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Despite many developed experimental and computational approaches, functional

gene annotation remains challenging. With the rapidly growing number of sequenced

genomes, the concept of phylogenetic profiling, which predicts functional links between

genes that share a common co-occurrence pattern across different genomes, has gained

renewed attention as it promises to annotate gene functions based on presence/absence

calls alone. We applied phylogenetic profiling to the problem of metabolic pathway

assignments of plant genes with a particular focus on secondary metabolism pathways.

We determined phylogenetic profiles for 40,960 metabolic pathway enzyme genes with

assigned EC numbers from 24 plant species based on sequence and pathway annotation

data from KEGG and Ensembl Plants. For gene sequence family assignments, needed

to determine the presence or absence of particular gene functions in the given plant

species, we included data of all 39 species available at the Ensembl Plants database

and established gene families based on pairwise sequence identities and annotation

information. Aside from performing profiling comparisons, we used machine learning

approaches to predict pathway associations from phylogenetic profiles alone. Selected

metabolic pathways were indeed found to be composed of gene families of greater

than expected phylogenetic profile similarity. This was particularly evident for primary

metabolism pathways, whereas for secondary pathways, both the available annotation

in different species as well as the abstraction of functional association via distinct

pathways proved limiting. While phylogenetic profile similarity was generally not found to

correlate with gene co-expression, direct physical interactions of proteins were reflected

by a significantly increased profile similarity suggesting an application of phylogenetic

profiling methods as a filtering step in the identification of protein-protein interactions.

This feasibility study highlights the potential and challenges associated with phylogenetic

profiling methods for the detection of functional relationships between genes as well as

the need to enlarge the set of plant genes with proven secondarymetabolism involvement

as well as the limitations of distinct pathways as abstractions of relationships between

genes.

Keywords: phylogenetic profiling, plants, metabolic pathways, secondary metabolism, gene families, gene

function annotation, protein-protein interactions, gene co-expression
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INTRODUCTION

Developing an understanding of plant metabolism is a central
aim of plant research. The better we can assess the metabolic
capacities of plants and how they regulate their metabolic
activities, the better we can make use of the manifold of
products and also protect their fragile ecosystems. In principle,
it should be possible to estimate a plant’s metabolic capacity
based on the knowledge of all possible metabolic reactions
that are in turn encoded by the repertoire of enzyme genes in
the respective genome. Thus, complete and accurate genome
annotation is paramount for a comprehensive understanding of
plant metabolism. However, reliable functional gene annotation
is neither trivial nor is our current knowledge of possible
metabolic pathways complete. We are not yet able to simply
check for the presence of “textbook pathways” by virtue of
accurate gene annotation. Novel pathways, in particular in
the context of secondary metabolite pathways, are still being
discovered, requiring, however, substantial experimental effort
as demonstrated in the discovery of a strigolactone pathway in
plants (Alder et al., 2012).

Considering the high costs and immense efforts of
experimental gene function annotation, computational
comparative genomics remains the main strategy to assign
functions to genes in plants. Established functional assignment
methods aim to bioinformatically predict functions of proteins
of not yet annotated species by searching for sequence-similar
proteins carrying reliably annotated, ideally experimentally
verified, functions. Assuming that high sequence similarity
assures similarity of function, functional annotations are
transferred from the characterized to the new and yet
uncharacterized gene (Lohse et al., 2014).

However, genes active in the same biochemical pathway
will typically perform distinct enzymatic functions and thus
will generally not show any amino acid sequence similarity to
each other, albeit a weak, but discernable correlation between
metabolic pathway and enzyme protein sequence distances has
been reported pointing to a gradual expansion of metabolism
(Schutte et al., 2010). Notwithstanding this observation,
sequence-homology-based methods are generally of limited use
for generating connections between components that perform
different functions as part of the same pathway. Homology-based
functional prediction methods are also inherently limited by
relying upon the set of known functional annotations.

Several strategies have been developed to establish functional
links between genes performing different functions. They rely
on the observed physical proximity of pathway-associated genes
originating from bacterial operon genome structures (Osbourn,
2010; Chu et al., 2011) or the pronounced co-expression of
genes (Gachon et al., 2005; Wisecaver et al., 2016). Genome-
wide association studies allow identifying genes commonly
participating in, or regulating, the biosynthesis of a particular
metabolite (Yencho et al., 1998; Schauer et al., 2006; Kliebenstein,
2009).

Phylogenetic profiling offers yet another approach to
detect functional gene associations. Phylogenetic profiling
was developed based on the notion that genes involved in the

same metabolic pathway, or generally are involved in the same
functional process, are likely to evolve in a correlated fashion
(Gaasterland and Ragan, 1998; Pellegrini et al., 1999). For a given
process, all its essential elements (genes) are either present—as
they are all needed to perform a particular function—, or are all
absent, because if any component is absent, all other components
can no longer function lifting the evolutionary pressure on them
to be kept. The concept of phylogenetic profiling was first tested
on predicting functional relationships between E. coli proteins
based on their phylogenetic profile across 16 fully sequenced
organisms including S. cerevisiae, B. subtilis, and H. influenza
(Pellegrini et al., 1999). Aside from grouping functionally
diverse genes to common processes, phylogenetic profiling
also offers a route toward providing annotation for otherwise
uncharacterized sequences. Even without any knowledge of
function of a particular gene, knowing that it is functionally
linked to other genes already provides valuable information and
entry points for further functional characterization.

Following the pioneering work of Pellegrini and co-workers,
the basic concept of phylogenetic profiling has found many
applications, e.g., to predict protein-protein interactions (Pagel
et al., 2004; Kim and Subramaniam, 2006) or to identify specific
enzymes involved in the biosynthesis of particular metabolites in
fungi (Ternes et al., 2006). Since its inception, the methodological
foundation of phylogenetic profiling has been refined by testing
the suitability of orthologous vs. paralogous gene relationships
(Skunca et al., 2013), by utilizing structural information for
improved homology assignments (Ranea et al., 2007), by
implementing novel distance metrics for the measurement of
profile similarity (Vert, 2002), as well as by estimating the
required number of species for successful phylogenetic profiling
applications (Škunca and Dessimoz, 2015). Recently, ProtPhylo,
a convenient web-based services for the search for proteins that
are possibly associated with a reference protein according to
phylogenetic profiling has been developed (Cheng and Perocchi,
2015). ProtPhylo also allows establishing links between species-
specific phenotypes and associated candidate proteins.

In this study, we tested the applicability of phylogenetic
profiling specifically to the plant metabolic pathway assignment
problem.We were especially interested in functional assignments
of plant-specific secondary metabolism pathway genes and
to gauge the accuracy of phylogenetic profiling given the
currently available plant genome sequence and annotation
information. Plant secondary metabolites are of particular
economic andmedicinal interest asmany of them have properties
proving beneficial in nutrition and medical applications (Singh
and Bhat, 2003; Schmidt et al., 2007). To efficiently and
reliably assess a plant’s secondary metabolite inventory bears
tremendous economic potential and provides the basis for
targeted pathway engineering (Verpoorte and Memelink, 2002;
Oksman-Caldentey and Inze, 2004). Unlike primary metabolism
pathways, secondary metabolism pathways often function as
independent units with low levels of functional dependencies
and, for the rationale of phylogenetic profiling more importantly,
impact on other biochemical functions (Hartmann, 1996; Higashi
and Saito, 2013). Thus, the set of genes associated with
a particular secondary pathway may emerge and disappear
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independently of other pathways. And as specific metabolic
pathways occur only in a subset of species (Pichersky and
Gang, 2000), the phylogenetic profiling approach should be
ideally suited to identify secondary metabolite pathways from
the presence-absence phylogenetic profile of their enzymes.
Furthermore, with the massive increase of available whole
genome data, the necessary data basis may now be available to
put phylogenetic profiling to the test and into practice.

We implemented a comprehensive and rigorous testing
scheme covering 39 plant species and 40,960 functionally
characterized enzyme genes. While proving successful when
tested on specific pathways, a demonstration of the general
suitability of phylogenetic profiling is presently severely
hampered by the paucity of secondary pathways occurring
only in a subset of species. Many pathways are annotated
to occur in nearly all plant species, and hence, the very
basis of phylogenetic profiling—presence in only a subset of
species—is often not fulfilled rendering demonstrating the true
potential of phylogenetic profiling challenging. Furthermore,
we demonstrate that our abstraction of pathways into isolated
units critically impacts the applicability of phylogenetic
profiling. Nonetheless, we believe this study to provide a
valuable systematic feasibility test highlighting the needs for
continued experimental annotation work, while at the same
time, demonstrating that phylogenetic profile holds tremendous
promise to fill the gaps in our knowledge of plant metabolism.

