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Rice yield is subjected to severe losses due to adverse effect of a number of stress

factors. The most effective method of controlling reduced crop production is utilization of

host resistance. Recent technological advances have led to the improvement of DNA

based molecular markers closely linked to genes or QTLs in rice chromosome that

bestow tolerance to various types of abiotic stresses and resistance to biotic stress

factors. Transfer of several genes with potential characteristics into a single genotype is

possible through the process of marker assisted selection (MAS), which can quicken the

advancement of tolerant/resistant cultivars in the lowest number of generations with the

utmost precision through the process of gene pyramiding. Overall, this review presented

various types of molecular tools including MAS that can be reasonable and environmental

friendly approach for the improvement of abiotic and biotic stress resistant rice with

enhanced quality.

Keywords: gene pyramiding, genome mapping, phenotype traits, physiological traits, molecular markers, marker

assisted selection, rice

INTRODUCTION

Rice, which is the world’s most important food crop, is a key source of carbohydrate (Narciso and
Hossain, 2002). The cultivation of rice is a principal activity and source of income around the
world, and several Asian and African countries depend on rice as a basis of earnings (Khan et al.,
2009). However, there is severe yield loss in rice cultivation due to a number of abiotic and biotic
stresses (Ramegowda and Senthil-Kumar, 2015). Several environmental factors have threatened
sustainable agricultural production in emerging countries, with the main variables affecting the
future of agricultural production being higher incidence of extreme weather and a number of
environmental problems (Joneydi, 2012).

Biotic stresses including pathogens, pests and weeds and abiotic stresses such as drought and
periodic cycles of submergence, extreme cold, soil salinity, affects rice cultivation throughout the
world. Crop losses caused by major biotic stressors such as bacterial blight and blast disease, and
due to insect pests are quite high (Hasan et al., 2015). The occurrence of new stresses necessitates
development of highly improved and novel approaches to enhance the capability of various rice
varieties that can survive attacks caused by several pathogens at once while also surviving in
unfavorable environments with high level of grain quality. In conventional breeding techniques,
along with the desired genes other unwanted genes also continue to a long term in next generations,
even with several backcross generations and it is not possible to screen unwanted genes, using
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conventional breeding. Despite their limitations, conventional
approaches are also important for conserving wild germplasms,
sexual hybridization between contrasting parental lines, novel
genetic variants, andmutations (Werner et al., 2005). A variety of
methods are used in conventional breeding, such as backcrossing,
recurrent selection, and mutation breeding methods. However,
using molecular tools such as markers that flank a target gene,
can minimize the number of backcross generations (Hasan et al.,
2015).

Molecular marker techniques are currently the most advanced
method available for the transfer of desired gene in desired
rice variety with required combination. The improvement of
breeding programs using the most widely used molecular
techniques, and their application is a novel prospect for
enhancement of rice yields. Hence, the present study was
conducted to briefly review the adverse effects of various types
of biotic and abiotic stresses on production of rice and to
improve the resistance with higher grain quality of rice through
application of various types molecular tools especially the MAS.

MARKER ASSISTED SELECTION (MAS):
AN ADVANCED MOLECULAR TOOL IN
RICE BREEDING

MAS is a process in which a marker is used for indirect selection
of a genetic determinant or determinants of a trait of interest,
i.e., abiotic stress tolerance, disease resistance, productivity,
and/or quality (Prabhu et al., 2009). This method involves
selection of plants carrying genomic regions that are involved
in the expression of traits of interest through the application of
molecular markers. The development and availability of an array
of molecular markers and dense molecular genetic maps in crop
plants has made application of MAS possible for traits governed
bymajor genes andQTLs (Choudhary et al., 2008). The success of
MAS depends on several factors, including the number of target
genes to be transferred and the distance between the flanking
markers and the target gene (Perumalsamy et al., 2010). MAS is
gaining considerable importance as it can improve the efficiency
of plant breeding through precise transfer of genomic regions of
interest and acceleration of the recovery of the recurrent parent
genome (Wijerathna, 2015).

Marker and QTL Identification for MAS
The identification of DNA markers, genes and quantitative trait
loci (QTLs) associated with particular traits is accomplished
through QTL mapping. As a result, QTL mapping signifies the
basis of development of molecular markers for MAS. However,
there are several aspects that affect the accuracy of QTLmapping,
such as replication levels of phenotypic information, population
sizes and types, genotyping errors, and environmental effects.
Genes or QTLs can be detected relative to a linkage map, by
means of statistical methods such as single-marker analysis or
interval mapping to identify associations between DNA markers
and phenotypic data (Kearsey and Farquhar, 1998). Using DNA
markers for identification of QTLs was a breakthrough in the
characterization of quantitative traits. In plants, the identification

of genomic regions related to quantitative traits has mostly been
attained through QTL mapping (Borba et al., 2010).

