatively strong expression
in epidermal, endodermal, and provascular cells. In mature
roots and hypocotyls, BOR1 is preferentially expressed in
endodermal cells. In cotyledons, BOR1 is expressed in epidermal
cells. Remarkably, BOR1 localizes to the PM in a polar
manner toward the stele/vasculature in these cell types (Takano
et al., 2010; Yoshinari et al., 2016; Figure 1B). This polar
localization of BOR1 is likely important for efficient transport
of B from the root surface to the xylem, in collaboration
with NIP5;1. Although localization in the shoot is unclear,
AtBOR1 is apparently involved in preferential B translocation
at nodes and/or basal leaves in collaboration with NIP6;1
(Takano et al., 2001; Tanaka et al., 2008). AtBOR1 expressed
in the epidermal cell layer of the cotyledon (Yoshinari et al.,
2016) may be involved in B uptake at the surface of the
cotyledon.

OsBOR1, ZmRTE, and BnaC4.BOR1;1c have been
characterized as B transporters, and are required for B transport
under B-limiting conditions in planta and are thus considered to
be AtBOR1 orthologs in rice, maize, and rapeseed, respectively
(Nakagawa et al., 2007; Chatterjee et al., 2014; Zhang et al.,
2017). The expression and B export activity of BOR1 homologs
in grapevine, citrus, and wheat have also been reported (Pérez-
Castro et al., 2012; Cañon et al., 2013; Leaungthitikanchana et al.,
2013).

AtBOR2, which has 90% identity to AtBOR1, is distributed in
the PM with stele-side polarity, similar to AtBOR1 (Miwa et al.,
2013). In contrast to AtBOR1, AtBOR2 is preferentially expressed
in the root cap and epidermal cells rather than the inner cell layers
of the root tip (Miwa et al., 2013). In the roots of the AtBOR2-
knockout mutants bor2-1 and bor2-2,B–RG-II cross-linking rates
and cell elongation were significantly reduced compared to the
AtBOR1-knockout mutant bor1-3 under B-limiting conditions
(Miwa et al., 2013). Therefore, BOR2 promotes B–RG-II cross-
linking in root cells to support root growth. Pectin chain is
assumed to be synthesized in the Golgi and Golgi-derived
vesicles (Harholt et al., 2010). An analysis of RG-II in Rosa
cells cultured in B-free medium showed that re-addition of
boric acid resulted in gradual appearance of the RG-II dimer
without detectable loss of existing monomers in the cell wall
(Chormova et al., 2014). Consistently, RG-II monomer in the
cell wall was not cross-linked when de novo biosynthesis of
polysaccharides was pharmacologically inhibited. These results
suggest that only newly synthesized RG-II was cross-linked by
borate during or just after secretion from the Golgi to the cell
wall. Interestingly, BOR2–GFP was not stably localized in the PM
but showed cycling between the endomembrane compartments
and the PM (Miwa et al., 2013). It is possible that BOR2 functions
to transport B into secretory vesicles to promote cross-linking
of RG-II.

AtBOR4 belongs to clade II and is involved in excess B
tolerance. BOR4 is expressed in the epidermal and columella
cells in the root tip and endodermal cells in the mature portions
of the root (Miwa et al., 2007, 2014). Excess B conditions
enhance accumulation of BOR4 mRNA (Miwa et al., 2014). This
upregulation was shown to be dependent on a heme oxygenase
1 (HO1) via its catalytic by-products (Lv et al., 2017). Unlike
BOR1/2, BOR4 shows weak polar localization toward the soil
side in root epidermal cells (Miwa et al., 2007; Łangowski et al.,
2010). Under excess B conditions, BOR4 T-DNA insertion lines
accumulated more B in the shoots and roots and showed a greater
reduction in growth than wild-type plants (Miwa et al., 2014; Lv
et al., 2017). Therefore, BOR4 functions primarily in B exclusion
from tissues. In barley and wheat, HvBot1 and its homologs are
considered orthologs of AtBOR4 and have been identified as key
factors for excess B tolerance (Sutton et al., 2007; Pallota et al.,
2014; Reid, 2014).

