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We have developed a vision-based program to detect symptoms of Olive Quick Decline
Syndrome (OQDS) on leaves of Olea europaea L. infected by Xylella fastidiosa, named
X-FIDO (Xylella FastIdiosa Detector for O. europaea L.). Previous work predicted disease
from leaf images with deep learning but required a vast amount of data which was
obtained via crowd sourcing such as the PlantVillage project. This approach has limited
applicability when samples need to be tested with traditional methods (i.e., PCR) to
avoid incorrect training input or for quarantine pests which manipulation is restricted.
In this paper, we demonstrate that transfer learning can be leveraged when it is not
possible to collect thousands of new leaf images. Transfer learning is the re-application
of an already trained deep learner to a new problem. We present a novel algorithm
for fusing data at different levels of abstraction to improve performance of the system.
The algorithm discovers low-level features from raw data to automatically detect veins
and colors that lead to symptomatic leaves. The experiment included images of 100
healthy leaves, 99 X. fastidiosa-positive leaves and 100 X. fastidiosa-negative leaves
with symptoms related to other stress factors (i.e., abiotic factors such as water
stress or others diseases). The program detects OQDS with a true positive rate of
98.60 ± 1.47% in testing, showing great potential for image analysis for this disease.
Results were obtained with a convolutional neural network trained with the stochastic
gradient descent method, and ten trials with a 75/25 split of training and testing data.
This work shows potential for massive screening of plants with reduced diagnosis time
and cost.

Keywords: convolutional neural networks, deep learning, machine vision, transfer learning, Olea europaea,
Xylella fastidiosa

INTRODUCTION

Olive trees are among the most cultivated plants in the world with 10.2 million hectares of
planted trees in 2014 (FAO, 2017). In 2013, Xylella fastidiosa, a quarantine pathogen known as
the causal agent of devastating diseases such as Pierce’s disease or Citrus variegated chlorosis
(Chatterjee et al., 2008; Janse and Obradovic, 2010), was discovered in the Apulia region of Italy
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(Saponari et al., 2013). The pathogen (X. fastidiosa subsp. pauca
strain CoDiRO) was associated to the Olive Quick Decline
Syndrome (OQDS or Complesso del Disseccamento Rapido
dell’Olivo, CoDiRO) that is causing the collapse and death entire
groves of olives in some Apulian districts. Symptoms can vary
but, in general, the disease presents itself as leaf scorching, drying,
wilting and eventual death. In olive trees, tissue desiccation starts
at the tip of the leaves and progresses toward the petiole, soon
extending to the whole blade (Martelli, 2016). The first visual
symptoms in an infected tree occur between 3 and 18 months
after initial infection, depending on the time of year, tree age
and variety. In olive trees, the latent period—the period between
infection and the appearance of symptoms—will likely provide
ample time for the pathogen to spread far away from the
initial point of introduction before it is detected, thus large-
scale monitoring is desirable. Several diagnostic protocols were
tested for the CoDiRO strain (Luvisi et al., 2017), such as
ELISA (Loconsole et al., 2014), PCR (Minsavage et al., 1994;
Guan et al., 2015), direct tissue blot immunoassay (Djelouah
et al., 2014) or loop-mediated isothermal amplification (LAMP)
(Harper et al., 2010; Yaseen et al., 2015). Two real-time PCR
protocols are also available (Francis et al., 2006; Harper et al.,
2010). However, large-scale monitoring such those carried out
in Apulia (Martelli, 2016) required a screening of plants to
collect samples from symptomatic plants, otherwise the erratic
distribution of the pathogen in the host may decrease detection
effectiveness of diagnostic tools. Presently, to detect OQDS, a
human expert observes the whole canopy (the size of which may
be considerable for centenary trees) to detect the symptoms.
Because the disease symptoms mainly appear visually on the
leaves of an infected plant, computer vision has the potential to
provide an effective and fast method for detecting leaf scorch
(Luvisi et al., 2016).

We propose a system that would enable growers to take photos
of a possibly affected plant with their mobile device, upload
the image from the mobile device or computer, have the image
processed remotely through the cloud by a deep learning system,
and receive a prompt diagnosis of the specimen (Figure 1).

