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The efficiency of a hybrid systems method which combined artificial neural networks
(ANNs) as a modeling tool and genetic algorithms (GAs) as an optimizing method for
input variables used in ANN modeling was assessed. Hence, as a new technique, it was
applied for the prediction and optimization of the plant hormones concentrations and
combinations for in vitro proliferation of Garnem (G × N15) rootstock as a case study.
Optimizing hormones combination was surveyed by modeling the effects of various
concentrations of cytokinin–auxin, i.e., BAP, KIN, TDZ, IBA, and NAA combinations
(inputs) on four growth parameters (outputs), i.e., micro-shoots number per explant,
length of micro-shoots, developed callus weight (CW) and the quality index (QI) of
plantlets. Calculation of statistical values such as R2 (coefficient of determination) related
to the accuracy of ANN-GA models showed a considerably higher prediction accuracy
for ANN models, i.e., micro-shoots number: R2

= 0.81, length of micro-shoots:
R2
= 0.87, CW: R2

= 0.88, QI: R2
= 0.87. According to the results, among the input

variables, BAP (19.3), KIN (9.64), and IBA (2.63) showed the highest values of variable
sensitivity ratio for proliferation rate. The GA showed that media containing 1.02 mg/l
BAP in combination with 0.098 mg/l IBA could lead to the optimal proliferation rate
(10.53) for G × N15 rootstock. Another objective of the present study was to compare
the performance of predicted and optimized cytokinin–auxin combination with the best
optimized obtained concentrations of our other experiments. Considering three growth
parameters (length of micro-shoots, micro-shoots number, and proliferation rate), the
last treatment was found to be superior to the rest of treatments for G × N15 rootstock
in vitro multiplication. Very little difference between the ANN predicted and experimental
data confirmed high capability of ANN-GA method in predicting new optimized protocols
for plant in vitro propagation.

Keywords: artificial neural network (ANN), genetic algorithm (GA), G × N15 rootstock, cytokinin–auxin
combination, proliferation, Prunus micro-propagation
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INTRODUCTION

Artificial neural network and GA are among the most powerful
calculation methods. ANN has developed as a very powerful and
useful technique to model complicated non-linear systems (Woll
and Cooper, 1997; Cook et al., 2000; Sadeghi, 2000; Chen and
Ramaswamy, 2002; Chow et al., 2002; Arab et al., 2016; Jamshidi
et al., 2016). However, finding the optimized amount of inputs
combination in the case that we have different types and levels
of each input to achieve the highest output is a problem. The
GA optimization method can be applied as a famous technique
to solve this problem (Cook et al., 2000; Chow et al., 2002).

So, a combined ANN-GA procedure was applied here to
model and optimize the molding process of the in vitro plant
hormones combination for the G × N15 Prunus rootstock.
G × N15 is resistant to iron chlorosis (De la Guardia et al.,
1995), drought, salinity and root-knot nematode (Meloidogyne)
and suitable for in vitro propagation (Pinochet et al., 1999).

The effectiveness of ANNs has been pointed out in modeling
and optimizing plant in vitro culture procedures (Gago et al.,
2010b). ANNs have been successfully applied for modeling and
optimizing estimation processes of the most appropriate in vitro
culture medium for kiwifruit in which two variables of sucrose
and light were modeled on kiwifruit shoot proliferation (Gago
et al., 2014). As well, Gago et al. (2010a) modeled input variables
of grape cultivar, time of exposure and concentration of IBA,
on the in vitro rooting and acclimatization. Input variables of
apricot varieties, different concentrations of BAP, K+, NO−3 ,
NH+4 , Ca2+, Cl−, Mg2+, PO2−

4 , and SO2−
4 were modeled on

output data of NS, LS and yield (NS × LS) and it was detected
that NH+4 is the main factor in shoot growth (Gago et al.,
2011). In order to evaluate the benefits of ANN compared
to classical statistical methods, an experiment was performed
to find the effects of light intensity and sucrose amount on
shoot number and length in proliferation stage (Gago et al.,
2014).

In our similar works (Arab et al., 2016; Jamshidi et al., 2016)
using ANN-GA hybrid method to predict and optimize the
nutrients of the proliferation media for G × N15, Pyrodwarf
and OHF rootstocks and comparing the mentioned method
with regression modeling, the ANN-GA hybrid modeling was
recognized as a high efficient and reliable method.

The type of hormones to use in the in vitro medium is
important to achieve an efficient micropropagation process
(Werbrouck, 2010; Amoo et al., 2011). BAP is crucial in plant
tissue culture process as it has been used along with suitable
auxins in micro-propagation of system (Ruzic and Vujovic,
2008). Furthermore, in vitro shooting is directly reliant on the
axillary buds initiation and activity that are under the control of
cytokinin hormones (Dobránszki and Teixeira da Silva, 2010).
BAP, kinetin, zeatin, and thidiazuron have been exploited in
combination with IBA and NAA for in vitro proliferation of

Abbreviations: ANN, artificial neural network; BAP, 6- benzyle amino purine;
CW, callus weight; GA, genetic algorithm; IAA, indole – 3- acetic acid; IBA,
indole – 3- butyric acid; KIN, kinetin; LS, length of shoot; MS, Murashige and
Skoog (1962); NAA, 1- naphthalene acetic acid; NS, number of shoot; QI, quality
index; TDZ, thidiazuron; VSR, variable sensitivity ratio.

Prunus rootstocks (Mante et al., 1989; Dobránszki and Teixeira
da Silva, 2010; Arab et al., 2014) among which BAP and TDZ have
been successfully used to induce regeneration of adventitious
shoots (Ainsley et al., 2001) and it has been considerably affected
by the auxin type and concentration. Accordingly, IBA and NAA
could improve adventitious bud development in almond (Ainsley
et al., 2001).

In the present study, we tried to optimize the in vitro
medium hormones by using non-linear ANN-GA modeling
and optimization procedure. We linked the model to GA to
find the highest efficiency and the optimum concentrations of
components which are critical for significant in vitro growth
process. The objective of the this study was to model and optimize
the appropriate in vitro hormone combination for proliferation of
G×N15 rootstock and to assess the performance of the predicted
and optimized cytokinin–auxin combination compared to the
best found optimized concentrations in our other experiments.

