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Understanding the genetic mechanisms of adaptation to environmental variables is a

key concern in molecular ecology and evolutionary biology. Determining the adaptive

evolutionary direction and evaluating the adaptation status of species can improve

our understanding of these mechanisms. In this study, we sampled 20 populations

of Forsythia suspensa to infer the relationship between environmental variables and

adaptive genetic variations. Population structure analysis revealed that four genetic

groups of F. suspensa exist resulting from divergent selection driven by seven

environmental variables. A total of 26 outlier loci were identified by both BayeScan and

FDIST2, 23 of which were environment-associated loci (EAL). Environmental association

analysis revealed that the environmental variables related to the ecological habitats of

F. suspensa are associated with high numbers of EAL. Results of EAL characterization

in F. suspensa are consistent with the hypothesis that ecological habitats determine

the adaptive evolution of this species. Moreover, a model of species adaptation to

environmental variables was proposed in this study. The adaptation model was used

to further evaluate the adaptation status of F. suspensa to environmental variables. This

study will be useful to help us in understanding the adaptive evolution of species in regions

lacking strong selection pressure.

Keywords: adaptation, ecological habitat, environment-associated loci, Forsythia suspensa, warm temperate

zone

INTRODUCTION

Understanding the genetic mechanisms of adaptation to environmental variables is a key issue
in molecular ecology and evolutionary biology. Changes in environmental variables are mainly
manifested in climate fluctuations on a time scale and in environmental heterogeneity on a
spatial scale. Two adaptation strategies are usually adopted by plants in response to environmental
variables. One strategy is adjustment in the distribution, and the other is production of adaptive
variations in the genome (Davis and Shaw, 2001; Lei et al., 2015). Plants displaying highly
efficient seed dispersal capacity often adopt the first strategy as confirmed by phylogeographical
studies (Avise, 2009; Hickerson et al., 2010). Conversely, species lacking effective seed dispersal
mechanisms are compelled to adapt to local conditions by adopting the second strategy.
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Substantial adaptive variations in the genome will eventually
lead to changes in phenotype and phenological characteristics
of a species (Rellstab et al., 2015). These changes provide the
basis for adaptive evolution of a species. Interaction between
gene flow and natural selection lead to species adaptation in
response to heterogeneous regional environment (Rieseberg and
Burke, 2001; Ellstrand, 2014), resulting in spatial variation in
adaptive allele frequencies among populations (Manel et al., 2012;
Schoville et al., 2012). Visualizing adaptive genetic variability
across environmental variation is the key in understanding the
adaptive evolution of a species (Hoffmann and Willi, 2008).
However, detecting adaptive genetic variation remains a great
challenge because of the lack of a priori genomic resources for
non-model species (Stinchcombe and Hoekstra, 2008).

Joost et al. (2007) have proposed landscape population
genomics, which is a relatively new approach used to reveal
the relationships between adaptive genetic and environmental
variations (Allendorf et al., 2010; Schoville et al., 2012). However,
this approach requires genome-wide molecular markers and
high-resolution environmental data (Balkenhol et al., 2009;
Epperson et al., 2010). To date, amplified fragment length
polymorphisms (AFLPs), inter-simple sequence repeats (ISSRs),
and genotyping by sequencing are widely used in landscape
population genomics studies (De Kort et al., 2014; Rellstab
et al., 2015; Wang et al., 2016). High-resolution environmental
data are now available from public climate databases, such
as the WORLDCLIM database (www.worldclim.org). Recent
landscape population genomics studies have highlighted the
genetic mechanisms of species adaptation to the environment
(Ćalić et al., 2016; Pluess et al., 2016). Statistical approaches
have been developed to identify outlier loci showing higher
differentiation among populations and lower genetic diversity
within populations compared with selectively neutral regions of a
genome (Abebe et al., 2015); these approaches include BayeScan
based on multinomial-Dirichlet model (Foll and Gaggiotti, 2008)
and Arlequin based on hierarchical island model (Excoffier and
Lischer, 2010). To further determine whether these outlier loci
are driven by environmental factors, researchers have developed
multiple statistical approaches for association testing; these
approaches include Bayesian linear mixed model (Coop et al.,
2010; Günther and Coop, 2013), generalized dissimilarity model
(Ferrier et al., 2007), generalized estimating equation (Carl and
Kuhn, 2007), latent factor mixed model (Frichot et al., 2013),
multiple logistic regression analyses (Grivet et al., 2011), and
spatial analyses based on univariate logistic regression (Joost
et al., 2007).