In the following, we give a brief overview of the historical basis
for quantitative analysis of plants, the development of image-
based pattern recognition systems for processing leaves, and the
impact of deep learning when applied to pattern recognition
systems to identify plants and detect diseases. The earliest work
for mathematical analysis of plants dates to a 1936 work by
Fisher (1936) that used floral measurements and discriminant
analysis to determine the taxonomy of Iris plants. With the
advent of LANDSAT technology in the 1970’s, growers were
able to quantify the health of whole fields of crops at a glance
using satellite imagery (Wiegand et al., 1986). Computer methods
for analysis of specific plant specimens appear as early as
the 2000’s. Haiyan and He (2005) fuse backpropagation, an
artificial neural network designed to imitate the behavior of
firing synapses in the human brain, and expert systems, early AI
methods based on IF-THEN rules, to pinpoint the origination
of nutritional disorders in an orchard. Cunha (2003) applied
computer vision techniques to analyze plant leaves imaged
with a digital scanner. Computer algorithms automatically

calculated the morphological properties of the leaf such as area,
perimeter, holes, width and length. Among the earliest works
to automatically identify plant species from leaf images dates
to a 2001 thesis by Söderkvist (2001). A variety of feature
extraction methods (circularity of shape, wavelet transforms,
Fourier descriptors, Hu’s moments, etc.) and machine learning
methods (support vector machines and backpropagation; Chang
and Lin, 2011) were utilized. At best, it was found that
backpropagation had mixed success. The data for this work was
publicly released and 1,125 leaf images continue to be used as a
benchmark dataset.

By the late 2000’s, pattern recognition systems were being
proposed that had much better success at automatically
identifying the species of plants and presence of disease from
leaf images. Pattern recognition is the field of study where
a computer automatically predicts the properties of an object
from its percepts. The approaches can be categorized into two
methodologies: local appearance methods and shape methods.
In local appearance methods, the image is processed on a pixel-
by-pixel basis. The behavior of a local neighborhood is used
to characterize each pixel. Often, a method will quantify the
gradient pattern—the strength and direction of the edge at the
local pixel. Nilsback and Zisserman (2008) characterized leaf
features with the Histogram of Oriented Gradients algorithm
(Chen et al., 2014) and the Scale-invariant Feature Transform
(SIFT) (Liu et al., 2015). A support vector machine predicted
the species of a flower amongst 103 different categories. Xiao
et al. (2010) applied Histogram of Oriented Gradients with
Maximum Margin Criterion, an algorithm based on discriminant
analysis that reduces the number of features to be used by
the machine learning algorithm. The algorithm was tested on
Soderkvist’s Swedish leaf data set (Söderkvist, 2001) and the
Intelligent Computing Laboratory’s (ICL) plant dataset of 17,032
leaf images of 220 different species. In shape methods, also
known as segmentation and morphological-based methods, a
segmentation algorithm pre-processes the leaf image to obtain
an outline of the leaf. From the outline, shape features such as
circularity, area, etc. are derived. A machine learning algorithm
predicts the disease/species from these features. Munisami et al.
(2015) segmented leaf images with Otsu’s algorithm (Baxi and
Vala, 2013) and calculated leaf length, width, area, perimeter, hull
area, axis length and centroid and applied a K-NN for prediction.
The system was tested on 640 images of 32 different plant species.

These methods follow the traditional paradigm of selecting
a feature representation based on knowledge of the problem
domain. Generally, an image-based pattern recognition system
(a) transforms an image to a feature representation that best
characterizes the relevant features of an object and (b) a machine
learning algorithm carries out the recognition task based on the
feature representation. Selecting relevant features in step (a) is a
difficult task and features are often selected by empirical analysis.
The resulting system is ad-hoc. It will not scale to the detection
of other diseases, species or even accommodate great changes
in imaging conditions. Often the sensitivity is too low for a
production system.