Advantages of MAS for the Improvement of
Stress Resistant Rice
With the application of MAS, individual plants can be selected
based on their genotype during the selection procedure. For
most traits, homozygous and heterozygous plants cannot be
distinguished by conventional phenotypic screening. MAS can be
used to assist selection of parents, increasing the effectiveness of
backcross breeding and improving sex-limited traits (Zhou et al.,
2007). MAS can be used to investigate heterosis for hybrid crop
production (Reif et al., 2003), and there is the potential for use of
DNA marker data along with phenotypic data to select hybrids
(Jordan et al., 2003).

There are various advantages of using MAS in rice breeding.
For example, it may be simpler than phenotypic screening;
therefore, it can reduce time, effort, and resources. Selection
of quality traits in rice generally requires expensive screening
procedures that are made feasible through MAS (Figure 1A).
Additionally, MAS selection can be conducted at the seedling
stage and undesirable plant genotypes can quickly be eliminated
(Khan et al., 2015). The advantages associated with the use of
markers includes speed, consistency, efficiency, biosafety, and the
ability to skew the odds in our favor, even while dealing with
complex traits.

MOLECULAR MARKERS USED IN RICE
BREEDING

The development of novel molecular tools has significantly
influenced rice breeding programs, permitting application of
advanced molecular breeding techniques in rice that leads to
the improvement of novel rice varieties through advanced
biotechnology, which majorly includes MAS and genetic
engineering.

Several researches shown that, in plants, single-nucleotide
polymorphisms (SNPs) in addition to insertions and deletions
(InDels) are extremely abundant and distributed throughout the
genome (Batley et al., 2003). In plant genomes the abundance
of polymorphisms makes the SNP marker system a smart tool
for marker-assisted selection in breeding program (Hayashi
et al., 2004). 1.7 million SNPs have been identified in rice,
by comparative analysis of the draft genomic sequences of
cv. Nipponbare (Kurokawa et al., 2016). Using NGS (Next-
generation sequencing) technologies transcriptome resequencing
permits fast and reasonable SNP detection within genes and
avoids extremely repetitive sections of a genome (Mammadov
et al., 2012). In the rice genome, SNPs are the most frequent
polymorphism. In recent times, SNP arrays have been developed
for rice by breeders, which are designed to cover a wide range
of cross combinations in rice. For separating “linkage drag”
the tightly linked set of SNPs can be used. The SNP array
can also be readily used to construct an NIL (Near isogenic
line) with a very minor introgressed chromosome segment
from the donor parent, if a large segregating population is
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FIGURE 1 | (A) Overview of marker assisted backcross breeding program; (B) Flow diagram depicting the gene pyramiding of multiple stress resistance (R) genes

into a single line using marker assisted backcross breeding; and (C) Flow diagram of stresses affecting rice productivity.

existing (Kurokawa et al., 2016). The employment of SNPs
as molecular markers for breeding is becoming an actual
possibility.

Advancement of molecular techniques in rice breeding has
significantly extended the applicability of identification of genes
and pyramiding valuable genes (Wijerathna, 2015). In gene
pyramiding for a variety MAS not only shortened the breeding
period but also removed the extensive trait assessment involved.
There are many rice varieties improved by MAS (Table 1)
(Rao et al., 2014). The steps of gene pyramiding using marker
assisted selection (MAS) is displayed in (Figures 1A,B). There
are many stress resistance genes and genes related to quality
of rice which are tightly linked SNPs, SSRs, and STS markers
are available (Table 1). All DNA marker techniques are designed
to detect and exploit naturally occurring DNA polymorphisms.

The main considerations for the use of DNA markers in MAS
are as follows: particular markers should be tightly linked
to target loci, preferably less than 5 cM genetic distance
(Figure 1A).