MATERIALS AND METHODS

ANN-GA modeling and optimization procedure was used to
construct optimized models by using the combination of different
concentrations and types hormones as inputs and different
measured in vitro growth parameters as outputs. The experiment
details and description of the used technique to achieve the
optimized inputs combinations are as follows.

CASE STUDY AND DATA

Sampling was carried out during April, May, June, and July from
15 to 20 cm new emerged shoots of G × N15 grown greenhouse.
After transferring to the lab, shoots were cut to 1.5–3 cm single
nodes. Then, explants were place 15–20 min into the solution
of liquid detergent and water and were washed for 30–40 min
under running tap water. Afterward, explants were disinfected
in 0.2% benomyl and were rinsed with sterile distilled water.
Subsequently, they were placed in 70% ethanol and were rinsed
at least two times with sterile distilled water. And then explants
were submerged for 4 min in mercury chloride (0.01%), with
continuous movement. Then, the explants were immersed in
sterile distillated water containing citric acid (700 mg/l) twice,
each time 3 min and finally they were rinsed at least two
times using sterile distilled water, before transfer to 200 ml
jam jars containing 15 mL of culture medium supplemented
with 0.25 mg/l BAP, 0.05 mg/l IBA. Originated shoots were
sub-cultured on the same MS medium but supplemented with
1 mg/l BAP.

Murashige and Skoog (1962) (MS) basal medium having
30 g/l sucrose and 7 g/l agar with the pH of 5.8 was used
in all experiments. Cultures of all experiments were incubated
in a 16/8-h (light/dark) photoperiod at the light intensity of
80 µmol m−2 s−1 provided by white fluorescent tubes in a
phytotron with temperature of 24 ± 2◦C for 4 weeks. Three
times sub-cultured proliferated explants were inoculated on free
hormone MS medium for 2 weeks and forth subculture explants
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were used for assessing the optimized hormone combination
in proliferation stage. Features like NS, LS, CW, and QI were
evaluated.

EXPERIMENTAL DESIGN

All experiments were performed as completely randomized
design (CRD) with factorial arrangement and 5 (third, fourth,
and fifth experiments) to 6 (first and second experiments)
replications each containing four explants.

In order to assess the combined effects of cytokinins (TDZ,
KIN, and BAP) and auxins (IBA and NAA) on in vitro
proliferation of G × N15 vegetative rootstock, five experiments
were performed as follows: (Obtained data were used for
modeling and optimization by ANN-GA.)

(1) BAP and IBA combination effect on proliferation rate (PR)
(number of regenerated shoots per explant) was evaluated
as 0, 0.5, 1, 1.5, and 2 mg/l BAP along with 0, 0.05, 0.1, and
0.15 mg/l IBA (Table 1).

(2) BAP and NAA combination effect on PR was evaluated as
0, 0.5, 1, 1.5, and 2 mg/l BAP and 0, 0.05, 0.1, and 0.15 mg/l
NAA (Table 2).

(3) KIN and IBA combination effect on PR was evaluated as 0,
0.5, 1, 1.5, and 2 mg/l KIN and 0.05, 0.1, and 0.15 mg/l IBA
(Table 3).

(4) KIN and NAA combination effect on PR was evaluated as 0,
0.5, 1, 1.5, and 2 mg/l KIN and 0.05, 0.1, and 0.15 mg/l NAA
(Table 4).

(5) TDZ and IBA combination effect on PR was evaluated as
0.5, 1, 1.5, and 2 mg/l TDZ and 0, 0.05, 0.1, and 0.15 mg/l
IBA (Table 5).

MODELING AND OPTIMIZATION OF
ANN-GA HYBRID SYSTEM

ANN Modeling
Artificial neural network is an appropriate mathematical
structure including an inter-connected set of processing elements
or nodes. The architecture of a simple ANN comprises three
layers including input, output, and hidden layers. It has been
shown in many literatures that a single hidden layer is enough
for ANN for computing complex non-linear relationships.
A mathematical function is used for processing the information
of the input layer to transfer to the hidden layer. The input
data are added using a propagation function a single response is
generated as the out value in output layer. The output value will
be compared to the experimental value and the error made by the
ANN can be estimated (Suárez et al., 2015).

In this study, a common network algorithm comprising
the feed forward back-propagation (3-layer back-propagation
network) was used to make an ANN model. Transfer functions
of hyperbolic tangent sigmoid (tansig) and linear (purelin) were
applied for hidden and output layers, respectively. A Levenberg-
Marquardt algorithm for back-propagation with a gradient

descent and momentum weight and bias learning function
was used for training of the network (Demuth et al., 2006).
Performance function of mean square error (MSE) with 0.01
level was used and training was terminated after 800 epochs or
iterations of the network. Units in the input layer of the ANN
model included five input variables of IBA, NAA, KIN, BAP,
and TDZ with different levels (Tables 1–5). Four models were
constructed separately for NS, LS, CW, and QI. 279 and 186
data lines were used to train and test the network. The data
sets of input and output were normalized (between −1 and 1)
simplifying the problem for the network, in order to obtain
fast conjunction minimum MSE, and to make sure that the
recreation of targets (output data) fall into the new feed forward
network specific range can be attained (Demuth et al., 2006;
Gulati et al., 2010; Ahmadi and Golian, 2011). R2 (coefficient of
determination) and RMSE (root mean square error), were used
to evaluate the fitness of the ANN-model (Ahmadi et al., 2007) as
follows:

R2
= (

n(
∑

xy)− (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

)2 (1)

RMSE =

√√√√(

n∑
i=1

(M−O)2)/n (2)

Genetic Algorithm Optimization
The significance of GAs as strong tools for optimizing has been
highly assessed with different uses (Wang, 2001). It is a kind
of parallel iterative optimization algorithm with “generation-
evaluation” and given learning capability, that repeats the steps
of evaluation, selection, mutation, and crossover to satisfy the
stopping condition. The individual or member in a population
is referred by a chromosome comprising genes. The criterion
value is associated to the individual for optimization. Then
the populations of individuals are generated iteratively and the
process of selection, crossover, and mutation are performed on it.
The selection is done to promote the most appropriate members
of the population for the determined criterion. Crossover and
mutation ensure the probing of the state area (Idrissi et al., 2016).