Recently, deep learning has challenged the paradigm of
focusing on feature representation. Deep learning may have been
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FIGURE 1 | General system overview. A picture of an affected leaf is processed remotely by a server using deep learning. The user receives a report on the
diagnosis of the specimen in the field.

used to describe neural networks as early as 1986 (Dechter,
1986) and backpropagation is not a new concept in the field
of pattern recognition (LeCun et al., 1989). However, advances
in computational power and dissemination of the outstanding
performance in the ImageNet challenge (Krizhevsky et al., 2012)
have renewed the scientific community’s interest in deep learning
(LeCun et al., 2015). A deep learning algorithm learns the
features from raw data entirely from the ground up. It combines
both steps of a pattern recognition system, (a) and (b) in the
previous paragraph. Deep learners have as much as a 99.24%
recognition rate for the detection of some plant diseases and
species (Mohanty et al., 2016) and show great potential for
the field of agricultural engineering. Loosely speaking deep
learning is a collection of methods that: (1) improve optimization
and generalization of neural networks, and (2) stack layers
of transformation to enable the learning algorithm to develop
higher levels of abstraction.

A deep learner’s performance increases as the amount of
data increases. This enables the system to overcome a variety of
imaging conditions, such as lighting conditions, poor alignment,
and improper cropping of the object. In contrast, increasing
the amount of data for other pattern recognition algorithms
(e.g., K-NN, support vector machines) has diminishing returns,
and eventual stagnation. However, deep learning is not the
end all solution to pattern recognition, as it would appear.
The unbounded improvements in accuracy with increasing
amounts of data is also deep learning’s greatest disadvantage.
A staggeringly large amount of data is required to train a
deep learner to exceed a baseline machine learning algorithm’s
performance. Unfortunately, in the absence of such large
amounts of training data it is inadvisable to train a deep learner
from scratch.

Some methods have attempted to address this by borrowing
the training data from a related problem domain, called Transfer

Learning (Bengio, 2012; Yosinski et al., 2014; Sadeghi and
Testolin, 2017). The algorithm is trained on the related problem’s
data and then re-trained on data for the problem at hand. The
deep learner will learn features relevant to the new problem.
If the task is similar enough, such as prediction of plant
diseases from images of leaves, the same structures learned by
the network will continue to be relevant. This was verified
in the field of facial emotion recognition (Kim et al., 2015);
deep learners are trained on face identification databases where
there is a large amount of data (millions to tens of millions
of samples), then later applied to the prediction of facial
expression where the data is insufficient to train a deep learner
on its own (hundreds to thousands of samples). In this work
we will apply this concept to the detection of leaf scorch in
Olea europaea L.

We also propose a novel deep fusion method that fuses the
data with additional features at different levels of abstraction to
improve performance when re-applying an already trained deep
learner to a new problem. The network will discover relevant low-
level features from the raw data to automatically detect veins,
colors, and describe events that lead to leaf scorch. Existing
applications of deep learning investigated spatial relationships
in the image. Fusion, if used, occurred temporally, at the
beginning of the processing pipeline, or mixed in the learning
process. We will improve upon this with a staggered data
fusion scheme that injects relevant features at the increasing
levels of abstraction, while allowing the network to discover the
complimentary factors leading to disease. Investigating the non-
linear relationship found by the network will allow us to better
understand the links between plant leaf structure and appearance,
disease symptoms.

In the following section, we discuss deep learning methods
most similar to our work, and describe how our work is
significantly different. The method proposed in this work,
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FIGURE 2 | System overview. Red: focus of work.

Abstraction-Level Fusion, is inspired by the work in Karpathy
et al. (2014). In that work, a deep learning neural network is
extended to process videos with three modes: early fusion, late
fusion and slow fusion. In early fusion, frames are combined
as input to the neural network. In late fusion, the additional
video frames are injected into the first fully connected later. Slow
fusion is a balanced version of both approaches. In Abstraction-
Level Fusion, there are multiple levels of fully connected layers.
Each fully connected layer receives low-level appearance features
such as edge information or order statistics. The method in
Karpathy et al. (2014) fuses temporal information, not additional
appearance features.