Although a large number of adaptive loci driven by
environmental variables were identified in more than one
species, the general and overall result taken from these
landscape population genomics studies in regional vegetation
is that the commonality on species adaptation response to
identical environmental variables is still unclear. Commonality
in adaptive evolution in regional vegetation generally requires
extremely strong selection pressure produced by one or more
environmental variables. Species exposed to extreme heat and
drought in desert areas or to high salinity in the ocean tend to
produce convergent adaptive evolution in genes or phenotype

(Kültz, 2015; Givnish, 2016). However, most regions do not
exhibit strong selection pressure produced by these extreme
environments mentioned above. Thus, the direction of adaptive
evolution in regional vegetation is usually diverse (Manel et al.,
2012; Ćalić et al., 2016). Determining the direction of adaptive
evolution of the genome driven by environmental variables
is an interesting endeavor. Another interesting concern is the
means by which the adaptation status of species in response
to environmental variables can be evaluated. Understanding
the commonality of this diverse adaptive evolution of regional
vegetation is useful in developing suitable conservation and
management strategies.

The warm temperate zone in China is located between 32◦30′–
42◦30′ and 103◦30′–124◦10′ (Shangguan et al., 2009). The typical
vegetation in this region consists of deciduous broad-leaved
forest (Gao et al., 2001). This region does not exert strong
selection pressure brought about by extreme environmental
variables. In this study, we sampled Forsythia suspensa (Thunb.)
Vahl (Oleaceae), a deciduous shrub widespread at 300–2,200m
above sea level in the warm temperate zone in China. The
flowering period of F. suspensa is from March to June, and the
fruiting period is from July to September. This species prefers
light and tolerates a certain degree of shade; additionally, it
prefers warm and humid climate and can tolerate cold and
drought but not waterlogging (Niu et al., 2003). We sampled
20 natural populations of F. suspensa in the warm temperate
zone in China to infer the relationship between environmental
variables and adaptive genetic variations. Start codon targeted
(SCoT) polymorphism is a gene-targeted marker, which was
developed based on short conserved start codon in plant genes
(Collard and Mackill, 2009). SCoT markers are highly variable
and reproducible and have been widely used to survey population
genetics and phylogenetics (Guo et al., 2014; Feng et al., 2015;
Sorkheh et al., 2016). However, SCoT markers have been seldom
used in landscape population genomics to detect adaptive loci in
genomes.

In this study, we used environmental data and 1,242 loci
yielded by SCoT markers to study the adaptive evolution of F.
suspensa in the warm temperate zone in China. The present study
aimed to (i) reveal the spatial genetic structure of F. suspensa,
(ii) identify the key environmental variables that drive adaptive
differentiation in F. suspensa, and (iii) evaluate the adaptation
status of the species in response to environmental variables.

METHODS

Sample Collection
A total of 204 individuals from 20 natural populations were
collected from the entire distribution range of F. suspensa
in China (Figure 1). Most population samples contained 10–
12 individuals (Table 1). Although 10–12 individuals of one
population might not be an ideal sample size, the sample
numbers could meet the needs of genetic analysis to overcome
sampling bias (De Kort et al., 2014). All individuals were
collected when the population size was <10. Thus, those
populations with fewer individuals sufficiently represented
their genetic diversity. Fresh leaves were collected and stored
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in silica gel at room temperature until DNA extraction.
Table 1 shows the geographical coordinates of the sampled
populations.