MATERIALS AND METHODS

Phylogenetic profiling operates by assigning a particular gene-
encoded molecular (here enzymatic) function as present or
absent in a given species. Genes with similar presence-absence
profiles across several species are then presumed to be involved
in the same functional process, in our case, metabolic pathway.
The presence/absence call is based on the notion that sequence-
similar genes perform the same function. Consequently, the
threshold of acceptable sequence-similarity level to assume
identical function needs to be decided upon. Clustering all
genes encoded in a given set of species based on their sequence
homology relationships results in sets of genes with an assumed
identical function. The species memberships of every cluster
member will define the phylogenetic profile of a given cluster.
Here, we refer to such clusters as gene families, or more generally,
gene objects. Gene families/objects can also consist of one gene
member as well, which will be denoted as singletons. Following
the rationale of phylogenetic profiling, gene families should (i)
encode one and only metabolic function, (ii) different gene
families encode different functions, and (iii) gene families with
identical phylogenetic profile should be involved in the same
metabolic function.

Pursuing this logic, the following processing steps and
approaches to testing its validity were implemented. (A) Based
on information available in the database Ensembl Plants (Kersey
et al., 2016) and additional filtering steps, gene families were
created for the complete known gene inventory of 39 plant
species. (B) For every gene family, phylogenetic profiles were

generated based on the species origin of all its member sequences.
(C) Gene families were tested to correctly reflect a common
and unique function and also whether identical phylogenetic
profiles of different gene families suggests involvement in a
common process; i.e. metabolic pathway. Performance testing
of phylogenetic profiling as a means of assigning pathway
associations was based on annotation data as available in the
data bases Ensembl Plants (Kersey et al., 2016)as well as
KEGG (Kanehisa and Goto, 2000). (D) Observed performance
results were compared to randomized data to assess statistical
significance.

All 39 Ensemble plant species considered in this study along
with their KEGG presence annotation are listed in Table 1.

Sequence and Homology Information
As we were interested in enzymatic activities, all genes, their
sequences, functions, and their pairwise similarity measures
were considered based upon their respective protein sequences.
Homology information and protein sequences of metabolic
pathway enzymes for the 39 plant species (Table 1) available in
the Plant Mart database were downloaded from Ensembl Plants

TABLE 1 | Plant species and genomes used in this study.

Ensembl plant species In KEGG Ensemble plant

species

In KEGG

Aegilops tauschii (ATA) Oryza meridionalis

(OME)

Amborella trichopoda (ATR) Y Oryza nivara (ONI)

Arabidopsis lyrata (ALY) Y Oryza punctata (OPU)

Arabidopsis thaliana (ATH) Y Oryza rufipogon (ORU)

Brachypodium distachyon (BDI) Y Oryza sativa (DOSA) Y

Brassica oleracea (BOL) Ostreococcus

lucimarinus (OLU)

Y

Brassica rapa (BRP) Y Physcomitrella patens

(PPA)

Y

Chlamydomonas reinhardtii (CRE) Y Populus trichocarpa

(POP)

Y

Cyanidioschyzon merolae (CME) Y Prunus persica (PPER) Y

Glycine max (GMX) Y Selaginella

moellendorffii (SMO)

Y

Hordeum vulgare (HVU) Setaria italica (SITA) Y

Leersia perrieri (LPE) Solanum lycopersicum

(SLY)

Y

Medicago truncatula (MTR) Y Solanum tuberosum

(SOT)

Y

Musa acuminata (MAC) Y Sorghum bicolor (SBI) Y

Oryza barthii (OBA) Theobroma cacao

(TCC)

Y

Oryza brachyantha (OBR) Y Triticum aestivum (TAE)

Oryza glaberrima (OGL) Triticum urartu (TUR)

Oryza glumaepatula (OGU) Vitis vinifera (VVI) Y

Oryza indica (OIN) Zea mays (ZMA) Y

Oryza longistaminata (OLO)

List of all 39 plant species and their abbreviations available in Ensembl Plants and their

presence in KEGG (24 plant species).
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(Kersey et al., 2016). The Biomart tool was employed for species
selection and retrieving all paralogous and orthologous genes,
their sequence identity, homology confidence assignments, and
their EC numbers (Kinsella et al., 2011).

Clustering of Genes into Gene Families
All genes were clustered according to their sequence-based
homology to assign genes and their performed functions as
either present or absent in a given species. The set of mutually
homologous sequences forms a set of genes that, in effect, can be
considered a single object consisting of either multiple sequences
referred as a gene family or a single sequence in cases where no
homologous sequence was found. The latter is being referred to
as singletons. Every such object (gene family or singleton) will
then be assigned a phylogenetic profile reflecting its presence
or absence across all considered plant species along with the
respectively performed enzymatic function. We operate under
the assumption that all sequences clustered together into a gene
family perform the same enzymatic function.

The Ensembl Plants database provides a list of orthologous
and paralogous genes as well as pairwise sequence identity
values for all included genes. Additionally, an orthology
confidence value (low or high) obtained by comparison with the
phylogenetic tree is provided (Vilella et al., 2009). In this study,
only high-confidence orthology relationships were used.

Pairwise homology relationships between all genes from
all 39 species were filtered with regard to percent sequence
identity relative to the shorter of two compared sequences as
reported in Ensembl imposing two different thresholds of 30%
and 70% sequence identity (protein alignments), respectively.
All genes not belonging to any multi-member gene family
were considered singleton genes. Combining both, the Ensembl-
reported homology relationship and the sequence identity, a
network was created with genes representing its nodes that are
connected if reported homologous and passing the set sequence
identity threshold. Connected components of this gene network
as detected using the R package igraph (Csardi and Nepusz,
2006) are considered gene families. A connected component is
defined as a subgraph, in which all nodes are connected, i.e., there
exists a path between all nodes of the subgraph. In the above
procedure, paralogous and orthologous gene relationships were
treated equally. The two clusterings of genes into gene families
based on 30% or 70% sequence identity networks will be referred
to as Network30 and Network70, respectively.

Phylogenetic Profiles
Phylogenetic profiles were created for each gene object including
gene families and singleton gene. Gene objects encoding a
particular function were considered present in a particular
species if at least one of its member genes was found present
in it, otherwise the gene object was considered absent. The
presence/absence call across all 39 considered plant species
then represents a gene object’s phylogenetic profile encoded by
ones (indicating presence) and zeroes (indicating absence). Gene
objects with identical phylogenetic profiles were then grouped
together. As we assumed each gene object to be associated with
one unique enzymatic function, gene objects clustered together

by identical phylogenetic profiles are then assumed to be involved
in the same enzymatic process (pathway). The validity of this
statement is the focus of this study and tested by the following
statistical procedure.

Enzymatic Pathway Information
Metabolic pathway and functional annotation data for all species
shared by KEGG and Ensembl Plants were downloaded from
the KEGG database (Kanehisa and Goto, 2000). Functional
annotation obtained from the KEGG database was assigned
to all genes and their respectively encoded proteins. For all
plant secondary and primary metabolite pathways contained in
KEGG, pathwaymap numbers referring to the actual biochemical
pathway are provided. In total, 40,960 metabolic enzyme genes
from 24 plant species with available EC-number from Ensembl
Plants were available for pathway analysis.

Two levels of metabolic gene pathway assignments were
tested: metabolic classes and metabolic pathways. Metabolic
classes were taken as assigned by the KEGG database and
include the 10 primary and secondary metabolic pathway
classes amino acid metabolism, biosynthesis of other secondary
metabolites, carbohydrate metabolism, energy metabolism,
glycan biosynthesis and metabolism, lipid metabolism,
metabolism of cofactors and vitamins, metabolism of other
amino acids, metabolism of terpenoids and polyketides, and
nucleotide metabolism. A more detailed classification of
enzyme genes was used by considering 94 actual pathway
maps associated with the 10 pathway classes as available from
KEGG and which are classified as “metabolism” and which have
non-zero counts of assigned plant genes (see Supplementary
Table 1). Genes were counted toward secondary metabolism
pathways only if annotated to only participate in secondary
metabolism pathways. Genes annotated to both primary and
secondary metabolism pathways were considered primary
metabolism genes. The pathway class “Overview” and the
associated four detailed pathway maps were not considered as
they can be considered unspecific and were not contained in
the Ensembl plants data either. Pathways assigned to the classes
“metabolism of terpenoids and polyketides“ or “biosynthesis
of other secondary metabolites” were considered secondary
metabolism pathways. In total, 31 KEGG maps of which 17
carried plant gene annotations were considered as secondary, all
others as primary metabolic pathways.

Evaluation of Gene Family Assignment
The adjusted Rand index (Hubert and Arabie, 1985) was
applied to evaluate the validity of gene family assignment in
comparison to the known metabolic functions of genes. The
adjustedRandIndex function of the R package mclust (Fraley and
Raftery, 1999) was used to compare the clustering of genes into
gene families suggesting identical function to those clusterings
based on EC number annotation reflecting true function. The
resulting Rand index evaluates the degree of accordance of both
classifications with zero indicating random, and a value of one
signifying perfect agreement. Multiple/ambiguous EC number
annotations were treated as distinct true functional annotations
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such that two genes were only then considered to perform the
same function, if both had the same set of EC numbers.