Mohanty et al. (2016) investigated the applicability of
two neural networks: AlexNet (Krizhevsky et al., 2012), the
seminal neural network that brought deep learning to the
attention of the pattern recognition community; and GoogLeNet
(Szegedy et al., 2015), an improvement to AlexNet developed
by Google that added inception layers to reduce computational
burden when carrying out a convolutional neural network.
Various transfer learning and image preprocessing methods
were tested on a database of 54,306 images of 14 species and
26 diseases obtained from the PlantVillage dataset1. Pawara
et al. (2017) carried out a similar study on the Leafsnap
(Kumar et al., 2012) and Folio datasets (Munisami et al.,
2015), that contained 7,719 and 640 leaf images, respectively.
Fujita et al. (2016) applied deep learning to 7,520 cucumber
images of 7 different diseases and a healthy control. Unlike
other approaches, the approach employed a VGG convolutional
neural network (Simonyan and Zisserman, 2015). VGG networks
differ from the other two neural network architectures in
that the early, filtering layers use much smaller kernels
than other networks. We build upon previous work (Fujita
et al., 2016; Mohanty et al., 2016; Pawara et al., 2017) by
considering improvements to neural network architectures,
and we are the first to apply it to leaf scorch detection in
O. europaea L.

The focus of this paper is a system to process an olive leaf
image with computer vision algorithms able to detect OQDS
symptoms. We present a novel deep learning framework to
organize the learning process into different levels of abstraction.
The algorithm discovers low-level features from raw data to
automatically detect veins and colors that lead to symptomatic
leaves. The system has been implemented as a MATLAB
standalone executable for Linux and Mac environments. The
proposed system works in the absence of large amounts of
training data, a useful feature when samples need to be tested
with traditional methods (i.e., PCR) to avoid incorrect input or
for quarantine pests which manipulation is restricted.

1www.plantvillage.org

MATERIALS AND METHODS

The system overview is described as follows: (1) for this pilot
study, a leaf clipping from a plant to be tested is scanned. In
the future, data will be collected of infected leaves in the field.
(2) A mask of the leaf is automatically obtained by segmenting
the leaf image with Otsu’s algorithm, filtering with a small-
window median filter to remove noise, and cropped to the
minimally sized bounding box enclosing the segmentation mask.
(3) The image is resized to 256 pixels × 256 pixels. All images
must be the same resolution to be processed by the machine
learning algorithm in the following step. Resizing an image can
make it difficult for humans to detect OQDS because it affects
symptom presentation (i.e., necrosis and spots). However, so
long as the images are resized in a uniform way across all
images, it will not inhibit the machine learning algorithm’s ability
to learn symptoms. This procedure was performed in related
work (Mohanty et al., 2016). (4) The image is processed with
the proposed Abstraction-Level Fusion for (5) diagnosis. An
overview is given in Figure 2.

Plant Materials
Trials were carried out in orchards located in Province
of Lecce (Apulia, Italy), in which OQDS symptomatic and
symptomless trees of O. europaea L. were monitored. 24
plants grown in X. fastidiosa infected areas (in orchards
where all plants showed OQDS since 2014, 1 year after
first pathogen detection) and 24 plants grown in orchards
where the pathogen is not yet detected and non-symptomatic
plants were observed. Plants within groups were selected
from the same olive tree age (25–30 years), and the same
agronomic practices in the last 5 years and similar pedoclimatic
conditions.

To evaluate the presence of X. fastidiosa in olive trees,
sampling was accomplished in relation to symptom expression in
October 2016. For each sample of 40 or more leaves, petioles and
basal portions of leaf blade were cut with a sterile scalpel. Plant
tissue (about 1 g, obtained from 20–25 leaves) was transferred in
extraction bags (BIOREBA, Switzerland) for homogenization and
4 mL of extraction buffer was added to each bag (0.2 M Tris – HCl
pH 9, 0.4 M LiCl and 25 mM EDTA). Remaining leaves were
stored for image acquisition. Homogenization was performed
using a semi-automatic homogenizer (Homex 6, BIOREBA) at
50% maximum speed. DNA extraction was performed following
Edwards et al. (1991).