To determine the optimum amounts and combinations of
input variables of IBA, NAA, KIN, BAP, and TDZ to achieve
the best values of outputs NS, LS, CW and QI, the trained ANN
models were processed as the fitness function by GA.

In order to attain the best fitness, the selection method of
roulette wheel was used to select elite populations for crossover.
50 initial populations, 500 generations number, 0.1 mutation rate,
and 0.85 crossover rate were set (Haupt and Haupt, 1998; Demuth
et al., 2006). To achieve the generations number, generational
practice was performed repeatedly (Figure 1). The search for the
optimal solutions was restricted between the input variable limits
through performing GA, determined in the CRD.

Ranking the Relative Importance of Input
Variables
Sensitivity analysis process was implemented on the obtained
ANN model to recognize the importance of input variables in
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TABLE 1 | Interaction of BAP and IBA different concentrations on in vitro proliferation of G × N15.

Media BAP (mg/l) IBA (mg/l) NS LS (cm) CW (g) QI

1 0 0 1.33 ± 0.21 2.53 ± 0.06 0.01 ± 0.01 4.83 ± 0.11

2 0 0.05 1.33 ± 0.21 2.12 ± 0.05 0.02 ± 0.008 4.83 ± 0.11

3 0 0.1 1.67 ± 0.16 2.18 ± 0.06 0.07 ± 0.02 4.92 ± 0.08

4 0 0.15 1.67 ± 0.16 1.98 ± 0.03 0.04 ± 0.01 5.00 ± 0.00

5 0.5 0 3.17 ± 0.66 1.87 ± 0.03 0.09 ± 0.05 4.58 ± 0.15

6 0.5 0.05 3.67 ± 0.71 2.32 ± 0.03 0.10 ± 0.01 4.33 ± 0.11

7 0.5 0.1 3.33 ± 0.56 1.86 ± 0.04 0.14 ± 0.03 4.17 ± 0.11

8 0.5 0.15 3.17 ± 0.48 2.38 ± 0.05 0.19 ± 0.02 4.17 ± 0.11

9 1 0 8.33 ± 0.21 2.82 ± 0.03 0.16 ± 0.02 3.83 ± 0.11

10 1 0.05 9.00 ± 0.26 3.03 ± 0.04 0.18 ± 0.01 3.66 ± 0.11

11 1 0.1 10.67 ± 0.21 2.63 ± 0.02 0.22 ± 0.03 3.41 ± 0.15

12 1 0.15 6.67 ± 0.33 2.18 ± 0.07 0.27 ± 0.04 3.25 ± 0.11

13 1.5 0 3.67 ± 0.42 1.92 ± 0.03 0.18 ± 0.04 3.08 ± 0.15

14 1.5 0.05 3.33 ± 0.33 2.12 ± 0.05 0.21 ± 0.05 2.83 ± 0.11

15 1.5 0.1 3.83 ± 0.70 2.45 ± 0.03 0.18 ± 0.03 2.75 ± 0.21

16 1.5 0.15 2.67 ± 0.33 2.04 ± 0.04 0.27 ± 0.04 2.58 ± 0.15

17 2 0 3.00 ± 0.77 1.90 ± 0.03 0.36 ± 0.09 2.17 ± 0.17

18 2 0.05 2.33 ± 0.33 1.75 ± 0.03 0.20 ± 0.02 1.83 ± 0.11

19 2 0.1 2.33 ± 0.49 2.68 ± 0.04 0.31 ± 0.04 1.42 ± 0.15

20 2 0.15 4.00 ± 1.13 1.75 ± 0.04 0.35 ± 0.04 1.08 ± 0.08

TABLE 2 | Interaction of BAP and NAA different concentrations on in vitro proliferation of G × N15.