Phylogenetic Profile Comparison Statistic
Test for Enrichment of Identical Profiles within

Distinct Pathways
For each of the 10 metabolic classes and 94 metabolic pathways,
the respectively annotated enzyme genes were obtained. Note
that genes can come from any of the 24 plant species annotated
in KEGG and still map to the same metabolic class or pathway.
For each resulting set of ne enzyme genes associated with one
particular metabolic class or pathway, the associated set of nf
gene objects (gene families and singletons) was determined by
identifying the gene object to which the genes were assigned
based on the procedure explained above. Each gene object is
associated with exactly one phylogenetic profile, P. First it is
determined, what fraction, Fpw, of the nf phylogenetic profiles
is identical among all possible comparisons between all nf gene
objects belonging to a metabolic class or pathway computed as:

Fpw =

∑nf
i

∑nf
j=i+1 δPi ,Pj

nf (nf−1)
2

, (1)

where δ is the Kronecker delta function yielding 1 in case of
identical phylogenetic profiles Pi and Pj. Profiles were considered
identical if they had exactly the same bit vector indicating
presence and absence across all 39 considered plant species.
Likewise, the fraction, Fall, of identical profiles among all nf_all
gene objects associated with all enzyme genes regardless of
metabolic class or pathway assignment with nf_all = nf + nallO,
where nallO is the number of gene objects not assigned to the
pathway class or pathway under testing, computes as:

Fall =

∑nf
i

∑nf
j=i+1 δPi ,Pj +

∑nf
i=1

∑nfallO
j=1, δPi ,Pj

nf (nf−1)
2 + n

f
∗nfallO

. (2)

Note that comparisons or phylogenetic profiles in Equation (2)
are performed for only those profiles that are part of a particular
metabolic class or pathway. The ratio of Fpw to Fall yields an
enrichment, E = Fpw/Fall, of identical profiles within a set of
pathway gene objects relative to all gene families in the data
set. Note that in Equation 2, two set comparisons are combined
appearing as summands in the denominator and delimiter,
respectively: the within class/pathway profile comparison and the
comparison to all other outside-profiles.

Empirical p-values of the enrichment score were computed by
randomly drawing the same number of gene families as originally
annotated to belong to a particular metabolic class or pathway
from all gene objects and performing computing enrichment
scores for 10,000 such random runs resulting in average random
values of Fpw, Fall, and an associated enrichment, Er. An empirical
p-value was computed denoting the fraction of equal or larger
enrichment scores obtained in the 10,000 random trials than
for the actual pathway gene objects set. The obtained p-values
were corrected for multiple testing—as many metabolic classes

or pathways were tested—by using the Benjamini-Hochberg
correction implemented in the p.adjust function of R.

Test for Predictability of Pathway Association Based

on Phylogenetic Profiles
For testing the predictive power of phylogenetic profile similarity
of two gene objects with regard to their pathway association,
the following two procedures were implemented. First, we tested
whether increased phylogenetic profile similarity between to
genes leads to an increased chance of both genes participating in
the same enzymatic pathway. Secondly, we pursued a machine
learning approach testing whether pathway membership for a
given single gene can be predicted directly from its phylogenetic
profiles alone. In greater detail, in the first approach, repeated
100,000 times, two gene objects, g1 and g2, was selected at random
from the set of all 2,206 including gene families and singletons.
The phylogenetic profiles PP1 and PP2, each a 39-element vector
consisting of ones (presence in a species) and zeroes (absence a
species), associated with g1 and g2, respectively, were compared
by their Jaccard index measuring the intersection vs. the union of
“1” entries and their distance, dPP, defined as:

dPP =
|PP1&PP2|1
|PP1 | PP2|1

, (3)

where “&” and “|” are the bitwise AND and OR operator,
respectively, and ||1 is the L1-norm; i.e., the sum of all ones in
the PP-vectors of length 39. For both gene objects, g1 and g2, all
KEGG pathwaymaps to which their member genes are annotated
were determined and the agreement, A_PWg1,g2, between both
pathway lists measured following the Jaccard index logic as:

A_PWg1,g2 =
PWg1 ∩ PWg2

min (N1, N2)
, (4)

where PWg1 and PWg2 are the lists of pathways associated with
gene objects g1 and g2, respectively, N1/2 are the numbers of
different pathways in PWg1 and PWg2, the intersection represents
the number of pathways found in both pathway lists. Note that
we deliberately decided to sample based on gene objects and not
based on individual genes as the latter would bias the result to
large gene families.

Value pairs of dPP and A_PWg1,g2 from all random trials
were plotted as a scatter plot (Figure 7) and a logistic function
A_PW=f (dPP) with A_PW=1/ (1 + exp (−a ∗ (dPP – b))) was
fitted to the data using the non-linear fit function “nls” of R and
a and b being parameters to be determined by the fit. The logistic
function was chosen as it naturally converges to zero and one, the
two possible extreme values of A_PW.

For the machine learning approach, the Clus-HMC software
(Schietgat et al., 2010; Skunca et al., 2013) was used to predict
the metabolic pathway class or detailed pathway (KEGG map)
for every gene object (gene family or singleton gene) based on its
phylogenetic profile. The Clus-HMC package is ideally suited as
it allows for multi-label objects (a gene object and its function can
be assigned to more than one pathway map) and because it deals
with hierarchical data (metabolism class and individual KEGG
maps as the lower level). Clus-HMC employs decision trees as
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the classification engine. We used it in Random Forest mode
with 50 trees per run, Jaccard-distance metrics, and prediction
performance reported on out-of-bag examples; i.e. the internal
cross-validation, employed typically as part of the Random forest
methodology. Performance was judged by the area under the
precision-recall curve (AUCPRC), where precision is defined
as the ratio of true positive prediction to the sum of true
positive and false positive predictions; i.e., of all predictions
made, what fraction is correct. Recall is defined as the ratio of
true positive predictions to the sum of true positive and false
negative predictions; i.e., of all positive examples in the dataset,
what fraction was retrieved as positive predictions. Larger values
of the AUCPRC indicate better predictions. Because our data
is heavily imbalanced—for any given gene family, only one or
few pathways out of all possible will be assigned to them—the
better known area under ROC (true positive vs. false positive
rate) would be misleading (Davis and Goadrich, 2006). In total,
2,206 gene objects (gene families and singleton genes) associated
with 816 unique phylogenetic profiles were tested to be assigned
to either 10 metabolic pathway classes or 94 detailed pathway
maps. AUCPRC values obtained for true associations of gene
objects and their phylogenetic profiles with metabolic pathway
classes and maps were compared to AUCPRC values obtained
for randomized assignments by randomly redistributing the 10
metabolic pathway classes and 94 pathway maps to all gene
objects while preserving their occurrence and avoiding repeated
assignments of a gene object to the same pathway class or map.
This randomization process was repeated 100 times for pathway
class predictions, and 20 times for pathway maps. For the latter,
fewer random runs were necessary as their number (94 maps vs.
10 classes) was much larger. Statistical comparisons of true to
random predictions were performed using the non-parametric
Wilcoxon rank sum test and averaged over all performed repeat
randomization runs.

Phylogenetic Profile Similarity as an Indicator of

Gene Co-expression and Protein-Protein Interactions
Phylogenetic profile similarities of two gene objects were tested
for being informative with regard to co-regulation of their
gene expression and physical interactions of their encoded
products via protein-protein interactions focusing onArabidopsis
thaliana as the reference species given the rich experimental
information available for this model plant species with regard
to both gene expression and protein-protein interactions. Gene
expression information was obtained from NASCArray (Craigon
et al., 2004) covering a broad range of experimental condition
probed by about five thousand ATH1 Affymetrix gene chip gene
expression experiments (hybridizations). Raw gene expression
data were log-transformed and quantile-normalized as explained
in Korkuc et al. (2014). To reduce computation time, a random
subset of samples drawn with 10% chance from the original
NASCArray sample set and resulting in expression data for
20,922 genes across 479 hybridizations was used for analysis. For
all possible pairs of 500 randomly selected Arabidopsis enzyme
genes, their phylogenetic profile similarities, dPP, were plotted
vs. their pairwise Pearson correlation coefficient, rGE, of gene
expression across the 479 gene expression samples. In total, for

93,961 Arabidopsis gene pairs, both phylogenetic as well as gene
expression information was available for both genes forming the
pair of enzymes allowing to test whether increased phylogenetic
similarity corresponds to increased correlation of their gene
expression.

Physical interactions of Arabidopsis proteins were obtained
from the database AtPIN (Brandao et al., 2009). Interactions with
experimental support were considered only totaling in 95,219
pairwise protein-protein interactions among 14,995 unique
proteins of which 5,978 pairs formed among 2,265 genes were
contained in the functional annotation data as well identifying
them as enzymes. For all enzyme pairs reported to physically
interact, we determined their associated phylogenetic profile
similarity, dPP, and compared the resulting distribution to the
distribution of dPP-values associated with enzyme pairs not
reported to interact. Statistical significance was established based
on the non-parametric Wilcoxon rank sum test.