TaqMan quantitative PCR protocol with XF-F/R primers
and XF-P probe (Harper et al., 2010) was used. Each reaction
was prepared using 5 µL from a 20 ng/µL dilution of DNA
extracted from 1 g of olive petioles, 200 nM probe, 400 nM
forward and reverse primers, in a total volume of 25 µL.

Frontiers in Plant Science | www.frontiersin.org 4 October 2017 | Volume 8 | Article 1741

http://www.plantvillage.org
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-01741 October 7, 2017 Time: 15:29 # 5

Cruz et al. X-FIDO

FIGURE 3 | A general overview of the idea of Abstraction-Level Framing. After the convolutional, filtering portion of a convolutional neural network, each fully
connected layer receives additional features at increasing levels of abstraction.

The cycling conditions were: 10 min at 95◦C, followed by
40 cycles of 95◦C for 15 s and 60◦C for 1 min with the
final dissociation at 95◦C for 15 s, 60◦C for 30 s and 95◦C
for 15 s.

Xylella fastidiosa-negative samples were also assayed by qPCR
for Verticillium dahliae (Bilodeau et al., 2012), Colletotrichum
spp., Colletotrichum acutatum, C. gloeosporioides (Garrido et al.,
2009) and visually evaluated for presence of Stictis panizzei,
Mycocentrospora cladosporioides, and Spilocaea oleagina or
showing disorders caused by abiotic stress. Once health status
was confirmed by qPCR and visual assessment, 99 unprocessed
leaves from X. fastidiosa-positive samples, 100 unprocessed
healthy leaves (asymptomatic samples negative to X. fastidiosa
and other tested/observed pathogen) and 100 unprocessed

leaves from X. fastidiosa-negative samples but showing other
diseases or disorders were scanned for image acquisition
(300 dpi).

Abstraction-Level Fusion
A convolutional neural network (LeCun and Bengio, 1995;
Cireşan et al., 2011) takes the low-level, pixel representation
of an image as input. Each layer is interconnected with the
next and is responsible for organizing the visual stimulus into
increasingly non-local signals. As the signal passes through
successive layers of the network it becomes more complex,
and the abstraction-level of the signal increases. This concept
inspires us to assist the neural network by injecting features
of increasing abstraction-level in the fully connected portion

TABLE 1 | Structure of the convolutional neural network employed in this work.

Layer Type Abstraction-Level Feature

0 2-D convolutional layer with 11 × 11 kernel, padding size 6,
stride length size 4

–

1 Rectified linear activation function layer –

2 Max pooling layer, downsample factor 2, stride length 2 –

3 2-D convolutional layer with 7 × 7 kernel, padding size 3, stride
length size 4

–

4 Rectified linear activation function layer –

5 Max pooling layer, downsample factor 2, stride length 2 –

6 Fully connected layer, 256 neurons Edge magnitudes: Grayscaled, original image filtered by
Laplacian of a Gaussian, result downsampled by a factor of 8

7 Rectified linear activation function layer –

8 Fully connected layer, 256 neurons Shape features: area, perimeter, Hu’s moments (Hu, 1962),
Zernike moments (Zhenjiang, 2000)

9 Rectified linear activation function layer –

10 Fully connected layer, 3 neurons –

10 Softmax classification layer –

Type: the type of layer. Abstraction-Level Feature: The additional features injected in the layer, if any. Features are injected by concatenation with the input from the
previous layer.
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FIGURE 4 | Examples images of Olea europaea L. used in this study. (A) Healthy control (asymptomatic leaves); (B) OQDS-symptomatic leaves (Xylella
fastidiosa-positive samples); (C) X. fastidiosa-negative samples showing another pathogen/disorder. Note that the images given here are the native, original aspect
ratio of O. europaea L. leaves. It is easy to distinguish healthy leaves from non-healthy leaves (A vs. B or C). However, tissue desiccation on the leaf tip, if it occurs, is
not exclusive to OQDS (C1, C4, and C6), thus it is challenging to detect the difference between OQDS and non-OQDS samples (B vs. C).

of the network. A general overview of the method is given in
Figure 3. The idea was originally proposed in a research plan
in Rinaldi and Cruz (2016). This work is significantly different;
in previous work we used auto-encoders and in this work
we use convolutional neural networks. This method is similar
to learning with privileged information (Vapnik and Vashist,
2009; Vapnik, 2015), but the method proposed in this paper is
based on framing the injection of additional features at different
abstraction levels.

