AUTHOR=Kyriacou Marios C. , Rouphael Youssef , Colla Giuseppe , Zrenner Rita , Schwarz Dietmar TITLE=Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value JOURNAL=Frontiers in Plant Science VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.00741 DOI=10.3389/fpls.2017.00741 ISSN=1664-462X ABSTRACT=

Grafting has become an imperative for intensive vegetable production since chlorofluorocarbon-based soil fumigants were banned from use on grounds of environmental protection. Compelled by this development, research into rootstock–scion interaction has broadened the potential applications of grafting in the vegetable industry beyond aspects of soil phytopathology. Grafting has been increasingly tapped for cultivation under adverse environs posing abiotic and biotic stresses to vegetable crops, thus enabling expansion of commercial production onto otherwise under-exploited land. Vigorous rootstocks have been employed not only in the open field but also under protected cultivation where increase in productivity improves distribution of infrastructural and energy costs. Applications of grafting have expanded mainly in two families: the Cucurbitaceae and the Solanaceae, both of which comprise major vegetable crops. As the main drives behind the expansion of vegetable grafting have been the resistance to soilborne pathogens, tolerance to abiotic stresses and increase in yields, rootstock selection and breeding have accordingly conformed to the prevailing demand for improving productivity, arguably at the expense of fruit quality. It is, however, compelling to assess the qualitative implications of this growing agronomic practice for human nutrition. Problems of impaired vegetable fruit quality have not infrequently been associated with the practice of grafting. Accordingly, the aim of the current review is to reassess how the practice of grafting and the prevalence of particular types of commercial rootstocks influence vegetable fruit quality and, partly, storability. Physical, sensorial and bioactive aspects of quality are examined with respect to grafting for watermelon, melon, cucumber, tomato, eggplant, and pepper. The physiological mechanisms at play which mediate rootstock effects on scion performance are discussed in interpreting the implications of grafting for the configuration of vegetable fruit physicochemical quality and nutritive value.