Media BAP (mg/l) NAA (mg/l) NS LS (cm) CW (g) QI

1 0 0 1.16 ± 0.16 2.67 ± 0.04 0.00 ± 0.00 4.83 ± 0.11

2 0 0.05 1.83 ± 0.16 2.13 ± 0.05 0.01 ± 0.009 4.83 ± 0.11

3 0 0.1 1.17 ± 0.17 2.13 ± 0.06 0.02 ± 0.01 4.91 ± 0.08

4 0 0.15 1.17 ± 0.17 1.95 ± 0.02 0.06 ± 0.009 5.00 ± 0.00

5 0.5 0 2.83 ± 0.40 1.96 ± 0.04 0.07 ± 0.014 4.58 ± 0.15

6 0.5 0.05 4.17 ± 0.40 2.12 ± 0.05 0.09 ± 0.02 4.42 ± 0.08

7 0.5 0.1 4.00 ± 0.58 2.08 ± 0.11 0.11 ± 0.03 4.42 ± 0.11

8 0.5 0.15 3.33 ± 0.42 1.99 ± 0.08 0.16 ± 0.02 4.08 ± 0.15

9 1 0 6.67 ± 0.33 2.02 ± 0.03 0.15 ± 0.01 4.00 ± 0.00

10 1 0.05 7.50 ± 0.22 1.94 ± 0.05 0.19 ± 0.01 3.92 ± 0.08

11 1 0.1 8.50 ± 0.22 1.91 ± 0.04 0.23 ± 0.009 3.58 ± 0.15

12 1 0.15 6.00 ± 0.37 1.77 ± 0.04 0.26 ± 0.01 3.50 ± 0.00

13 1.5 0 3.83 ± 0.40 1.80 ± 0.03 0.21 ± 0.01 3.42 ± 0.08

14 1.5 0.05 3.67 ± 0.33 1.80 ± 0.04 0.25 ± 0.01 3.12 ± 0.11

15 1.5 0.1 3.33 ± 0.50 1.81 ± 0.05 0.28 ± 0.01 3.00 ± 0.13

16 1.5 0.15 2.83 ± 0.31 1.74 ± 0.04 0.32 ± 0.006 2.75 ± 0.11

17 2 0 2.50 ± 0.43 1.74 ± 0.03 0.24 ± 0.007 2.50 ± 0.13

18 2 0.05 2.33 ± 0.33 1.64 ± 0.02 0.27 ± 0.006 2.33 ± 0.11

19 2 0.1 2.00 ± 0.37 1.60 ± 0.03 0.33 ± 0.01 2.17 ± 0.11

20 2 0.15 2.67 ± 0.33 1.55 ± 0.02 0.35 ± 0.01 1.92 ± 0.08

the model. This analysis shows which IBA, NAA, BAP, KIN,
and TDZ concentrations and combinations are more important
than the other to achieve an optimal NS, SL, CW, and QI of
G × N15 rootstock explants. The sensitivity of NS, SL, CW,
and QI against the examining hormones was determined by the
criteria (Lou and Nakai, 2001; Ahmadi and Golian, 2010a,b)
including the variable sensitivity error (VSE) value which shows
the performance of the constructed ANN-GA model when that

variable is unavailable and VSR value which indicates the ratio
of VSE and ANN model error if all variables are available.
Higher VSR value indicates that the variable is more important.
Accordingly, on the basis of the found VSR value, the input
variables can be ranked according their importance (Ahmadi and
Golian, 2010a,b).

Mathematical code was written using Matlab (Matlab, 2010)
software for constructing and assessing the ANN-GA model. In
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fact, the established program is an altered source code previously
used by Ahmadi and Golian (2011) for an ANN algorithm.

Here, the best combined concentrations of cytokinin–auxin
hormones predicted and optimized by ANN-GA resulting in the
highest PR were tested.

RESULTS

(1) BAP+ IBA concentrations effect on proliferation
The highest PR (10.67) was detected in 1 mg/l BAP +
0.1 mg/l IBA. As well, the highest LS (3.03 cm) was found in
1 mg/l BAP+ 0.05 mg/l IBA. The control without hormone
treatment resulted in the lowest CW and QI (Table 1).

(2) BAP+ NAA concentrations effect on proliferation
The highest PR (8.5) was obtained in 1 mg/l BAP+ 0.1 mg/l
NAA. The control without hormone treatment resulted in
the highest LS (2.13 cm) (Table 2).
The results of these two experiments showed that BAP +
IBA hormonal combination is more efficient than BAP +

NAA for in vitro proliferation of G × N15. On the other
hand, it is evidence of the results that more concentration
of KIN than BAP is to be used.

(3) KIN+ IBA concentrations effect on proliferation
The highest PR (7) was attained in the 1.5 mg/l KIN +
0.05 mg/l IBA. The highest LS was found in control without
hormone treatment (Table 3).

(4) KIN+ NAA concentrations effect on proliferation
The highest PR (9.80) was detected in 1.5 mg/l KIN +
0.1 mg/l NAA (Table 4). KIN + NAA was found as a
more efficient hormonal combination than KIN + IBA for
in vitro proliferation of G× N15.

(5) TDZ+ IBA concentrations effect on proliferation
The highest PR (5) was acquired in 1.5 mg/l TDZ+ 0.1 mg/l
IBA (Table 5).

These results show that both the type and concentration
cytokinin–auxin combination play critical role in proliferation
and each plant species needs a special concentration of hormones
according its internal hormones content.

TABLE 3 | Interaction of KIN and IBA different concentrations on in vitro proliferation of G × N15.

Media KIN (mg/l) IBA (mg/l) NS LS (cm) CW (g) QI

1 0 0.05 1.00 ± 0.00 2.16 ± 0.09 0.02 ± 0.005 4.60 ± 0.19

2 0 0.1 1.00 ± 0.00 2.04 ± 0.06 0.03 ± 0.003 4.00 ± 0.22

3 0 0.15 1.00 ± 0.00 1.98 ± 0.12 0.02 ± 0.003 4.10 ± 0.19

4 0.5 0.05 2.20 ± 0.20 1.76 ± 0.07 0.12 ± 0.017 3.60 ± 0.19

5 0.5 0.1 3.00 ± 0.32 1.62 ± 0.06 0.18 ± 0.019 3.40 ± 0.19

6 0.5 0.15 3.60 ± 0.24 1.50 ± 0.05 0.31 ± 0.012 3.10 ± 0.19

7 1 0.05 5.60 ± 0.40 1.42 ± 0.04 0.35 ± 0.014 2.90 ± 0.19

8 1 0.1 5.00 ± 0.32 1.28 ± 0.04 0.39 ± 0.014 2.7 ± 0.12

9 1 0.15 5.60 ± 0.51 1.26 ± 0.05 0.44 ± 0.005 2.30 ± 0.20

10 1.5 0.05 7.00 ± 0.32 1.34 ± 0.05 0.45 ± 0.015 2.00 ± 0.22

11 1.5 0.1 4.80 ± 0.37 1.22 ± 0.04 0.47 ± 0.015 1.90 ± 0.19

12 1.5 0.15 3.40 ± 0.24 1.08 ± 0.05 0.50 ± 0.10 1.40 ± 0.19

13 2 0.05 3.00 ± 0.32 1.18 ± 0.06 0.50 ± 0.021 2.30 ± 0.70

14 2 0.1 2.40 ± 0.24 1.08 ± 0.04 0.51 ± 0.027 2.00 ± 0.76

15 2 0.15 1.80 ± 0.20 1.08 ± 0.04 0.63 ± 0.017 1.50 ± 0.63

TABLE 4 | Interaction of KIN and NAA different concentrations on in vitro proliferation of G × N15.