By exploring the diverse molecular techniques and advanced
genomic technologies such as genome sequencing, SNPs array,
genome-wide association mapping, and transcriptome profiling,
the molecular mechanism and their relation between the
genotypes and phenotypic traits leading to development of
improved rice varieties can be realized (McCouch et al., 2016;
Peng et al., 2016). Currently SSRs (second-generation markers)
are widely used markers in MAS due to the easy availability
and comparatively cheaper than others and they require a
comparatively simple technique with a higher polymorphism rate
(Gao et al., 2016).
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Molecular Markers for Phenotype and
Physiological Traits
The QTL analysis is an essential step to phenotyping of mapping
of the population for their resistance to biotic and tolerance
to abiotic stress. By pyramiding resistance genes through MAS,
more durable resistance can be achieved via the identification of
additional QTLs. Generally, biotic stress resistance is monitored
using a specific scale value. Alternative methods such as
quantification of the infected area can be used or tested for it.
Phenotyping for abiotic stress is also essential to reducing the gap
between genotype and phenotype, particularly for quantitative
traits, which are the prime factors of abiotic stress resistance
(Boopathi, 2012). The future of plant breeding depends on the
complete knowledge regarding genetic control of physiological
traits and the linkage of these physiological characteristics to
molecular markers on chromosomes, and eventually the genes
underlying the traits. Molecular markers have been rapidly
adopted by researchers worldwide as an effective and appropriate
tool for primary and practical studies addressing physiological
traits. An important way of linking marker loci to a particular
plant phenotype is through the use of genetic linkage maps
(Graham et al., 2008).

Genome-Wide Association Mapping
In a large germplasm collection, an alternative QTL mapping
approach is conducting association analysis, known as
association mapping. In a population, association mapping is
based on linkage disequilibrium (LD) or the non-independence
of alleles. Association mapping studies using sparse SSR and
SNP markers have been proven to be effective when identifying
marker-trait associations in rice (Qiu et al., 2015; McCouch et al.,
2016). Genome-wide association studies (GWASs) by means of
high density markers have become increasingly popular in rice
genetics with the development of high-throughput sequencing
and SNP chip techniques (Abe et al., 2010; Yu et al., 2014).
GWAS is a powerful strategy to clearly understand the genetic
basis of complex traits that has been especially productive for
rice (Qiu et al., 2015).

GENE PYRAMIDING USING MAS: A SMART
APPROACH TO BREEDING PROGRAMS

Gene pyramiding in rice is the transfer or pyramiding more
than one resistance/tolerance genes/QTLs into a single rice
genotype (Figure 1B) (Collard and Mackill, 2008). Pyramiding
of resistance genes into a single line for each disease or stress
is a novel strategy in rice breeding to prevent the breakdown
of resistance against specific disease or stress. Pyramiding of
genes/QTLs that confer resistance to biotic stresses and tolerance
against various types of abiotic stresses is now feasible because of
advancements in molecular markers (Das and Rao, 2015). MAS
has been found to work efficiently for transferring genes from
pyramided lines into new plants and into the improved varieties
(Magar et al., 2014).

Breeders have used marker-assisted selection to “pyramid”
resistance conferred by several separate resistance genes/QTLs

with the help of closely linked markers against diseases such as
BB, RB, and gall midge in rice, leaf rust resistance and powdery
mildew resistance in wheat, and insect pest resistance in cotton,
as well as for several abiotic stresses such as submergence, salinity,
drought, and cold stress (Table 1) into rice, wheat, and cotton
(Das and Rao, 2015; Pradhan et al., 2015; Suh et al., 2015;
Shamsudin et al., 2016).

To get the desired population with required gene
combinations without unwanted genes, backcrossing with
the recurrent parent is required. The use of molecular markers
which were unlinked to the assembled genes/QTLs, for back
ground selection enhances the proportion of recovery of the
recipient genome (Figures 1A,B). The gene pyramiding scheme
can be distinguished into two parts, development of a pedigree,
which is designed to accumulate all target genes in a single
genotype known as the root genotype, and a fixation step, which
is intended to fix the target genes into a homozygous state to
derive the ideal genotype from one single genotype (Figure 1B).

PROSPECTS OF MOLECULAR METHODS
MANAGING STRESSES AFFECTING RICE
PRODUCTIVITY

Abiotic Stress
Abiotic and biotic (Table 1, Figure 1C) stresses are the two
major constraints accountable for the declination of growth and
productivity of rice varieties (Wani and Sah, 2014). Abiotic stress
(Table 1, Figure 1C) influence the distribution of plant species,
survival rate, and the yields of the crop (Lee et al., 2005). Each
year, about 25% of the rice croplands worldwide are submerged
by flash floods (Loo et al., 2015). With a number of minor QTLs,
submergence tolerance in rice is controlled by a single major QTL
on chromosome 9 that provides complete submergence tolerance
for up to 14 days or more (Septiningsih et al., 2009).