RESULTS

The rationale of phylogenetic profiling posits that genes
collectively performing a particular biological function are
present as a set in only those species in which the function
is performed. And in order for phylogenetic profiling to be
specific, particular functions should be associated with unique
phylogenetic profiles. As the goal of this study was to exploit
phylogenetic profiling for metabolism pathway assignments of
genes with a focus on secondary metabolism, we first inspected
the presence of known secondary metabolism pathways across
the 24 plant species with available Ensembl and KEGG
information (Figure 1). Initially, pathways were considered
present in a particular species if at least one gene was found in
this species that was annotated to belong to this pathway. Based
on this presence/absence call, about one third (10 out of all 31
secondary pathways) were found present in all 24 plant species.
Thus, for those pathways, no differential presence/absence profile
was evident rendering the application of phylogenetic profiling
unspecific as a number of different secondary metabolism
pathways exhibit the same presence profile. Evidently, this result
reflects the current breadth of species coverage available in
KEGG and Ensembl. Seven pathways were detected present
in less than half of all KEGG species and another 14 were
found in almost, but not, all 24 species (Figure 1). Thus, the
seven pathways with confined species coverage appear most
promising with regard to verifying phylogenetic profiling as
an annotation means provided that their species spectra do
not extensively overlap. They include the pathways “penicillin
and cephalosporin biosynthesis,” “biosynthesis of vancomycin
group antibiotics,” “carbapenem biosynthesis,” “isoflavonoid
biosynthesis,” benzoxazinoid biosynthesis,” “indole alkaloid
biosynthesis,” and “anthocyanin biosynthesis.” Note that the
pathway “penicillin and cephalosporin biosynthesis” appears
listed in the plant dataset obtained from KEGG. Both antibiotics
are known to be produced in fungi, but not plants. The plant
annotation in KEGG originates from an enzyme of the red algae
Cyanidioschyzon merolae annotated as similar to D-amino acid
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FIGURE 1 | Occurrence statistic of secondary metabolite pathways in 24 KEGG species. For each secondary metabolic pathway of the KEGG database, the number

of plant species containing it out of all 24 plant species used in this study are displayed. A pathway was considered present in a given species if at least one enzyme

gene from this species was assigned to this pathway.

oxidase, which is known to catalyze a reaction in the penicillin
and cephalosporin biosynthesis pathway and was also assigned to
primary metabolite pathways of amino acid metabolism. As this
pathway is not actually performed in plants, it was not considered
further in this study. Likewise, the bacterial vancomycin pathway
was not considered further either.

The analysis of the species-per-pathway distribution was also
performed for primary metabolite pathway enzymes annotated
in the KEGG database. As expected for primary metabolism
pathways, because they represent essential functions required for
survival, the majority (71 out of 81 primarymetabolism pathways
annotated in KEGG for the 24 plant species) were found present
throughout all species (data not shown).

In the initial presence/absence profile of secondary metabolite
pathways across all 24 plant species, presence was considered
confirmed if at least one component gene was annotated
present in a given species. As pathways are composed of
several enzymes (with an average of 11 enzymes per secondary
metabolism pathway based on the dataset used in this study),
and furthermore, individual pathways may consist of pathway
branches acting semi-independently, a more detailed analysis
based on pathway member genes was performed. Indeed, when

inspecting the presence of individual pathway member genes,
we observed that, while particular member genes of a given
pathway were indeed found across all species, other genes
associated with the same pathway may very well exhibit a
very narrow species presence spectrum (Figures 2, 3). For
example, in the pathway “diterpenoid biosynthesis” (KEGG
map number 00904) about half of the member genes were
found present in the majority of species, while the other half
was detected present in few (one) species only (Figure 3).
The pathway “sesquiterpenoid and triterpenoid biosynthesis”
(KEGGmap 00909) is another example of gene-specific presence
profiles associated with the same pathways. By contrast, for
other pathways, all member genes were detected to occur in
essentially all species (e.g., “terpenoid backbone biosynthesis,”
KEGGmap 00900 or “flavonoid biosynthesis,” KEGGmap 00941,
or consistently in only few species (e.g., isoflavonoid biosynthesis,
KEGG map 00943).

The detailed presence/absence profiles displayed in Figure 2

already reveal a critical limitation of phylogenetic profiling. The
notion of collective presence or absence may not always be
fulfilled given our abstraction of isolated biochemical pathways
and may require further subdivision of distinct biochemical
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FIGURE 2 | Detailed occurrence profiles of secondary metabolite pathways. For all 31 KEGG secondary metabolite pathways indicated by their KEGG map number,

presence across the 24 plant species used in this study is plotted for their respective constituent enzymes. Each bar represents one pathway enzyme and their

presence across 24 plant species based on identical EC number annotation in the different species. Enzymes are grouped and colored according to their KEGG map

number. For associated pathway names, see Figure 1.

reactions and functions. This is illustrated for the diterpenoid
biosynthesis pathway (Figure 3). While the enzymes of the main
branch of this pathway were found present in nearly all of
the 24 species with available pathway annotation, the pathways
branching off of the main path are present in selected species
only.

The number of annotated genes involved in a pathway
proved greatly variable (Figure 4). Considering as associated
genes only those that are annotated to exclusively participate
in secondary and not primary metabolite pathways, not all
of the 31 secondary metabolism pathways actually contain
gene assignments, with nine pathways without any secondary
metabolite pathway specific genes assigned to them (e.g.
“caffeine metabolism”), and others contain only very few (e.g.
“anthocyanin biosynthesis”). By contrast, 13 pathways have
hundreds (“flavonoid biosynthesis, “carotenoid biosynthesis,”
“diterpenoid synthesis”) and even thousands (“phenylpropanoid
biosynthesis,” “terpenoid backbone biosynthesis”) of genes
annotated to them. Note that this gene count includes all
orthologues and paralogs across all 24 plant species considered
here and is based on EC number annotation as provided by
KEGG.

Summarizing these initial survey data, it is apparent that,
despite the large volumes of accumulated sequencing and

genome annotation data, actual secondary pathway knowledge
with regard to species and gene coverage as well as suitability for
testing phylogenetic profiling approaches is relatively limited and
confined to only few secondary metabolite pathways.

Evaluation of Gene Family Assignment
Assigning homology amongst all genes of all considered plant
species is a crucial step in phylogenetic profiling as its outcome
directly defines the presence-absence profile of particular
enzymatic activities across the considered plant species.

We operated under the assumption that all members of a gene
family perform one and one function only, and that different gene
families perform different functions. To test this assumption,
we compared the assignments of genes to gene families to
the functional assignments as given by the KEGG EC number,
with a total of 994 different KEGG enzyme identifiers in the
dataset indicating that many different enzymatic activities. Our
network-based approach with a sequence identity threshold of
30 percent (Network30) resulted in 2,206 gene objects including
1,686 gene families and 520 singleton genes leading to an adjusted
Rand index of 0.471. Using a threshold of 70 percent sequence
identity yielded 9,285 objects (4,373 gene families and 4,912
singleton genes), and an adjusted Rand index of 0.116. Thus,
the more generous clustering, allowing sequences of greater
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FIGURE 3 | KEGG pathway map of the diterpenoid biosynthesis pathway (map 00904). All enzymes performing the steps of the linear main pathway (highlighted

green) were found present in at least 19 plant species. By contrast, the orange-highlighted pathway branches were found present in only one or two species each,

and the dark-red highlighted branch was found present in 13 species. Permission to reproduce this pathway map image was kindly granted by the KEGG curators.

divergence to be clustered together, yielded a better agreement
with actual biological function assignments. By contrast, the
partitioning of genes into gene families at higher sequence
identity threshold levels seems to under-cluster genes compared
to actual function. It must be cautioned, however, that KEGG
functional assignments may in turn be based on sequence
comparisons. Thus, the two clusterings may not be entirely
independent.

As the Network30 gene family assignments proved more
consistent with actual biochemical functional annotation, we
used it henceforth for testing the phylogenetic profiling
methodology to assign pathway relationships.

Figure 5 shows the counts of individual genes annotated as
enzymes, associated proportions assigned into gene families
and singleton genes, respectively, across all 24 KEGG annotated
plant species. Notably, the number of singletons genes does
not correlate with the total number of enzymes in the species.
Furthermore, the three algal species Chlamydomonas reinhardtii
(CRE), Ostreococcus lucimarinus (OLU), Cyanidioschyzon

merolae (CME) are characterized by a pronounced lowered
number of genes assigned to families, but a proportionally high
number of singleton genes likely reflecting their evolutionary
distance from higher plants.