Media KIN (mg/l) NAA (mg/l) NS LS (cm) CW (g) QI

1 0 0.05 1.00 ± 0.00 2.06 ± 0.13 0.02 ± 0.02 5.00 ± 0.00

2 0 0.1 1.00 ± 0.00 2.14 ± 0.17 0.07 ± 0.12 4.70 ± 0.27

3 0 0.15 1.00 ± 0.00 2.46 ± 0.11 0.02 ± 0.01 4.60 ± 0.22

4 0.5 0.05 3.00 ± 0.71 1.90 ± 0.07 0.07 ± 0.03 4.30 ± 0.27

5 0.5 0.1 3.60 ± 1.14 2.28 ± 0.08 0.12 ± 0.05 4.00 ± 0.00

6 0.5 0.15 4.60 ± 1.14 2.38 ± 0.24 0.17 ± 0.06 4.00 ± 0.00

7 1 0.05 5.40 ± 0.89 1.92 ± 0.08 0.16 ± 0.02 3.60 ± 0.22

8 1 0.1 6.80 ± 0.84 1.74 ± 0.11 0.22 ± 0.03 3.50 ± 0.00

9 1 0.15 7.40 ± 0.89 1.66 ± 0.05 0.27 ± 0.03 3.20 ± 0.27

10 1.5 0.05 6.40 ± 0.55 1.76 ± 0.11 0.25 ± 0.03 3.00 ± 0.00

11 1.5 0.1 9.80 ± 0.84 1.52 ± 0.16 0.30 ± 0.04 2.7 ± 0.27

12 1.5 0.15 6.20 ± 0.84 1.64 ± 0.13 0.33 ± 0.03 2.50 ± 0.00

13 2 0.05 3.80 ± 0.45 1.52 ± 0.08 0.30 ± 0.05 2.20 ± 0.27

14 2 0.1 4.80 ± 1.09 1.28 ± 0.08 0.36 ± 0.03 2.00 ± 0.00

15 2 0.15 2.80 ± 0.45 1.32 ± 0.08 0.39 ± 0.02 1.30 ± 0.27
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TABLE 5 | Interaction of TDZ and IBA different concentrations on in vitro proliferation of G × N15.

Media TDZ (mg/l) IBA (mg/l) NS LS (cm) CW (g) QI

1 0 0.05 1.00 ± 0.00 1.96 ± 0.02 0.04 ± 0.007 3.50 ± 0.00

2 0 0.1 1.00 ± 0.00 1.82 ± 0.04 0.05 ± 0.003 3.30 ± 0.12

3 0 0.15 1.00 ± 0.00 1.66 ± 0.02 0.04 ± 0.004 3.10 ± 0.10

4 0.5 0.05 1.40 ± 0.24 1.76 ± 0.02 0.21 ± 0.012 2.90 ± 0.10

5 0.5 0.1 2.00 ± 0.00 1.60 ± 0.03 0.39 ± 0.013 2.60 ± 0.10

6 0.5 0.15 3.00 ± 0.00 1.52 ± 0.02 0.48 ± 0.029 2.50 ± 0.00

7 1 0.05 2.60 ± 0.40 1.62 ± 0.04 0.38 ± 0.012 2.30 ± 0.12

8 1 0.1 3.80 ± 0.73 1.42 ± 0.04 0.44 ± 0.007 2.00 ± 0.00

9 1 0.15 2.80 ± 0.37 1.30 ± 0.03 0.56 ± 0.023 1.90 ± 0.10

10 1.5 0.05 2.80 ± 0.37 1.42 ± 0.04 0.41 ± 0.017 1.60 ± 0.10

11 1.5 0.1 5.00 ± 0.00 1.30 ± 0.03 0.47 ± 0.016 1.50 ± 0.00

12 1.5 0.15 4.4 ± 0.24 1.18 ± 0.02 0.53 ± 0.026 1.10 ± 0.10

13 2 0.05 4.20 ± 0.58 1.32 ± 0.04 0.41 ± 0.013 1.00 ± 0.00

14 2 0.1 3.60 ± 0.24 1.10 ± 0.03 0.55 ± 0.020 0.80 ± 0.12

15 2 0.15 2.20 ± 0.49 0.84 ± 0.05 0.70 ± 0.022 0.50 ± 0.00

ANN-GA MODELING AND
OPTIMIZATION, AND SENSITIVITY
ANALYSIS

ANN Modeling and Evaluation
Evaluation of observed and predicted outputs defines the
performance of the ANN-model of studying inputs. The results
showed effective correspondence between the observed and the
predicted values of explant growth parameters for both training
and testing sets (Table 6). The fitted simple regression lines
indicate high accordance between the observed and predicted
values of NS, LS, CW, and QI for both the training and
testing sets. Using high squared correlation coefficients fitting
method and according to the ANN models obtained, eight
graphs were created to display the variation in NS, LS, CW, and
QI at different concentrations and combinations of hormones
IBA, NAA, BAP, KIN, and TDZ (Figures 2–5). The graphs
may be helpful to perceive the complete hormones response
relationship and to assess the combined effects of various
concentrations and combinations of hormones. The ANN
models could accurately (R2 > 81, 87, 86, and 87) predict NS,
LS, CW, and QI in the testing data sets that were not used
throughout the training processes (Figures 2–5). Moreover,
the trained ANN models of NS, LS, CW, and QI showed
balanced statistical values for both subsets of training and testing
(Table 6). Generally, statistical values (Table 6) revealed that
the ANN-based models could effectively fit published data on
the performances of G × N15 micro-shoots throughout in vitro
multiplication to various concentrations and combinations of
hormones.

Model Optimization and Sensitivity
Analysis of the Models
The ANN-GA Predicted Optimized Amounts of
Different Auxin–Cytokinin Combinations
Table 7 shows the results of five experiments on different auxin–
cytokinin combinations using ANN-GA to predict optimized

values of shooting. Among different treatments, the highest
optimized predicted shooting (10.53) obtained in 1.02 mg/l BAP
+ 0.098 mg/l IBA and the lowest one (4.98) attained in 1.5 mg/l
TDZ + 0.052 mg/l IBA (Table 7). VSR results showed that BAP
and KIN both had the highest effects and NAA had the lowest
effect on in vitro shooting of G × N15 vegetative rootstock
(Table 7).

Table 8 shows the predicted optimized results of cytokinin–
auxin combinations to obtain the highest LS using ANN-GA.
Among all defined hormonal combinations, the highest (3.1 cm)
predicted optimized LS was predicted to be achieved with
1.08 mg/l BAP + 0.068 mg/l IBA and the lowest (2.3 cm) one
was predicted to be in reaction of the hormonal combination
of 0.23 mg/l TDZ + 0.02 mg/l IBA. The results of VSR
analysis showed that BAP and KIN were respectively the highest
effective hormones on LS while NAA had the lowest effect on it
Table 8.