Sensitivity of rice to salt-stress changes throughout the
lifecycle, but the effects are most severe in the seedling and
reproductive stages (Thitisaksakul et al., 2015). Several salt-
resistant rice varieties have been produced by expressing salt-
responsive genes. QTLs associated with salt tolerant rice varieties
can be mapped using microsatellite markers (Singh et al., 2007).
Use of molecular breeding techniques have been shown to be
the most efficient tools for development of improved varieties
tolerable to salt (Mondal et al., 2013). In the salinity-tolerant
cultivar NonaBokra, mapping of SKC1 on chromosome1 was a
breakthrough that preserved K+ ion homeostasis under salinity
conditions (Ren et al., 2005; Das et al., 2015).

Significant improvements have been made in mapping QTLs
for drought resistance traits in rice; however, few have been
effectively used in marker-assisted breeding (Prince et al., 2015).
A number of drought tolerant QTLs for rice have been identified
(Huang et al., 2014). DREB transcription factors play a major
role in induction of the expression of genes involved in drought
stress, and the genes encoding DREB transcription factors exhibit
significant enhancement of the response of plants to drought
stress (Udvardi et al., 2007). Several approaches have been
improved to enable identification of low temperature stress
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TABLE 1 | Selected lists of genotypes improved by MAS; selected abiotic and biotic stress resistance genes/QTLs and linked markers; selected stresses, resistance

genes/QTLs, and their donor parents.

List of genotypes improved by MAS

Genotypes Rice variety improved by MAS Traits and resistant genes References

Pusa basmati I Improved Pusa Basmati I Bacterial blight (xa13 + Xa21) Kottapalli et al., 2010

Samba Mahsuri

(BPT-5204)

Improved Samba Mahsuri Bacterial blight (xa5 + xa13 + Xa21) Kottapalli et al., 2010

Swarna Swarna sub1 Submergence (Sub1) Nandi et al., 1997

IR64 IR64 Sub1 Submergence (Sub1) Reddy et al., 2009

Pusa RH 10 PRR78/IRBB60 Rice blast (Pi54 + Piz5) Singh et al., 2011

Pusa RH 10 Pusa 6A, Pusa 6B Bacterial blight (xa13 + Xa21) Singh et al., 2011

KMR3 Restorer KMR3/IRBB60 Xa4 + xa5 + xa13 + Xa21 Shanti et al., 2010

Lalat Improved Lalat Bacterial blight (Xa4 + xa5 + xa13 + Xa21) Dokku et al., 2013

Tapaswini Improved Tapaswini Bacterial blight (Xa4 + xa5 + xa13 + Xa21) Dokku et al., 2013

Mangeumbye Improved Mangeumbye Bacterial blight (Xa4 + xa5 + Xa21) Suh et al., 2013

PRR78 Improved Pusa RH10 Rice blast (Piz5 + Pi54) Singh et al., 2013

Wuyujing 3 K01, K04 Low-amylose content gene (Wx-mq) Tao et al., 2016

List of selected abiotic and biotic stress resistance and quality genes/QTLs and linked markers

Stress/Disease/Traits Resistance genes/QTLs Available linked markers References

Submergence Sub1 SUB1BC2, RM464A, RZ698, C1232, RG381

and RG345

Das and Rao, 2015

Salinity Saltol RM8094, RM140, RM10745, RM10772 Nejad et al., 2008, 2010; Das and Rao, 2015

Drought QTLs RM212, RM319, RM316, RM537 Lin et al., 2007

Cold qPSST-3, qPSST-7, qPSST-9, qSCT1a,

qSCT2

RM231, RM1377, RM24545, RM3602

RM1211

Jena et al., 2010; Kim et al., 2014

Heat qHTSF4.1 M4 Ye et al., 2015; Nogoy et al., 2016

Gall midge Gm1, Gm2, Gm4 RM444, RM316, and RM219, RG476, RG329,

RM547

Biradar et al., 2004; Das and Rao, 2015

Hopper burn Bph-1 and Bph-10 (t), Bph-3, Bph-17,

Bph-18, Bph-20, Bph21, Bph25, Bph26

XNpb248 and RG457, RM589, RM5953,

RM6217, BP-20-2, B121,RM6273, RM6775,

RM5479

Singh et al., 2011; Kurokawa et al., 2016

BB Xa21, xa13, Xa10, xa5, Xa4, Xa3, Xa1,

Xa7

pTA248, AB9, RG103, Xa13p, RG136,

O072000,CDO365, RG556, XNpb181,

R1506-S12886, MP, XNpb181, Y5212L, C600,

Y5212R, 16PFXa1/EcoRV, M5

Ma et al., 1999; Porter et al., 2003; Shin et al.,

2007; Singh et al., 2011; Kottearachchi, 2013;