Phylogenetic Profiling
Enrichment of Identical Profiles within Distinct

Metabolic Pathways
The primary objective of this study was to assess the utility of
phylogenetic profiling as a means to associate genes by virtue
of identical profiles to a common biological function, here
metabolic pathway, and in particular, secondary metabolism
pathway. If true that phylogenetic profile agreement implies
common pathway involvement, then, for any given known
pathway, there should be a higher than randomly expected
agreement between phylogenetic profiles associated with genes
assigned to it (high values of Fpw, Equation 1). Because high
degree of profile agreement may also simply reflect that the
respective profiles occur very frequently across all genes and that
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FIGURE 4 | Number of genes coding for enzymes involved in secondary metabolite pathways. The number of genes assigned to each plant secondary metabolite

pathway as annotated in the KEGG database is plotted. Counts are based on all plant genes from any of the 24 plant species considered in this study. Numbers along

the abscissa denote the actual number of genes involved in secondary metabolism pathways only with numbers in parentheses referring to the respective counts

when considering genes annotated to participate in both secondary and primary metabolism pathways. Pathways are indicated by their names. Pathways

“Biosynthesis of vancomycin group antibiotics” as a bacterial pathway, and “Penicillin and cephalosporin biosynthesis” as a fungal pathway were not considered any

further in this plant-focused study. For the pathways “Benzoxazinoid biosynthesis” and “Isoquinoline alkaloid biosynthesis,” while listed in KEGG, conflicting or no

annotations were contained in Biomart and, therefore, were discarded from further analysis. All remaining 19 secondary metabolism pathways with non-zero KEGG

gene counts were considered further.

are participating inmany different pathways, we need to compare
the within-pathway agreement relative to the expected agreement
based on the general frequency of this phylogenetic profile (Fall,
Equation 2). Note that, when referring to genes, we actually
mean gene objects defined as gene families or singleton genes
as described above. And every gene object is characterized by a
phylogenetic profile. Every actual gene present in a given species
is a representative of a gene object, which performs a defined
enzymatic function. This assumption is not strictly true (adjusted
Rand index of 0.471), but nonetheless forms the operational
and reasonable basis of our approach. As outlined above, we
based the following analyses on the Network30-based gene family
assignments as explained in Methods.

We performed statistical tests considering two levels
of metabolic pathway abstraction: the very coarse level of
metabolism classes—there are 10 different metabolism classes
defined in KEGG (Table 1, note that we did not consider the

class “Overview” as being too generic) and the more detailed
functional grouping captured as metabolic pathways. In total,
we considered 94 different pathway maps with 19 annotated as
secondary metabolism. Every pathway belongs to a particular
KEGG metabolism class (Supplementary Table 1).

For five of the 10 considered metabolic classes, indeed
a significant enrichment (multiple testing adjusted p-value
< 0.05) of phylogenetic profile agreements of gene objects
annotated to the same class relative to random expectation was
observed. All five belong to primary metabolism classes and
include: “Amino acid metabolism (AAM),” “Metabolism of other
amino acids (MOAA),” “Metabolism of cofactors and vitamins
(MCV),” “Nucleotide metabolism (NM),” and “Carbohydrate
metabolism (CM)” (Table 2). The fold-enrichment levels for the
two secondarymetabolism classes “Metabolism of terpenoids and
polyketides (MTP),” “Biosynthesis of other secondarymetabolites
(BSM),” while greater than one (1.435 and 1.268, respectively),
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FIGURE 5 | Number of enzyme genes assigned to gene families. The proportion of genes assigned to gene families (light gray) as well as singleton genes (dark gray)

is displayed for each plant species with available KEGG and gene annotation. The distribution is shown for gene family assignment based on the Network30 dataset.

Species are sorted by the total number of genes. For every species, only genes annotated to function as enzymes were considered.

TABLE 2 | Statistics of metabolism class assignments and phylogenetic profile identity of gene families and singletons.

KEGG metabolism class NGF/S Fpw Fall E = Fpw/Fall Adjusted p-value

Amino acid metabolism (AAM) 358 0.037 0.020 1.810 <0.001

Metabolism of other amino acids (MOAA) 114 0.039 0.022 1.787 <0.001

Metabolism of cofactors and vitamins (MCV) 295 0.029 0.019 1.549 <0.001

Nucleotide metabolism (NM) 410 0.021 0.015 1.391 0.008

Carbohydrate metabolism (CM) 742 0.018 0.016 1.130 0.048

Energy metabolism (EM) 261 0.019 0.016 1.217 0.088

Metabolism of terpenoids and polyketides (MTP) 84 0.018 0.013 1.435 0.327

Biosynthesis of other secondary metabolites (BSM) 97 0.012 0.009 1.268 0.809

Lipid metabolism (LM) 271 0.014 0.014 0.981 0.809

Glycan biosynthesis and metabolism (GBM)) 145 0.008 0.009 0.930 0.991

Table lists for all 10 KEGG metabolism classes (KEGG class “Overview” was not considered) the number of gene families or singleton genes (jointly referred to as gene objects, NGF/S)

annotated to them, the fraction of all profile-profile comparisons among all NGF/S gene objects yielding identical profiles within a class (Fpw , Equation 1), the fraction of all profile-profile

comparisons of NGF/S gene objects yielding identical profiles within and to gene objects outside a class (Fall , Equation 2), the resulting fold enrichment (E = Fpw/Fall ) of identical

phylogenetic profiles within a class relative to expectation, and 30 associated Benjamini-Hochberg corrected empirical p-value based on 10,000 random class assignments. Results

are based on Network30-based gene family assignments (see Methods). Metabolism classes are sorted in ascending order of p-value. Highlighted bold are the secondary metabolism

classes.

did not prove to be statistically significant. Of the three
remaining metabolic classes, “Energy metabolism (EM)” showed
borderline significant enrichment (1.217-fold, adjusted p-value=
0.09), while “Lipid metabolism (LM)” and “Glycan biosynthesis
and metabolism (GBM)” showed no discernable enrichment
(Table 2).

The result of significant phylogenetic profile agreement
associated with primary, and therefore, ubiquitous pathways

appears surprising at first, given that we argued that phylogenetic
profiling is ideally suited to identify biochemical functions
confined to subsets of species. However, the rationale still holds
and is meaningful. Phylogenetic profiles reflecting presence in all
species are informative in the sense that they identify functions
that are indispensable, and as many profiles will reflect presence
in subsets of species only, even those profiles suggesting presence
in all species can be enriched relative to random expectation.
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FIGURE 6 | Phylogenetic profile frequency statistic. For all 818 unique phylogenetic profiles, their respective occurrence; i.e. number of gene objects with this profile,

is plotted in descending order of occurrence (A). The associated actual presence (black cell)/ absence (white cell) for all 39 plant species considered in this study is

plotted underneath (B). Plant species are given by their abbreviation introduced in Table 1 and clustered hierarchically (complete linkage, Euclidean distance)

according to similarity of presence/absence pattern. Unique profiles found for only one gene object are sorted in descending number of genes clustered into this

object; i.e., from large gene families (grouped to the left) to small gene families and singleton genes (grouped to the right). Note that we used only those gene objects

for which a KEGG annotation for at least one member plant was available.

And they are enriched exactly in those pathway classes that are
indispensable. However, the specificity of pathway assignments
may be lost as many different pathways will essential and
therefore performed in all species (see Figure 6 and associated
results below).

At the more detailed level of functional abstraction
considering actual metabolic pathways as annotated in
KEGG, 29 of the 94 considered pathways displayed significant
enrichments (multiple testing adjusted p-value < 0.05) of

identical phylogenetic profiles between member gene objects
relative to random expectation (Table 3). Again, and following
the same rationale as explained above for metabolic classes, most
of the 29 pathways belong to primary metabolism pathways such
as the TCA-cycle (fold enrichment, E = 4.145, adjusted p-value
< 0.001) or various amino acid metabolism pathways (Table 3).
However, the largest and also significant enrichment factors
were observed for the two secondary metabolism pathways
“Stilbenoid, diarylheptanoid and gingerol biosynthesis” (E =
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TABLE 3 | Statistics of metabolism pathway assignments and phylogenetic profile identities of gene families and singletons.