In rice, OsBOR4, which belongs to clade II, is specifically
expressed in pre-anthesis anthers and mature pollen (Tanaka
et al., 2013). Disruption of OsBOR4 disturbed pollen germination
and elongation, suggesting that OsBOR4 maintains intracellular
B levels in pollen. Microarray data indicate that AtBOR4 mRNA
accumulation level is highest in the stamen (Schmid et al.,
2005). AtBOR4 may function in B homeostasis for fertilization
in addition to the exclusion of B for excess B tolerance.

Genes encoding BORs have been identified in bryophytes,
non-vascular plants, and lycophytes, the most primitive extant
vascular plants (Wakuta et al., 2015). BORs in the bryophyte
Physcomitrella patens were classified differently from clades I
and II, while BORs in the lycophyte Selaginella moellendorffii
were classified as clades I and II. The B transport function of
BORs in the bryophyte Physcomitrella patens is unclear. However,
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FIGURE 2 | A model of post-Golgi trafficking of BOR1. BOR1 is internalized through clathrin and DRP1-dependent endocytosis and transported to the trans-Golgi
network/early endosome (TGN/EE). Ubiquitinated BOR1 is sorted to intraluminal vesicles of multi-vesicular bodies (MVBs) by the endosomal sorting complexes
required for transport (ESCRT) machinery. MVBs containing BOR1 fuse with the vacuole, releasing intraluminal vesicles. In the vacuole, BOR1 is immediately
degraded by proteases. Unubiquitinated BOR1 is recycled to the PM from the TGN/EE via a clathrin-dependent or -independent route. BOR1 has endocytic motifs;
three putative tyrosine motifs and a dileucine motif in the cytosolic loop region (Takano et al., 2010; Wakuta et al., 2015). These endocytic motifs bind to adaptor
protein complexes involved in clathrin-dependent vesicle formation at the PM and TGN/EE (Bonifacino and Traub, 2003). BOR1 variants lacking either motif did not
show polar localization or B-induced vacuolar transport, although these variants were normally endocytosed under low B conditions (Takano et al., 2010; Wakuta
et al., 2015). These results suggest that the endocytic motifs of BOR1, rather than endocytosis are involved in polar recycling and vacuolar sorting of B from the TGN.

SmBOR1 (clade I) and SmBOR3 and 4 (clade II) function as B
exporters when expressed in yeast cells (Wakuta et al., 2015).
Although the physiological significance of these genes has not
been elucidated, the common ancestor of vascular plants had
likely already acquired two types of BOR for limited and excess
B tolerance.

POLAR LOCALIZATION OF AtNIP5;1

In root cells of Arabidopsis, NIP5;1 and BOR1 show polar
localization toward the soil and stele sides, respectively (Takano
et al., 2010, 2017; Yoshinari et al., 2016; Wang et al., 2017;
Figure 1B). Increasing numbers of nutrient transporters and
aquaporins show polar localization in plant cells (Barberon
and Geldner, 2014; Naramoto, 2017; Takano et al., 2017).
Recently, a structure-localization analysis of NIP5;1 identified
that a conserved ThrProGly (TPG) repeat in the N-terminal
cytosolic region is required for polar localization (Wang et al.,
2017). Phosphorylation of the Thr residues in the TPG repeat
induces clathrin-mediated endocytosis and mediates the strong
polar localization. These results indicate that continuous polar
cycling between the PM and endosomal compartments is
required for maintenance of polar localization against the lateral
diffusion in the PM. Use of the NIP5;1 weak polar variant with
Thr to Ala substitutions indicated that the polar localization
significantly contributes to B transport from the soil to the
shoots. This demonstrates the physiological importance of polar
localization in directional nutrient transport. We assume that
the uphill gradient of boric acid (+ borate anion) from the
cytosol to the apoplast generated by BOR1 (Figure 1A) can be

canceled if NIP5;1 transports boric acid at the stele side of the
cells.