We guide the learning process by providing the fully
connected layers of the network with high-level image features
organized in increasing levels of abstraction; for example, order
statistics of the intensity values, edge gradient patterns, image
moments from segmentation, etc. With a conventional fully
connected layer, we anticipate that the neural network would
learn these structures on its own. The key idea with Abstraction-
Level Fusion is that, by fusing this information with the network,
we hope that the neural network will learn a complimentary
organization of signals with the information that is being
provided. The full structure is described in Table 1. Note that
Figure 3 describes the general idea, and the embodiment of
Abstraction-Level Fusion used in this work focuses on texture
and shape features.

Implementation Details and Parameters
The network is implemented in MATLAB 2016 and carried out
on a Dell Precision Rack 7910 with Dual 8-core Intel Xeon
E5-2630 v3 processors, 128 GB of DDR4 RDIMM ECC RAM,
and a NVIDIA Quadro K6000 12 GB. The network is initially
trained on the PlantVillage dataset (Mohanty et al., 2016), then
frozen and retrained on the new dataset. Note that the work in
Mohanty et al. (2016) uses a pre-trained AlexNet and GoogLeNet
neural networks, whereas we train a modified LeNet from scratch
on the PlantVillage dataset. Stochastic gradient method is used
with a batch size of 60. The base learning rate is 0.01. Step-based
learning rate was not employed. Momentum is set to 0.9. Weight
decay is set to 0.0005. Gamma is 0.1. For validation, we perform
10 trials splitting the data into random sets of 75% for training
and 25% for testing.

We provide a comparison to three baseline methods using
various features and a Radial Basis Function (RBF) Support
Vector Machine (SVM). For the SVM, γ is set to the inverse of the
length of the feature vector and cost c set to 1. The feature vectors
are z-scored based on the training data before the machine
learning step. We compare three feature vector representations:
an improved Gabor filter Cruz et al. (2015), Uniform Local
Binary Patterns (Almaev and Valstar, 2013), and SIFT features Liu
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FIGURE 5 | (A) Accuracy, (B) Matthew’s Correlation Coefficient (MCC), (C) F1-Score, (D) precision and (E) recall of predicting symptoms of Olive Quick Decline
Syndrome (OQDS) in images of X. fastidiosa-positive leaves of O. europaea L. amongst healthy controls (asymptomatic leaves) or X. fastidiosa-negative leaves
showing other disorders. Higher is better for all metrics.

et al. (2015). These features were selected because they provide a
good representation of features used currently in literature. For
Background Suppressing Gabor Energy Filtering we follow the
parameters in Cruz et al. (2015). The whole, filtered image is
taken to be the feature vector. For Uniform Local Binary Patterns
we use 8 neighbors and a radius of 1. For SIFT Features we

follow Liu et al. (2015). SIFT features are extracted sparsely with a
stride of 12 pixels in the horizontal and vertical directions. Images
are registered by translating the centroid of the segmentation
mask to the center of the image. Missing values are filled with
repetition. Results are presented with the same validation method
(ten random folds with a 75/25 training/testing split).
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TABLE 2 | Accuracy, Matthew’s Correlation Coefficient (MCC), F1-Score, Precision and Recall of predicting symptoms of Olive Quick Decline Syndrome (OQDS) in
images of Xylella fastidiosa-positive leaves of Olea europaea L. amongst healthy controls (asymptomatic leaves) or X. fastidiosa-negative leaves showing other disorders.