Table 9 shows the predicted optimized results of
cytokinin–auxin combinations to obtain the lowest CW
using ANN-GA. Results indicated that the lowest CW (0 g)
was detected in the control without hormone medium.
VSR analysis showed that TDZ, KIN, and BAP were
respectively the highest (12.7, 7.7, and 4) and IBA and
NAA were respectively the lowest (2.7 and 1.9 g) effective
hormones on callus derived from end of new micro- shoots
(Table 9).

Table 10 shows the predicted optimized results of
cytokinin–auxin combinations to obtain the highest quality
of shoot using ANN-GA. The highest (5) optimized
shoot quality was predicted in all media containing low
concentrations of cytokinin (Table 10). Since in vitro plants
require an external cytokinin to proliferate, 0.65 mg/l
KIN and 0.15 mg/l IBA may be an appropriate hormonal
combination as it causes to produce high quality shoots in
addition to high NS. VSR analysis showed that TDZ and
KIN were the highest effective hormones and NAA was
the lowest effective hormone on quality of micro-shoots
(Table 10).
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FIGURE 1 | An overall block diagram of ANN-GA method used in the manuscript (adopted from Jamshidi et al., 2016).

TABLE 6 | Statistics of ANN models for NS, LS, CW and QI of G × N15 (training vs. testing values).

NS LS CW QI

Item Training Testing Training Testing Training Testing Training Testing

R Square 0.85 0.81 0.88 0.87 0.86 0.88 0.87 0.87

RMSE 0.83 1.02 0.15 0.15 4.53 0.05 0.43 0.45

t-Test 0.86 0.54 0.89 0.25 0.99 0.62 0.97 0.46

Optimized Values of Cytokinin–Auxin on Shooting
Predicted by ANN-GA
Initially, we analyzed each level of cytokinin–auxin combination
separately. The used medium was modified MS which was
obtained in the primary experiments. Then, in order to find
the optimized hormonal combination and concentration, all
experiments data were analyzed simultaneously using ANN-
GA and the optimized concentration of hormonal combination
was predicted. So, 1.02 mg/l BAP + 0.098 mg/l IBA was

predicted to result in the highest NS (10.53) and also 1.53 mg/l
KIN + 0.048 mg/l NAA was predicted to be an appropriate
(9.19) composition for the proliferation stage. Mixture of
0.98 mg/l BAP + 0.1 mg/l NAA (7.89) was realized as a less
effective treatment than two previously mentioned combinations.
Higher NS obtained in KIN and NAA toward BAP and NAA
combination confirms that the interaction of cytokinin and
auxin effects on shooting and choosing the appropriate type
of cytokinin and auxin and their concentrations is critical for
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FIGURE 2 | Observed vs. ANN-GA model-predicted values of NS: (A) training
set (n = 279); (B) testing set (n = 186) for G × N15.

shooting. 1.08 mg/l BAP+ 0.068 mg/l IBA (3.1 cm) and 0.4 mg/l
KIN + 0.1 mg/l NAA (2.4 cm) were predicted as optimized
hormonal combination for LS. The highest QI was possible to
achieve but by decreasing cytokinin concentration but it will
bring about shooting reduction. So, 0.65 mg/l KIN + 0.15 mg/l
IBA is proposed as an appropriate hormonal combination for
achieving high quality shoots.

In general, according to the ANN-GA analysis results
on different parameters of in vitro proliferation, hormonal
combination of BAP and IBA is predicted to be more proper
than other combinations in in vitro multiplication of G × N15
rootstock due to producing higher number and LS. In accordance
with the present study results, in the several number of
studies BAP has been known as the best cytokinin for in vitro
proliferation of Prunus genus and it has been used in combination
with very low concentrations of auxins (Wagner, 2003) and
also IBA has been known as the most famous used auxin for
in vitro proliferation of Prunus (Silveira et al., 2002). Although
the combination of KIN and NAA produced high number of
qualified shoots but regenerated shoots were shorter and weaker
than ones in BAP + IBA treatments. According to the above
results, ANN-GA can be considered as one of the high efficient
methods in analyzing data obtained of in vitro proliferation
parameters for predicting optimized hormonal combination

FIGURE 3 | Observed vs. ANN-GA model-predicted values of LS: (A) training
set (n = 279); (B) testing set (n = 186) for G × N15.

(type and concentration of cytokinin–auxin hormones) required
in the proliferation stage.

Validation Experiment (Assessment of Optimum
Productivity of New Media Formulated)
Interaction of cytokinin–auxin affected significantly (p < 0.001)
on PR, LS, CW, and QI. So that the highest PR (10.80) was
detected in 1 mg/l BAP+ 0.1 mg/l IBA (Table 11). The highest LS
(2.90 cm) was found in 1.5 mg/l BAP + 0.1 mg/l IBA (Table 11).
And the highest CW (0.46 g) was recorded in the 1.5 mg/l
KIN + 0.052 mg/l IBA (Table 11). Our results showed that
enhancing hormones concentrations caused CW increase and
LS decrease. The highest QI (4.01) was obtained in 1.46 mg/l
KIN + 0.01 mg/l IBA (Table 11). Totally, it can be concluded
that among different hormones, BAP and IBA play efficient role
in in vitro proliferation of G × N15 and the weak effect of
KIN may be due to its lower cytokinin power. As well, our
results show that interaction of hormones is important in in vitro
proliferation of G × N15 so that BAP + IBA and KIN + NAA
were effective on G × N15 in vitro proliferation. The results of
verification analysis showed that the combination of ANN-GA is
an efficient method for prediction and optimization of hormones
combination in in vitro proliferation, so that the optimized
predicted combination of 1/2 mg/l BAP + 0.098 IBA was found
the best by ANN-GA achieving 10.20 NS which although a little
bit lower than one predicted about the treatment of 1 mg/l BAP
+ 0.1 mg/l IBA but a higher QI was attained with the first
combination.
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FIGURE 4 | Observed vs. ANN-GA model-predicted values of CW: (A)
training set (n = 279); (B) testing set (n = 186) for G × N15.