POLAR LOCALIZATION AND VACUOLAR
TRAFFICKING OF AtBOR1

Under B-limiting conditions, AtBOR1 and AtBOR2 are localized
to the PM in a polar manner toward the stele, but are
rapidly transported to the vacuole for degradation upon B
supply to sufficient levels (Takano et al., 2005; Yoshinari et al.,
2012; Miwa et al., 2013). In contrast, AtBOR4 shows weak
polar localization toward the soil side and stably accumulates
under excess B conditions (Miwa et al., 2007). Downregulation
of AtBOR1 and AtBOR2 is considered to be important to
prevent over accumulation of B in shoots. Upon sufficient B
supply, BOR1 is ubiquitinated at Lys-590 in the C-terminal
tail domain (Kasai et al., 2011). Ubiquitinated BOR1 is
transferred to the multi-vesicular body/late endosome (MVB/LE)
and then to the vacuole for degradation (Viotti et al., 2010;
Figure 2).

To understand BOR1 trafficking, single molecules of BOR1
in the PM were observed by variable-angle epifluorescence
microscopy (VAEM; Yoshinari et al., 2016). With this technique,
BOR1-GFP was visualized as particles in the PM and exhibited
significant lateral movement in restricted areas. This is consistent
with the relatively slow recovery of BOR1-GFP and other
membrane proteins in the PM after photobleaching (FRAP
analysis; Takano et al., 2010; Luu et al., 2012; Wang et al., 2017).
The limited diffusion may contribute to maintenance of the
polar localization of membrane proteins by vesicle trafficking.
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A portion of BOR1–GFP particles co-localized with DYNAMIN-
RELATED PROTEIN 1A (DRP1A), which is involved in scission
of clathrin-coated vesicles in the PM. They showed colocalization
for 10–20 s, and then disappeared from the cell surface.
Furthermore, a dominant-negative variant of DRP1A blocked
endocytosis of BOR1 and disturbed its polar localization and
vacuolar trafficking.

Polar localization toward stele and B-induced degradation
are apparently important for the physiological roles of BOR1
under B-limiting conditions. The successful generation of a low
B tolerant transgenic Arabidopsis by a pro35S:AtBOR1 construct
(Miwa et al., 2007) is considered to be dependent on BOR1
localization and regulation in various cell types. Interestingly,
ubiquitous expression of a weakly polar and stabilized variant
of AtBOR1 by introduction of a proUBQ10:BOR1(K590A)-GFP-
HPT construct conferred excess B tolerance on Arabidopsis
(Wakuta et al., 2016). This is similar to the case of overexpression
of AtBOR4 in Arabidopsis (Miwa et al., 2007; Miwa and Fujiwara,
2011) and suggests that both evolutionary and artificial changes
in the intracellular localization of transporters have differential
physiological roles.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Characterization of members of the BOR and NIP II families
has greatly advanced our understanding of B transport
systems. To proceed, precise localization of transport proteins
and measurement of B concentrations at the cellular level
are required. This would be facilitated by laser ablation-
inductivity coupled plasma-mass spectrometry (Iwai et al., 2006;

Shimotohno et al., 2015) and development of genetically encoded
or chemical sensors for boric acid. Our understanding of the
regulatory mechanisms of B transport has also advanced. In
particular, B-induced endocytosis and degradation of AtBOR1
(Takano et al., 2005, 2010; Kasai et al., 2011; Yoshinari et al.,
2016) and B-induced ribosome stalling and mRNA degradation
of AtNIP5;1 (Tanaka et al., 2011, 2016) are pioneering examples
in plant nutrition. The next questions are the mechanisms
underlying the B sensing that induces these responses. Using
B transport proteins, limited and excess B tolerant transgenic
plants have been generated (Miwa et al., 2006, 2007; Kato
et al., 2009; Pang et al., 2010; Takada et al., 2014; Uraguchi
et al., 2014; Mosa et al., 2016; Wakuta et al., 2016). The
next step is to improve and apply these techniques to crop
plants to enhance agriculture in areas of B deficiency and
accumulation.
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