Pathway map number and name Class NGF/S Fpw Fall E = Fpw/Fall Adjusted p-value

00450 Selenocompound metabolism MOAA 15 0.152 0.037 4.165 <0.001

00020 Citrate cycle (TCA cycle) CM 31 0.146 0.035 4.145 <0.001

00920 Sulfur metabolism EM 23 0.142 0.035 4.014 <0.001

00660 C5-Branched dibasic acid metabolism CM 15 0.152 0.039 3.958 <0.001

00280 Valine. leucine and isoleucine degradation AAM 26 0.120 0.036 3.377 <0.001

00710 Carbon fixation in photosynthetic organisms EM 70 0.065 0.026 2.498 <0.001

00250 Alanine. aspartate and glutamate metabolism AAM 43 0.063 0.026 2.467 <0.001

00400 Phenylalanine. tyrosine and tryptophan biosynthesis AAM 49 0.061 0.028 2.188 <0.001

00010 Glycolysis/Gluconeogenesis CM 105 0.050 0.024 2.134 <0.001

00260 Glycine. serine and threonine metabolism AAM 75 0.049 0.024 2.068 <0.001

00620 Pyruvate metabolism CM 72 0.047 0.024 2.000 <0.001

00240 Pyrimidine metabolism NM 325 0.023 0.014 1.670 <0.001

00300 Lysine biosynthesis AAM 16 0.125 0.034 3.682 0.006

00650 Butanoate metabolism CM 25 0.097 0.035 2.746 0.006

00640 Propanoate metabolism CM 41 0.070 0.029 2.428 0.006

00270 Cysteine and methionine metabolism AAM 70 0.053 0.025 2.180 0.006

00480 Glutathione metabolism MOAA 42 0.050 0.023 2.152 0.010

00030 Pentose phosphate pathway CM 63 0.040 0.024 1.684 0.010

00071 Fatty acid degradation LM 15 0.114 0.034 3.365 0.015

00945 Stilbenoid. diarylheptanoid and gingerol biosynthesis BSM 12 0.152 0.012 12.553 0.024

00220 Arginine biosynthesis AAM 41 0.041 0.022 1.865 0.030

00290 Valine. leucine and isoleucine biosynthesis AAM 35 0.047 0.026 1.820 0.030

00630 Glyoxylate and dicarboxylate metabolism CM 74 0.035 0.022 1.613 0.033

00051 Fructose and mannose metabolism CM 65 0.034 0.021 1.616 0.035

00860 Porphyrin and chlorophyll metabolism MCV 63 0.034 0.021 1.638 0.041

00410 beta-Alanine metabolism MOAA 24 0.047 0.027 1.740 0.047

00230 Purine metabolism NM 367 0.021 0.014 1.487 0.049

00310 Lysine degradation AAM 13 0.077 0.037 2.060 0.050

00760 Nicotinate and nicotinamide metabolism MCV 22 0.048 0.022 2.214 0.052

00904 Diterpenoid biosynthesis MTP 7 0.143 0.012 11.626 0.069

00380 Tryptophan metabolism AAM 35 0.039 0.022 1.730 0.091

00941 Flavonoid biosynthesis BSM 14 0.066 0.014 4.695 0.097

00790 Folate biosynthesis MCV 30 0.039 0.020 2.003 0.097

For all KEGG metabolism pathways given by their KEGG map number and name and with profiling results corresponding to a False Discovery Rate (FDR) of less than 10%, table lists

the metabolism class to which pathway belongs indicated by their abbreviations introduced in Table 1, the number of gene families or singleton genes (referred to as gene objects,

NGF/S) annotated to them, the fraction of all profile-profile comparisons among all NGF/S gene objects yielding identical profiles within a pathway (Fpw, Equation 1), the fraction of all

profile-profile comparisons of NGF/S gene objects yielding identical profiles within and to gene objects outside a pathway (Fall , Equation 2), the resulting fold enrichment (E= Fpw/Fall ) of

identical phylogenetic profiles within a pathway relative to expectation, and associated Benjamini-Hochberg corrected empirical p-value based on 10,000 random pathway assignments.

Results are based on Network30-based gene family assignments (see Methods). Only pathways with significant enrichment of identical profiles (adjusted p-value < 0.1) are listed. For

a complete listing of statistical results for all 94 pathways considered in this study, see Supplementary Table 1. Pathways belonging to secondary metabolism classes Biosynthesis of

other secondary metabolites (BSM) and Metabolism of terpenoids and polyketides (MTP) are highlighted using bold face font. Pathways are sorted in ascending order of p-value.

12.553, p = 0.024) and the borderline significant pathways
“Diterpenoid biosynthesis” (E = 11.626, p = 0.069) and
“Flavonoid biosynthesis” (E = 4.695, p = 0.097). Of the
remaining 17 secondary metabolism pathways, 11 contained
three or fewer different gene objects (Supplementary Table 2)
rendering any meaningful statistical assessment impossible.
Note that we only considered gene objects to be assigned to
secondary metabolism pathways that are not also participating
primary metabolism processes. Hence, the number of gene
objects may be considerably smaller than the number of

enzymes annotated in KEGG to belong to a particular secondary
metabolism pathway. The secondary metabolism pathway
“Limonene and pinene degradation” shows a high enrichment
of profile agreements (E = 7.296), but statistical significance
could not be established (p = 0.142). All other secondary
metabolism pathways (“Terpenoid backbone biosynthesis,”
“Carotenoid biosynthesis,” “Phenylpropanoid biosynthesis,”
“Zeatin biosynthesis”) showed no discernable enrichment of
profile agreements within them despite relatively high numbers
of gene objects (>10) assigned to them (Supplementary Table 2).
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We considered as potentially functionally linked only
those gene objects that share the same phylogenetic profile.
While more relaxed thresholds (tolerating a small number of
presence/absence mismatches across the 39 considered plant
species) or even gradual profile-profile distances based on bit-
distances are conceivable, given the all-or-nothing criterion
employed here, inspecting the frequency distribution of unique
phylogenetic profile may shed further light on the representation
of unique profiles across all gene families (Figure 6). In total, we
determined 818 unique profiles associated with the 2,206 gene
objects (gene families or singleton genes). The present-in-all-
species profile was observed most frequently. One hundred and
Eighty gene objects were detected with this profile. One hundred
and thirty one profiles were observed to be shared by two or
more gene objects, while 685 were found uniquely associated
with only one gene object (Figure 6). Unique profiles are both
those that are characterized by a presence in only a small number
of species as well as general presence with unique absences in
particular species. Figure 6 also visualizes the presence/absence
profiles across the 39 plant species considered in this study.
Because it is the most broadly and intensively investigated model
plant, A. thaliana stands out as possessing the largest number of
presence calls. As also the genome annotation of other species is
often derived from Arabidopsis based on sequence comparison,
other species can essentially only possess fewer, but not more
functionally annotated gene objects unless investigated more
closely and experimentally or based on de-novo bioinformatic
gene annotation. The clustering of plant species according to
similarity of their presence/absence profile across all 818 unique
profiles reproduces the established phylogenetic relationships
between them (Figure 6).

Predictability of Metabolic Pathway Association

Based on Phylogenetic Profile Similarity
We observed that for selected pathway classes (Table 2) and
detailed pathways (Table 3), indeed a significant increase of
occurrence of genes with the same phylogenetic profile is
evident. We now asked, whether the reverse, high profile
similarity implies association to the same pathway, holds true
as well. While the former can be regarded the necessary
condition for the phylogenetic profiles to be of predictive
value, the latter constitutes the ultimate test and defines the
applicability of phylogenetic profiling in practice. Reversing the
viewpoint (pathway association suggests profile similarity vs.
profile similarity predicts pathway association) is not equivalent
either, because of the general absence of symmetry of conditional
probability of two events A and B with P (A|B) 6= P (B|A) in most
cases.

To assess predictive value of phylogenetic profile similarity
with regard to assigning two genes to either belong to the same
or different pathway, we randomly drew two different gene
objects from all 2,206 gene objects comprising 1,686 gene families
and 520 singleton genes and determined their similarity with
regard to phylogenetic profile and pathway assignments (see
section Materials and Methods). If predictive, high phylogenetic
profile similarity, reflected in our approach by values of dPP
(Equation 3) close to one, should indicate high agreement of
pathway assignments of two gene objects, with A_PW-values
(Equation 4) approaching one. However, as displayed in Figure 7,
we observed no correlation of both similarity measures letting us
conclude that given the available data and applied definitions,
phylogenetic profile similarity is not predictive of pathway
association.

FIGURE 7 | Metabolic pathway - phylogenetic profile correlation statistic. Pairwise agreement of pathway memberships, A_PW, of gene objects (families and

singletons) in relation to their respective phylogenetic profile similarity, dPP. Because the underlying data are discrete resulting in many identical value-pairs, their

respective frequency is illustrated by the area of the circles centered on the observed value-pairs. The red line signifies the logistic fit (see section Materials and

Methods) and suggests that pathway similarity cannot be inferred on the basis of similar phylogenetic profiles of gene pairs.
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Next, we treated the task of pathway assignment based on
phylogenetic profiles as a machine learning problem. Using
the Clus-HMC software package (see section Materials and

TABLE 4 | Clus-HMC random forest prediction results of metabolic class based

on phylogenetic profile of gene families and singleton genes.

KEGG Metabolism class NGF/S AUCPRC

Carbohydrate metabolism (CM) 549 0.478

Nucleotide metabolism (NM) 301 0.318

Energy metabolism (EM) 204 0.293

Amino acid metabolism (AAM) 292 0.246

Metabolism of cofactors and vitamins (MCV) 229 0.212

Lipid metabolism (LM) 207 0.151

Biosynthesis of other secondary metabolites (BSM) 106 0.110

Glycan biosynthesis and metabolism (GBM) 114 0.082

Metabolism of other amino acids (MOAA) 97 0.076

Metabolism of terpenoids and polyketides (MTP) 94 0.059

Reported for the 10metabolic classes are the number of gene families/ singletons (NGF/S)

and the obtained areas under the prediction-recall curve (AUCPRC). The two classes

corresponding to secondary metabolism processes are highlighted in bold-face font.