DISCUSSION

The success in micro-propagation and the commercial value of
plant micro-propagation protocols such as fruit tree rootstocks
of Prunus genus is extensively related to the PR. As there are rare
studies on micro-propagation of G × N15 vegetative rootstock,
we evaluated the combined effects of different cytokinins of BAP,
KIN, and TDZ with auxins of IBA and NAA after determining
optimized culture medium.

Plant hormonal interactions create a crucial intricacy in the
regulation of developmental processes by offering their two
complementary aspects namely robustness and stability as well
as dynamicity and flexibility. Newly increased understandings
of the molecular mechanisms underlying the hormonal systems
obviously reveal their developmental role (Vanstraelen and
Benková, 2012). The balance between cytokinin and auxin is
critical for the development and preservation of meristems.
Essentially, hormonal systems have a robust flexibility and
make it possible for input to integrate several internal and
external signals that influence different developmental processes
during the plant growth by multiple transcriptional and post-
transcriptional interactions involved in metabolism, transport,
hormone signaling, and downstream reactions. A nearby insight
of the elementary regulatory chains shows the presence of
common interaction units that are adopted using various
hormonal systems irrespective of the developmental background
(Vanstraelen and Benková, 2012).

FIGURE 5 | Observed vs. ANN-GA model-predicted values of QI: (A) training
set (n = 279); (B) testing set (n = 186) for G × N15.

Cytokinin plays a key role in forming the organization and
regulating cell division in the shoot apical meristem, as it has
been shown that cytokinin regulates cell proliferation positively,
in this meristem (Bartrina et al., 2011; Vanstraelen and Benková,
2012). The highest cytokinin biosynthesis and reaction location
vary in the shoot apical meristem, and these are important for
the locating of the WUSCHEL transcription factor expression
domain (Chickarmane et al., 2012; Zürcher et al., 2013). Auxin is
effective on enhancing the sensitivity of the mitotically less active
cells in shoot apical meristem to cytokinin (Schaller et al., 2015).

Cytokinin–auxin ratio is an important signal in creating cell
phenotype. Since auxins induce cell division, they are involved
in creating meristem in both unorganized tissues or special
organs (George et al., 2007). It has been stated in some plants
that the balance between cytokinin and auxin is critical for
organogenesis and in other plants, not only it is not necessary
to use little amounts of auxins but it acts as an inhibitor of
cytokinin accumulation. These effects differ depending on plant
type. In some cases, combination of cytokinins to each other
has resulted in PR increase. Our results on G × N15 rootstock
showed that the combined use of cytokinins with auxins caused
higher shooting than when using them alone and among the
used treatments in the present study, the combination of 1 mg/l
BAP with 0.1 mg/l resulted in the highest (10.67) shooting per
explant. These results are indicating that the interaction among
hormones and also concentration of used hormones are effective
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TABLE 7 | Importance of hormones concentrations (mg/l) and combination according to the sensitivity analysis and optimization analysis on the developed ANN-GA
model to reach maximum in vitro proliferation rate in G × N15.

Item Hormones concentrations (mg/l) (input variable) Predicted proliferation rate
(output variable) at optimal

point
BAP IBA NAA KIN TDZ

BAP + IBA 1.02 0.098 0 0 0 10.53

BAP + NAA 0.98 0 0.1 0 0 7.89

KIN + IBA 0 0.01 0 1.46 0 6.62

KIN + IBA 0 0 0.048 1.53 0 9.19

TDZ + IBA 0 0.052 0 0 1.5 4.98

VSR 19.3 2.63 1.81 9.64 2.25

Rank 1 3 5 2 4

TABLE 8 | Importance of hormones concentrations (mg/l) and combination according to the sensitivity analysis and optimization analysis on the developed ANN-GA
model to reach maximum in vitro height in G × N15.

Item Hormones concentrations (mg/l) (input variable) Predicted height (output
variable) at optimal point

BAP IBA NAA KIN TDZ

BAP + IBA 1.08 0.068 0 0 0 3.1

BAP + NAA 1.09 0 0.017 0 0 2.4

KIN + IBA 0 0.09 0 0.23 0 2.3

KIN + IBA 0 0 0.1 0.4 0 2.4

TDZ + IBA 0 0.02 0 0 0.23 2.3

VSR 12.9 4.7 3.1 6.8 6.4

Rank 1 4 5 2 3

TABLE 9 | Importance of hormones concentrations (mg/l) and combination according to the sensitivity analysis and optimization analysis on the developed ANN-GA
model to reach minimum in vitro CW in G × N15.

Item Hormones concentrations (mg/l) (input variable) Predicted callus weight
(output variable) at optimal

point
BAP IBA NAA KIN TDZ

BAP + IBA 0 0 0 0 0 0.007

BAP + NAA 0 0 0 0 0 0.007

KIN + IBA 0 0 0 0 0 0.007

KIN + IBA 0 0 0 0 0 0.007

TDZ + IBA 0 0 0 0 0 0.007

VSR 4 2.7 1.9 7.7 12.7

Rank 3 4 5 2 1

TABLE 10 | Importance of hormones concentrations (mg/l) and combination according to the sensitivity analysis and optimization analysis on the developed ANN-GA
model to reach maximum in vitro QI in G × N15.

Item Hormones concentrations (mg/l) (input variable) Predicted quality index
(output variable) at optimal

point
BAP IBA NAA KIN TDZ

BAP + IBA 0.13 0.14 0 0 0 5

BAP + NAA 0.17 0 0.14 0 0 5

KIN + IBA 0 0.15 0 0.65 0 5

KIN + IBA 0 0 0.13 0.38 0 5

TDZ + IBA 0 0.15 0 0 0.12 5

VSR 4.5 1.7 1.8 5.5 9.1

Rank 3 5 4 2 1
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TABLE 11 | Effect of different concentrations and combinations of hormones on in vitro growth parameters.