Epoch Accuracy (%) Matthew’s Correlation Coefficient (MCC) [−1,1] F1-Score (%) Precision (%) Recall (%)

(A) Proposed method

100 71.93 ± 27.32 0.5419 ± 0.4225 74.37 ± 34.41 82.14 ± 32.62 61.27 ± 48.73

150 84.91 ± 17.44 0.7173 ± 0.4150 84.65 ± 18.13 85.19 ± 20.07 77.87 ± 43.61

200 98.25 ± 2.15 0.9743 ± 0.3320 96.25 ± 4.63 96.05 ± 6.51 99.09 ± 2.03

250 98.60 ± 1.47 0.9811 ± 0.1930 97.02 ± 3.10 98.09 ± 2.62 98.18 ± 2.49

300 98.60 ± 1.47 0.9798 ± 0.2410 96.89 ± 3.45 98.82 ± 2.63 97.18 ± 2.71

Method Accuracy (%) Matthew’s Correlation Coefficient (MCC) [−1,1] F1-Score (%) Precision (%) Recall (%)

(B) Comparison to other methods

Background Suppressing Gabor
Energy Filtering (Cruz et al., 2015) with
RBF-SVM (Chang and Lin, 2011)

63.11 ± 11.91 0.2271 ± 0.2517 65.52 ± 15.15 72.44 ± 14.30 65.28 ± 21.74

Uniform Local Binary Patterns (Almaev
and Valstar, 2013) and RBF-SVM
(Chang and Lin, 2011)

88.55 ± 16.71 0.7839 ± 0.2936 90.95 ± 11.97 92.12 ± 17.68 92.24 ± 6.16

SIFT Features (Liu et al., 2015) and
RBF-SVM (Chang and Lin, 2011)

84.91 ± 17.44 0.7173 ± 0.4150 84.65 ± 18.13 85.19 ± 20.07 77.87 ± 43.61

Higher is better for all metrics.

FIGURE 6 | The advantage of including shape and texture. From left to right: The original image, the segmentation map (from which shape features such as
moments are extracted), and the edge map. (A,B) The healthy leaves (asymptomatic), (C,D) OQDS leaves, and (E,F) non-OQDS leaves. Healthy leaves do not have
any notable features in either the segmentation or edge maps. OQDS results in a more yellow leaf causing a distinct shape in the segmentation map, and note the
subtle lines in the dead area of the leaf in (D). While other pathogens/disorders cause yellow leaves, it does not occur as orderly as leaf scorch, and dead areas do
not have the distinctive subtle lines as in (D). Note that these images have been resized to 256 × 256 as a part of Step (3) in Figure 2.

RESULTS AND DISCUSSION

Example images of healthy leaves, OQDS-symptomatic leaves
and leaves showing other disorders are reported in Figure 4.
In order to stress the proposed detection systems, X. fastidiosa-
negative leaves showing other disorders (Figure 4C) are chosen
among samples which may be more easily confused by layperson
as OQDS. Results with the proposed system for varying
epoch limits are given in Figure 5. Numerical results with
the proposed system are given in Table 2A and baseline

results are given in Table 2B. The system has exceptional
performance despite being trained on only 224 images. Hundreds
of data samples are woefully insufficient for training a deep
learner, and pretraining the network on the PlantVillage dataset
improved performance. Additionally, including edge patterns
and shape information contributed to the network’s performance
and the advantage can be visualized (Figure 6). While it is
possible that the network would learn parameters to obtain
the segmentation and edge maps in Figure 6, providing
this information potentially improves convergence because the
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FIGURE 7 | Examples of images that were misclassified more than once across the 10 validation folds. (A–E) Images of OQDS leaves. (F–J) Images of leaves with
pathogens/diseases other than OQDS.

network does not have to learn these representations from
scratch.

In Figure 7, we give examples of images that were misclassified
more than once across the ten validation folds. In Figure 7A,
the desiccated tissue area has a very gentle intensity gradient
compared to other images and we suspect that the edge transition
from desiccation to healthy tissue is not sharp enough to be
detected by the convolutional steps of the neural network. In
Figures 7B–E, tissue desiccation did not start at the tip of the leaf
as expected. However, in the non-OQDS images in Figures 7F–J,
tissue desiccation appeared at the tip of the leaf resembling
OQDS.