Kurokawa et al., 2016

SB (sheath blight) qShB1, qShB2-1, qSB5, qShB6, qShB9-2 RM104, RM341, RM13, RM190, RM245 Liu et al., 2009

RB (rice blast) Pi-1, Pi 2, Pi 4(t), Pi 5, Piz-5, Pi 5(t), Pi 7

(t), Pi 10 (t), Pi-b, Pi54, Pi21, Pia

RZ536, RG64, RG869, S04G03, AP4007,

AP5930 RG498, RG788, RG103A, RG16,

RRF6, RZ213, RZ123, G1234, RM206,

Os04g0401000, YCA72

Cho et al., 2007; Singh et al., 2011;

Kottearachchi, 2013

TG (Tungro) RTSV replicase gene RZ262 Khondker et al., 2005

Deep roots QTLs on chromosomes 1, 2, 7 and 9 RFLP and SSR markers Hasan et al., 2015

Root traits C Aroma QTLs on chromosomes 2, 7, 8, 9 and 11 RFLP and SSR markers Hasan et al., 2015

Heading date QTLs for heading date (Hd1,Hd4, Hd5, or

Hd6)

RFLP, STS, SSR, CAPS, dCAPs Hasan et al., 2015

Quality Waxy RFLP Hasan et al., 2015

Eating quality Amylose content gene RM190 Jairin et al., 2009

Fragrance Fragrance gene BO3_127.8 Jairin et al., 2009

High yield Gn1a/OsCKX2, APO1, WFP/OsSPL14 Os01g0197700, Os06g0665400,

Os08g0509600

Ashikari et al., 2005; Kurokawa et al., 2016

Seed shape GW2, GS3, qSW5 Os02g0244100, Os03g0407400,

Os05g0187500

Song et al., 2007; Shomura et al., 2008;

Takano-Kai et al., 2009; Kurokawa et al., 2016

(Continued)
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TABLE 1 | Continued

List of selected stresses, resistance genes/QTLs and their donor parents

Disease/Stress Resistance genes/QTLs Donor parents References

BIOTIC STRESS

Bacterial blight Xa1, Xa2, Xa3, Xa4, Xa5, Xa10, Xa13,

Xa21

Kogyku, Tetep, Chogoku 45, IR20,

IR1545-339, CAS209, O. longistaminata, Pusa

1460

Swamy et al., 2006; Singh et al., 2011

Rice blast Pi-1(t), Pi-2(t), Pi-4(t), Pi-5(t), Pi-zh, Pi2,

Pi9, Piz-5, Pi54, Piz, pi21

LAC23, 5173, Tetep, IRAT13, Moroberekan,

Zhiyeqing, C1O1A51, O. minuta derivative,

Pusa 1602, IRBLZ5-a, DHMAS-70

Q164-2a,z2143,z1671, Os04g0401000

Hayashi et al., 2004; Deng et al., 2006;

Fukuoka et al., 2009; Singh et al., 2011;

Kurokawa et al., 2016

Gall midge Gm1, Gm2, Gm4(t), Gm5(t), Gm6(t),

Gm7(t), Gm8(t), Gm9(t), Gm10(t), Gm11(t)

Kavya, Siam 29, Abhaya, ARC5984, Duokang

#1, Bhumansan, NHTA 8, Banglei

Jain et al., 2004; Kumaravadivel et al., 2006;

Dubey and Chandel, 2010

RTSV and GLH Replicase genes, Glh-1, Glh-2, Glh-3,

Glh-4, Glh-5, Glh-6, Glh-7, Glh-8, Grh4,

Grh2

Taipei 309-147.4 and Taipei 309-147.8,

ARC11554, Pankhari 203, ASD7, IR8, Ptb8,

Tightly linked to XNpb144, Tightly linked to

G1465

Khondker et al., 2005; Kurokawa et al., 2016

BPH Bph1, Bph2, Bph3, Bph4, Bph5, Bph6,

Bph7, Bph8, Bph9, Bph10(t),Bph20(t),

Bph21(t) Bph12(t), Bph13(t), Bph14

(Qbp1) and Bph15 (Qbp2)