Hormones combination Proliferation LS (cm) CW (g) QI

1 mg/l BAP + 0.1 mg/l IBA 10.80 ± 0.37 a 2.90 ± 0.03 a 0.17 ± 0.008 e 3.65 ± 0.06 d

1 mg/l BAP+ 0.1 mg/l NAA 8.60 ± 0.24 cd 2.30 ± 0.03 c 0.24 ± 0.021 d 3.85 ± 0.06 cd

1.5 mg/l KIN + 0.05 mg/l IBA 7.00 ± 0.32 e 1.90 ± 0.01 e 0.41 ± 0.010 b 4.20 ± 0.05 ab

1.5 mg/l KIN + 0.05 mg/l NAA 9.60 ± 0.24 abc 2.05 ± 0.03 d 0.32 ± 0.008 c 3.95 ± 0.05 bcd

1.5 mg/l KIN + 0.1 mg/l IBA 5.00 ± 0.32 f 1.60 ± 0.02 f 0.42 ± 0.011 ab 2.50 ± 0.08 e

1.2 mg/l BAP + 0.098 mg/l IBA 10.20 ± 0.37 ab 2.82 ± 0.02 a 0.19 ± 0.005 de 3.85 ± 0.10 cd

0.98 mg/l BAP + 0.1 mg/l NAA 7.60 ± 0.24 de 2.50 ± 0.04 b 0.24 ± 0.006 d 4.00 ± 0.08 bc

1.46 mg/l KIN + 0.01 mg/l IBA 6.80 ± 0.20 e 2.36 ± 0.02 bc 0.38 ± 0.007 b 4.35 ± 0.06 a

1.53 mg/l KIN + 0.048 mg/l NAA 9.40 ± 0.24 bc 2.40 ± 0.04 bc 0.33 ± 0.009 c 4.10 ± 0.06 abc

1.5 mg/l KIN + 0.052 mg/l IBA 4.40 ± 0.24 f 1.84 ± 0.04 e 0.46 ± 0.008 a 2.35 ± 0.06 e

p-Value

Medium <0.001 <0.001 <0.001 <0.001

Values in each column represent means ± SE. Different letters within a column indicate significant differences (p < 0.05).

on enhancing in vitro shooting. So that after combining BAP
and IBA, the medium containing 1.5 mg/l KIN along with
0.05 mg/l NAA showed high shooting (9.8). Our results were
in accordance with the findings of Hepaksoy and Tanrisever
(2004) on sweet cherry, Ruzic and Vujovic (2007) and Dolgov
et al. (2010) on Prunus domestica that all indicated that the
highest shooting rate was obtained in the combination of BAP
and IBA treatment. The present study findings are in opposite of
Sepahvand et al. (2011) on GF677 vegetative rootstock since they
introduced BAP and NAA combination as the most appropriate
compound for shooting. Here, the combination of BAP and IBA
was the most effective treatment which is in accordance with
other researchers’ findings conveyed that the effective shooting
depends on the cytokinin type and concentration as well as
suitable concentrations of cytokinin–auxin, i.e., using BAP along
with low amounts of IBA is favorable for shooting (Sedlák and
Paprstein, 2007; Ruzic and Vujovic, 2008). The positive effects
of auxin–cytokinin can refer to the auxiliary effects of auxins
to cytokinins in cell cycle regulation. Pasternak et al. (2000)
indicated that auxin has a role in DNA replication process and
cytokinin has a role in the cell cycle regulation. Cytokinins
are involved in cell cycle regulation along with auxins. They
may induce D type (D3) cycles and so the progress of cell
cycle from G1 to S and may G2 to M transfer is achieved
by CDC2 gene expression induction by H1 kinase histone and
de-phosphorylation induction by Cdc25. Our adverse obtained
results can be due to the fact that shooting is under influence
of many factors such as genotype, culture medium (Molassiotis
et al., 2003), hormones, carbohydrates (Ruzic et al., 2003; Nowak
et al., 2004), different kinds of hormones (Pruski, 2007; Ruzic
and Vujovic, 2008; Sedlak and Paprstein, 2008), different kinds
of agar, explant type and different light periods (Magyar-Tábori
et al., 2010). Researches have shown that high concentrations
of hormonal combinations can decrease LS, quality and rate of
shooting and increase callus development as low concentrations
auxin can induce cell division but can act as an inhibitor of
axillary bud growth in higher concentrations (Bagheri et al.,
2009). In accordance with our findings, in some almond varieties
like Shahroud 7, increase in BA concentration from 2.5 to
3 mg/l resulted in leaf malformation and verification and also

PR increase which caused decreasing LS likely because of shoot
competition for medium nutrients uptake (Shekafandeh and
Khosh-Khui, 2007; Shekafandeh, 2010). Moreover, we found
that CW enhances by increasing auxin concentration. Since
callus induction in explant is a role of auxin so, it can be
due to that role of auxin and also increasing callus production
causes lower shoot quality. High auxin concentrations bring
about increasing ethylene production and ethylene accumulation
in tissue culture vessels prevents of plant tissues growth and
development (George et al., 2007; Yaseen et al., 2009). High
concentrations of the combination of cytokinin–auxin resulted
in high callus production at the end of new micro-shoots which is
in accordance with previous works in which high concentrations
of BAP-NAA combination resulted in lower shoot number since
callus was produced at the end of proliferating shoots (Phulwaria
et al., 2014).

Data analysis of our experiments using ANN-GA modeling
and optimization procedure showed that this method can be
considered as an efficient method for analyzing in vitro growth
data in proliferation stage. ANN-GA has been also successfully
used for modeling and optimization of improved in vitro growth
condition estimation for kiwifruit (Gago et al., 2014) which is in
agreement with our obtained results.

CONCLUSION

The results of analyzing five different cytokinin–auxin hormonal
combinations and evaluation using ANN-GA hybrid on
in vitro growth parameters of G × N15 showed that: (1)
1.2 mg/l BAP + (0.098 mg/l) IBA was found as the best
cytokinin–auxin combination for proliferation, (2) the results
of verification analysis showed that ANN-GA is an efficient
method for predicting an optimizing cytokinin–auxin hormonal
combination in in vitro proliferation of G× N15.
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