Description of Stand-Alone Executable
Program
The model trained in the above experiments is compiled into
a stand-alone MATLAB executable file2. The program was
developed with the intent to be as simple and intuitive as
possible (Figure 8). The work flow is described as follows.
A user starts a new experiment, and loads images of olive tree
to be processed. As each image is loaded, prediction is carried
out automatically. A preview of the image is displayed to the
screen and confidence scores for each prediction category are
displayed to the user. The system detects symptoms of OQDS
in images of X. fastidiosa-positive leaves of olive tree amongst
healthy controls (asymptomatic leaves) or X. fastidiosa-negative
leaves showing other disorders. It is also capable of detecting
two types of errors: (1) the user has given a leaf but it is
not Olea europaea L., and (2) a general error for when the
user has given an image that is not a leaf. Error case (1) was
trained on 100 random images of non-olive species from the
PlantVillage dataset. Error case (2) is useful for reporting to
the user that the system is unsure of the content in the image.
It was trained on 100 random images on CalTech 101 (Wang
et al., 2006). When the user is finished experimenting on a set
of images, the user executes the save option. As the user is
processing images the program saves the file name, time, date,
and confidence scores for each of the five categories. The “Save
results” command stores the saved experimental results to a

2http://cs.csubak.edu/∼acruz/xfido.html

comma-separated value (CSV) file. To start a new experiment
and clear all current experimental results, the user selects “New
experiment.”

CONCLUSION

Deep learning could revolutionize the field of agriculture,
enabling swift, effective methods for the identification of crop
diseases from images of leaves (Ampatzidis et al., 2017). Transfer
learning enabled the application of deep learning to overcome
the lack of sufficient training examples. Large leaf databases
such as PlantVillage can be used to enable deep learning for
other plant species and diseases where it is too challenging
to obtain the tens of thousands of images normally required
for deep learning. Collecting a large amount of images may
be a difficult task due to unskilled samplers. Furthermore, to
efficiently train an automated system for symptom recognition,
images should be collected from samples previously tested for
pathogen using traditional diagnostic methods, avoiding false
positive/negative input. This task may be not easily achievable
for large amount of samples or for quarantine pests which
manipulation is restricted.

We demonstrate that it is possible to automatically detect
leaf scorch in olive tree from leaf clipping images and that it
can be discriminated from other disorders or pathogens, despite
the strong similarity. However, even if the true positive rate
obtained with the proposed method was high, specificity and
sensibility of traditional diagnostic methods such as ELISA or
qPCR is still unmatched. Thus this method may represent a
tool for supporting sampling or could be used to pre-screening
of samples before diagnostic tests. Presently, monitoring of
OQDS in Europe strongly relies on visual inspection and
collection of samples from plants that show standard symptoms,
thus the use of X. fastidiosa-infected leaves with advanced
stage of symptoms is coherent with the aim of the tools.
However, the evaluation of the proposed method with earlier
symptomatic leaves represents a critical issue that need to be
investigated.

We also present a novel algorithm for framing a convolutional
neural network, called Abstraction-Level Fusion, that injects
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FIGURE 8 | Screen shots of the X-FIDO program. (A) The program is simple to operate and consists of three commands: New experiment; Open image, which
prompts the user to open an image, automatically processes the image and logs the confidence scores; and Save results, which saves all logged confidence scores
to a comma-separated value (CSV) file. In this sub-figure, the program correctly classified a healthy control. (B) A non-OQDS pathogen/disorder. (C) OQDS
(X. Fastidiosa). (D) A very challenging sample of a non-OQDS image that resembles OQDS because of very faint leaf tip desiccation, and a healthy control because
of verdancy.

additional feature vectors into the network. The layers
are abstracted with increasing levels of complexity. In
the future, efficacy of the Abstraction-Level Fusion will
be applied to other convolutional neural networks such
as VGG and inception. We found that the PlantVillage

dataset alone was sufficient for transfer learning whereas
previous work used pre-trained AlexNet and GoogLeNet
networks.

The program shows potential for rapid and automatic
detection of OQDS with reduced diagnosis time and cost.
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Because leaf scorch symptoms present themselves on the leaf
when affecting other species, the technologies and algorithms
pioneered in this work have broad impact to the detection of
X. fastidiosa for Pierce’s disease in grapevine or other leaf scorch-
related diseases.
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