Methods for details) that allows for hierarchical data structures
as prediction targets (pathway class with detailed pathway maps
in the next lower level) as well as allowing multiple labels (a
gene can participate in more than one pathway), we aimed to
predict metabolic class and pathway map for all gene families and
singleton genes based on their phylogenetic profile. Approaching
the prediction via a machine learning methodology (Random
Forests) would possibly allow selected species to receive higher
predictive value than treating all entries equally as done in
the profile-profile comparison metric. In a cross-validation
setting (out-of-bag error in Random Forest classification tree
predictions), highest precision of prediction was achieved for
central metabolism pathways when considering metabolism
class (Table 4, Figure 8) and the detailed pathway maps
“Photosynthesis,” “Pentose and glucuronate interconversions,”
“Starch and sucrose metabolism,” “Pyrimidine metabolism,” and
“Purine metabolism” (Table 5), again pathways associated with
primary metabolism. Compared to randomly shuffled data,
significantly better than random predictions were obtained at the
pathway map level (p= 0.0033, Figure 8), whereas for class-level
data, significance could not be established albeit the correct data
corresponded to larger areas under the precision-recall curve
(AUCPRC) than obtained for shuffled data (p= 0.22, Figure 8).

FIGURE 8 | Classification results. Classification results of metabolic pathway class or map assignments of gene objects based on their phylogenetic profiles using

Random Forest predictions as implemented in Clus-HMC. Performance is judged by the area under the precision-recall curve (AUCPRC). For the 100/20 randomized

repeats performed for pathway map or class respectively, average AUCPRC distributions are plotted. Averaged over all random repeat runs, tests for statistical

difference (Wilcoxon rank sum test) between actual and random AUCPRC value distributions yielded for pathway class: mean actual = 0.2, mean random = 0.13, p

= 0.22, and for pathway map: mean actual = 0.04, mean random = 0.021, p = 0.0033. Clus-HMC was used allowing multiple and hierarchically organized labels per

object with the hierarchy related to metabolism class and metabolism map.
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TABLE 5 | Clus-HMC random forest prediction results of metabolic pathway map

based on phylogenetic profile of gene families and singleton genes.

Pathway map number and name NGF/S Class AUCPRC

00195 Photosynthesis 30 EM 0.383

00040 Pentose and glucuronate interconversions 194 CM 0.340

00500 Starch and sucrose metabolism 292 CM 0.336

00240 Pyrimidine metabolism 325 NM 0.317

00230 Purine metabolism 367 NM 0.312

Listed are the number of gene families/ singletons (NGF/S), the abbreviated metabolic

class to which the map belongs, and the obtained areas under the prediction-recall curve

(AUCPRC). Of all 94 maps, listed are those with AUCPRC> 0.25 as for those, predictions

were significantly better than random (Figure 8). A complete list including all 94 pathways

is provided as Supplementary Table 2.

Phylogenetic Profile Similarity as an Indicator of

Gene Co-expression and Protein-Protein Interactions
So far, we aimed to infer metabolic pathway relationships of
genes via the similarity of their phylogenetic profiles. Next,
we investigated whether phylogenetic profiles prove informative
with regard to gene co-expression regulation of the encoded
transcripts and physical interactions of their protein products.
Like metabolic pathway membership, both types of associations
can be taken as evidence of involvement in similar functional
processes (Durek and Walther, 2008; Walther et al., 2010).
As physical interactions (protein-protein interactions) represent
direct associations, the rationale of phylogenetic profile similarity
reflecting functional metabolic associations may become most
apparent when testing them against protein-protein interactions.
In these analyses, we focused on genes from the plant A.
thaliana as rich experimental information on gene expression
and protein-protein interactions are available. Specifically, we
selected pairs of enzyme-encoding genes from Arabidopsis,
retrieved their expression profiles from NASCArray, correlated
them and also checked whether their protein products have
been reported to interact (see section Materials and Methods
for details). We then tested whether their association as judged
by co-expression or physical interaction is correctly reflected
by similarity of the phylogenetic profiles of the gene families
to which the Arabidopsis genes belong. As this study focus on
metabolic aspects, we considered enzyme encoding genes only.

With regard to co-expression of Arabidopsis metabolic
enzyme genes, no evidence of increasing profile-similarity being
reflected by increased co-expression regulation was detected (r
= 0.022, p= 2.9∗10−11, Figure 9), albeit the correlation between
the two distance measures proved significant, but due to the high
number of value pairs. By contrast, a pronounced and statistically
significant difference was found when testing for protein-protein
interactions. Physically interacting enzymes were observed to
be associated with genes whose phylogenetic profiles are more
similar to one another (median value of dPP = 1), than for non-
interacting enzyme proteins (median value of dPP = 0.92, p <

2.2∗10−16, Figure 10). Thus, as argued above, direct interactions
are indeed reflected by phylogenetic profile similarity, while gene
co-expression, which includes gene pairs that operate in distant
functional processes, is generally not.

FIGURE 9 | Pairwise gene co-expression statistic. Association of pairwise

phylogenetic profile similarity, dPP, and co-expression of Arabidopsis gene

pairs as judged by their pairwise Pearson correlation coefficient, rGE. Raw

pairwise data are plotted as open circles, the red line indicates the linear

regression line (r = 0.022, p = 2.9*10−11), the green line corresponds to a

logistic fit virtually coinciding with the linear regression line, blue circles indicate

median values of binned data (bin width = 0.1 dPP units) connected by

straight lines for visual guidance.

FIGURE 10 | Protein-protein interaction statistic. Violin-plot of the frequency

distribution of phylogenetic profile similarity values, dPP, of enzyme pairs

encoded in Arabidopsis thaliana reported to physically interact (median = 1) to

those pairs not reported to interact (median = 0.92, p < 2.2*10−16).

DISCUSSION

In this study, we tested the applicability of phylogenetic profile
similarity as an indicator of functional association between
genes. Specifically, we aimed to determine whether patterns of
correlated presence or absence of genes and their particular
functions across different plant genomes can be used to infer
metabolic pathway relationships. We focused on secondary
metabolism as it is known that secondary metabolism exhibits
pronounced confinements to particular species, a prerequisite
for phylogenetic profiling to be informative and, thus, successful
in predicting functional gene associations. We performed
an array of analysis based on 39 plant genomes and gene
functional annotation as available in KEGG. We approached
answering the key questions of this study from various angles,
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first testing, whether genes assigned to known metabolic
pathways show greater than expected agreement between their
phylogenetic profiles. Then, we turned this approach around by
asking whether pathway association can be predicted based on
phylogenetic profiles. Lastly, we also tested whether phylogenetic
profile similarity informs on gene co-expression and physical
interactions of their encoded protein product.

With regard to the central question to assign metabolic
pathway relationships, the results of our feasibility study were
largely negative. Phylogenetic profile similarity did not prove
informative with regard to metabolic pathway relationships.
More precisely, no specific predictions could be made. Correct
pathway associations were predicted for primary metabolism
pathways only (Figure 8, Tables 2–5). Thus, the methodology
correctly predicted essential processes based on presence/absence
calls of genes across genomes, which however, involve several
pathways. Thus, specificity is lost. Assigning secondary pathway
relationships proved not possible, nor was gene co-expression
correlated with phylogenetic profile similarity (Figure 9). The
only, but very notable, exception were physical interactions
between protein products (Figure 10). Here, phylogenetic
profiles proved of predictive value. Direct physical interactions
of enzyme proteins are reflected by an increased phylogenetic
profile similarity of genes encoding them. Thus, rather than
extending to associations of genes at larger functional distances
captured by the assignment of genes to a common pathway,
phylogenetic profiles proved predictive only for short range, in
fact, direct functional interactions involving physical contacts.

The largely negative results of this feasibility study call
for a critical review of the study design, used data, and
applied methodology. Critical aspects concern the selection of
plant species, the assignment of genes to gene families as the
critical step to establishing presence or absence of particular
gene functions in genomes, and the richness and accuracy of
metabolic pathway annotation, specifically concerning secondary
metabolism pathways, as well as the notion of distinct metabolic
pathways as a suitable abstraction of functional interactions
between enzymes.

Selection of Plant Species
In essence, the phylogenetic profiling approach relies on
correlations of vectors (binary presence/absence calls of genes
or their respectively encoded functions). Thus, as with any
correlation measure, confidence of a significant correlation
should increase with length of the vectors; i.e., the number
of value pairs, or genomes in our case, to be compared.
Therefore, it seems desirable to include as many genomes/plant
species as possible. When testing for the required minimal
number of genomes to be included in phylogenetic profiling
studies, prediction results were plateauing beyond 100 included
genomes with an additional importance associated to increased
phylogenetic diversity rather than bare counts of genomes
(Škunca andDessimoz, 2015). Similarly, it was reported that aside
from including many genomes, their selection (e.g., with regard
to kingdom) matters as well and that, furthermore, the selection
of genomes may have different bearings on the predictability of
different pathways (Jothi et al., 2007).