Mudgo, ASD7, Rathu Heenati, Babawee,

ARC10550, Swarnalata, T12, Chin Saba,

pokkali, O. australiensis, Oryza latifolia, Oryza

eichingeri, Oryza officinalis

Sun et al., 2006; Yadavalli et al., 2011

ABIOTIC STRESS

Drought Dreb1 Nagina 22 Reddy et al., 2009

Submergence Sub1 FR13A, Swarna sub1, IR64 sub1, FR43B,

Kurkurappan and Thavalu

Endang et al., 2009, 2012

Salinity Saltol FL496, FL478, FL378, Pokkali, SR26B, Patnai

23, Vytilla 1

Reddy et al., 2009; Nejad et al., 2010

QUALITY

Eating quality Low-amylose content gene Wx-mq Kanto 194 Tao et al., 2016

resistant rice varieties. Cold tolerance of rice in the seedling stage
is controlled by multiple genes and several QTLs (Zhang et al.,
2014). In 2014, Xu and Cai reported that the Ran gene, OsRAN1,
is necessary for the development of cold tolerant rice varieties.
Pyramiding of cold resistance QTLs using MAS is useful for
improvement of new rice cultivars with cold tolerance (Shinada
et al., 2014).

Biotic Stress
Biotic stresses in rice (Table 1, Figure 1C) are caused by insects,
including the gall midge and brown plant hopper, and by diseases
including bacterial blight, blast, and sheath blight. Asian rice
Gall-midge (GM), Orseolia oryzae (wood-mason), is a serious
pest of rice in China, India, Sri Lanka, and several other countries
(Katiyar et al., 2000). So far 11 GM resistance genes have been
acknowledged in various rice varieties, Gm1, Gm2, gm3, Gm4,
Gm5, Gm6, Gm7, Gm8, Gm9, Gm10, and Gm11(t) (Dutta et al.,
2014; Das and Rao, 2015; Hasan et al., 2015; Bentur et al., 2016).
The brown plant hopper (BPH),Nilaparvata lugens, has been one
of the most devastating pests to rice crops in Vietnam and Asia.
There is successful report of the use of SSR and STS markers
in pyramiding two BPH resistance genes Bph14 and Bph15 into
three elite japonica varieties Shengdao 15, Shengdao 16, Xudao 3
using marker assisted backcross breeding program (Xu, 2013).

Rice cultivation across tropical and semi-tropical regions of
the world is affected by bacterial blight (BB) disease caused by

Xanthomonas oryzae pv. oryzae (Xoo). A total of 38 R genes of BB
have been identified in rice (Khan et al., 2014). Resistant cultivars
with one or two major resistant genes are unsustainable in the
field and the only way to delay such a breakdown of BB resistance
is to pyramid many resistance genes using MAS (Rafique et al.,
2010).

Rice sheath blight disease caused by Rhizoctonia solani
Kuhn reduces trivial yield in rice-growing areas around the
globe (Yellareddygari et al., 2014; Yadav et al., 2015). Genetic
studies have shown that SB resistance can be controlled
by polygenic QTLs. Using MAS it is possible to pyramid
SB resistance QTLs into rice varieties. Rice blast disease
(RB), is generally considered as the most important rice
disease worldwide (Divya, 2013; Miah et al., 2013). RB is
caused by a filamentous heterothallic ascomycetous fungus,
Pyricularia grisea, which is known as Magnaporthe grisea
(Hebert) Barr. in its sexual state (Divya, 2013). Rice tungro
(RT) disease consists of a spherical RNA virus (RTSV) and a
DNA bacilliform virus (RTBV). The green leafhopper (GLH),
Nephotettix virescens, is themost proficient vector of rice RT virus
disease.

CONCLUSIONS

There are several abiotic and biotic stresses that affect the
productivity of rice cultivation throughout the world. To
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meet the demands of the growing population, there is
urgent need to protect rice plants from various abiotic
and biotic stresses that reduce yield and quality. Presently,
the conventional breeding of rice is rapidly advancing
due to the integration of molecular markers and MAS
techniques. Through the application of molecular markers
with the help of MAS in gene pyramiding, multiple
stress resistant genes could be incorporated into a single
rice variety with high yield, abiotic stress tolerance
and biotic stress resistance with enhanced nutritional
quality.
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