Here, we included 39 plant species covering a broad spectrum
of plant species from algae to higher plants (Table 1). Despite
being a comparably promising number of genomes as judged by
the reported 100 species optimum, evidently, further increasing
this number of species would be desirable, but is dependent
on the availability of sequenced plant genomes, which is likely
to rapidly grow given the progress in sequencing technologies.
Alternatively, we could have chosen to expand the number of
considered genomes by including non-plant species. However,
as we were specifically interested in plant secondary metabolism,
which is (largely) absent in non-plant species, we opted against
it. Including non-plant species would likely have yielded strong
predictions for assigning relationships of genes present in
plants only. Yet, we believe, discerning plant-only genes and
functions can be achieved based on single gene comparison
alone without imposing correlated inheritance patterns needed
specifically to discern functional relationships. By including non-
plant genomes would have yielded unspecific results that the
interaction is confined to the plant kingdom.

Assignment of Genes to Gene Families as
the Critical Step to Establishing Presence
or Absence of Particular Gene Functions in
Genomes
Most critically, phylogenetic profiling depends on the correct
assignment of a gene being present or not. More precisely, it
needs to be decided whether the particular function observed
to be performed in a reference species can be performed in
another species, and therefore, a homologous gene would be
found encoded in it.

We operated under the assumption that sequence-similar
enzymes perform similar or identical functions. Hence, the
presence or absence of a particular enzymatic activity in a given
genome can be determined based on sequence similarity to
an annotated reference gene. While it has been shown that
sequence similarity is indeed a good predictor of similar protein
structure and, thus, function (Sander and Schneider, 1991),
and that above 40% sequence identity functional differences
are unlikely (Lo Conte et al., 2002; Orengo et al., 2002),
contradicting examples have also been described. For example,
proteins with high sequence similarity to photosynthesis related
genes were found in non-photosynthetically active organisms
invalidating any sequence-based functional assignment to
photosynthetic processes (Ashkenazi et al., 2012). More
generally, early conclusions suggesting relatively low sequence
identity thresholds as sufficient for a reliable functional
annotation transfer were called into question by pointing to
possible database biases (Rost, 2002). Following up on this study,
Tian and Skolnick showed that at 40% sequence identity, transfer
of enzymatic function at the level of the first three EC number
digits is reliable. However, to predict all four digits, 60% sequence
identity levels are necessary to achieve 90% accuracy (Tian and
Skolnick, 2003). Therefore, it appears surprising that we obtained
best agreement of gene family clustering and enzymatic function
annotation at 30%, and not 70%, sequence identity. We believe,
this apparent contradiction is explained by realizing that Tian
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and Skolnick (2003) excluded all computational predictions,
while we included them. Therefore, our results will depend on
the sequence comparison thresholds applied by the original
genome curators, which very likely included more generous
sequence identity threshold levels. And as our plant dataset
contains many species that have been less intensively studied
experimentally, computational annotations will form the basis
of many functional assignments. Furthermore, it is clear that
sequence identity across the entire sequence can only be on
average a good predictor of function as even single amino acid
mutation may suffice to alter an enzyme’s function, for example
with regard to substrate specificity (Khersonsky et al., 2006).

For generating gene families, we also tested OrthoFinder
(Emms and Kelly, 2015) as well as applied community detection
algorithms to the networks based on sequence-comparison based
networks to identify sub-clusters of genes, which could be
regarded individual gene families. However, those attempts did
not yield qualitatively different results than reported here based
on pairwise sequence-identity thresholds assignments.

Richness and Accuracy of Metabolic
Pathway Annotation
We specifically aimed at exploiting phylogenetic profiling for
the identification of genes commonly involved in specific plant
secondary metabolism pathways. As secondary metabolism
pathways are known to occur specifically in particular species
(Hartmann, 1996; Higashi and Saito, 2013), the requirements of
phylogenetic profiling seem ideally met. However, for secondary
metabolism pathways, low statistical concordance of member
gene profiles (Tables 2, 3, Supplementary Table 1) and poor
prediction results (Tables 4, 5, Supplementary Table 2) were
obtained.

An obvious and serious limitation of our study lies in the
paucity of experimentally annotated, and most importantly,
species-specific annotation of secondary metabolism pathways
and their associated genes explained by the experimentally
challenges to deduce pathways and involved genes. To large
degree, enzymatic pathway annotation relies on homology-based
transfer of annotations frommodel species withA. thaliana being
the most significant one. While A. thaliana was found to exhibit
a richer than expected secondary metabolism (D’Auria and
Gershenzon, 2005), relying on a single or few well characterized
species will naturally limit the ability to test the predictive
value phylogenetic profiling. It is important to note that the
limitations concern the testability of predictions. Predictions
may still be correct, but it is not possible to compare them
to known annotations. Thus, to further develop and exploit
concepts phylogenetic profiling, an enlarged set of functionally
characterized and specific plant pathway genes in diverse plant
species would be highly desirable.

In our analyses, we used annotated enzyme genes only. In
applying phylogenetic profiling to novel genomes, of course, it
would not be known a priori whether a gene codes for enzyme.
However, this study was designed specifically as a feasibility
study such that a comparison to true (within the limits of
its accuracy) functional assignments can be made. In praxis,

classical sequence-comparison based methods could be used to
establish enzymatic functionalities first, which however, would
also allow assigning novel genes to pathways if a corresponding
annotation is available. It was exactly the aim of this study to
test, whether such functional assignments can be made based
on phylogenetic profile similarity alone; i.e., without requiring
detailed annotation knowledge. Unfortunately, this promise did
not materialize.

We based our metabolic pathway annotation information on
KEGG. While KEGG is highly regarded, alternative databases
focusing on plant species have been developed (Grafahrend-
Belau et al., 2012) amongst which the Plant Metabolic
Network (PMN, aka PlantCyc, www.plantcyc.org) represents
another large-scale plant-metabolism-centric data resource.
For comparison, we also performed the phylogenetic profile
enrichment analysis using PlantCyc data (Supplementary Table
3). While a larger set of 241 pathways was available for analysis,
only five proved to be significant with regard to enriched
phylogenetic profile similarity. In close agreement with the
KEGG results, the “Calvin-Benson-Bassham cycle” pathway
(Benjamini-Hochberg corrected pBH < 0.001) turned out to be
most significant (using KEGG data, it was ranked fifth and
designated as “Carbon fixation in photosynthetic organisms,”
followed by “brassinosteroids inactivation” (pBH < 0.001),
“oryzalide A biosynthesis” (pBH = 0.048), “5-aminoimidazole
ribonucleotide biosynthesis II” (pBH = 0.048, and “L-arginine
biosynthesis II (acetyl cycle),” pBH = 0.048). Thus, the more
detailed pathway description available in PlantCyc did not result
in increased associations, even though it needs to be considered
that the larger set sizes (241 vs. 94 in KEGG) causes a more
pronounced multiple testing correction effect. Nonetheless, we
conclude that the results reported here are not specific to KEGG,
but point to a general weakness of the approach and the current
data availability.

Notion of Distinct Metabolic Pathways as a
Suitable Abstraction of Functional
Interactions between Enzymes
Primarily, we based functional associations of genes objects on
their occurrence in the same KEGG pathway class or detailed
pathway map. Thus, we treated pathways as isolated containers
with all genes in them exhibiting a functional relationship
irrespective of the actual number of reactions steps between
them. Using this definition, largely poor statistical prediction
results were obtained. By contrast, when inspecting direct and
physical interaction between enzymes, phylogenetic profiles
proved highly informative (Figure 10). As, often, physical
interactions indicate immediate metabolic reaction relationships
(Durek and Walther, 2008), this result can be taken as positive
study result pointing also to the importance of metabolic
pathway distance between enzymes. Therefore, phylogenetic
profile similarity may be taken as a suitable filtering to identify
true protein-protein interactions in experimental or prediction
interaction sets. Apparently, with larger metabolic pathway
distance, predictive value of phylogenetic profiles decays quickly.
As a conclusion, switching from pathway containers to a
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network-based distance between enzyme genes seems in order.
This would also address another obvious limitation of pathway
containers. They treat metabolic relationship as isolated sub-
pathways, such that genes are either involved in the same process
or not at all associated. This is illustrated also in Figure 3 for
the diterpenoid biosynthesis pathway. While some genes in this
pathway container (map) or found in many species, branch-
reactions have a narrow species-occurrence pattern. Treating all
genes identically in this map seems incorrect and will lead to
wrong conclusions. Evidently, a distance metric that captures
the true metabolic pathway distance, for example, shortest
paths (Durek and Walther, 2008; Walther et al., 2010), would
be preferable. However, despite these severe limitations, we
still regard the approach presented in this study a valid first
step toward attaining the goal of correct functional association
prediction of enzyme genes.

CONCLUSIONS

In conclusion, phylogenetic profile similarities proved insensitive
to yield reliable predictions of associations of genes at the level
of metabolic pathway classes and maps, but were informative
with regard to physical interactions of encoded enzyme proteins.
This study underlines the need to expand our experimental
knowledge of secondary metabolism pathway across different
plant species before a final judgment of the applicability of
phylogenetic profiles can be made. It also critically reflects
on the concept of assigning genes as functionally linked via

pathway memberships alone. Instead, a network-based distance
metric appears desirable. The positive correlation of profiles with
physical interactions opens the possibility to use phylogenetic
profiling as a filtering step to identify true protein-protein
interactions from candidate interaction sets.
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