Molecular Protocols
Genomic DNA was extracted from ∼30mg of dried leaves by
using a Plant DNA Extraction Kit DP305 (Tiangen, Beijing,
China) according to the manufacturer’s recommendations. DNA
concentration and quality were measured using a Microcolume
Spectrophotometer ND5000 (BioTeke, Beijing, China). After
preliminary screening of 36 SCoT primers (Collard and
Mackill, 2009), 10 primers (SCoT4, SCoT5, SCoT6, SCoT9,
SCoT12, SCoT14, SCoT17, SCoT18, SCoT21, and SCoT31) were
selected for polymerase chain reaction (PCR). SCoT4, SCoT5,
and SCoT21 were 5′ fluorescent primers labeled with FAM;
SCoT9, SCoT17, and SCoT18 were labeled with HEX; SCoT6,
SCoT12, SCoT14, and SCoT31 were labeled with TAMRA.
PCR amplification was performed in a 20µL reaction mixture
consisting of 20 ng of template DNA, 10mM reaction buffer
(pH 8.3), 0.2mM dNTPs, 0.3µM primer, and 1 unit of Taq
polymerase (Tiangen, Beijing, China). PCRs were performed in
an iCycler gene amplification system (Bioteke, Beijing, China)
under the following conditions: initial denaturation for 4 min
at 95◦C followed by 35 cycles of denaturation for 40 s at
94◦C, primer annealing for 45 s at a primer-specific annealing
temperature (48◦C for SCoT21, 52◦C for SCoT4, SCoT5, SCoT6,
SCoT9, SCoT12, and SCoT17, 55◦C for SCoT31, and 60◦C for
SCoT14 and SCoT18), extension for 1 min at 72◦C with a
subsequent extension step for 5 min at 72◦C, and termination by
a final hold at 4◦C. PCR products were mixed with 10µL of HiDi
formamide and separated on an ABI 3730 DNA Analyzer at BGI
(Beijing, China). PCR products were sized relative to ROX1000
size standard (Applied Biosystems, Foster City, USA).

Data Analysis
Unambiguous SCoT fragments were scored and transformed
into a 1/0 matrix according to the presence or absence of peaks
viewed using GeneMarker 2.2.0 (SoftGenetics, State College,
Pennsylvania, USA). To reduce the scoring false rate, we scored
the peaks within 60–1,000 bp and heights above 500 relative
fluorescent units. Subsequent population genetic analyses were
performed on the basis of this 1/0 character matrix.

Genetic parameters per population were calculated by
AFLPSURV 1.0 (Vekemans, 2002). The estimates included the
number of polymorphic alleles (NA), percentage of polymorphic
alleles (PPA), gene diversity of Nei (HE; Nei, 1973), pairwise
Nei’s unbiased genetic distance (Nei, 1987; Lynch and Milligan,
1994) between populations, and gene frequencies per allele in
each population.

Genetic structure of the 20 populations of F. suspensa was
assessed using the procedures NEIGHBOR and CONSENSE
within the program PHYLIP 3.63 (Felsenstein, 2004). Population
differentiation was characterized using hierarchical and non-
hierarchical analysis of molecular variance (AMOVA) within
ARLEQUIN 3.5.1.2 (Excoffier and Lischer, 2010). To infer the
contribution of geographical distance to spatial genetic structure,
we performed mantel tests of isolation-by-distance (IBD) in

IBD 3.23 (Jensen et al., 2005) by regressing the Nei’s unbiased
genetic distance against geographical distance. In this study,
the strong correlated environmental variables (r > 0.95) were
excluded and the uncorrelated environmental variables were used
for further analyses. Auto correlation analysis of environmental
variables was performed using Pearson’s regression in SPSS 19
(SPSS Inc., Chicago, IL, USA). Ten environmental variables
(Bio2, Bio3, Bio4, Bio5, Bio6, Bio8, Bio12, Bio13, Bio15, and
Bio17) were identified as uncorrelated environmental variables.
To further infer the contribution of environmental variables
to spatial genetic structure, we performed redundancy analysis
(RDA) by using CANOCO 4.5 (Ter Braak and Smilauer, 2002).
In RDA, gene frequencies per allele in each population (Table
S1) were used as response variable, and the 10 uncorrelated
environmental variables (Tables S2, S3) were used as explanatory
variables. Environmental data from 1950 to 2000 at 2.5 arcmin
resolution were obtained from the world climate database
(http://www.diva-gis.org/climate). Environmental data for each
population were extracted using DIVA-GIS 7.5 (Hijmans et al.,
2001).

To identify outlier loci, we utilized a Bayesian approach
based on the method described by Beaumont and Balding
(2004) by using BayeScan 2.1 (Foll and Gaggiotti, 2008).
The outliers were calculated using the following parameters:
a sample size of 5,000, thinning interval of 10, 20 pilot
runs with a run length of 5,000, and additional burn-in of
50,000 iterations. Posterior probability >0.76 corresponding to
log10-values of the posterior odds (PO) >0.5 were taken as
substantial evidence for selection. Thus, the above mentioned
loci were regarded as outlier loci. The second approach was
based FDIST2 approach proposed by Beaumont and Nichols
(1996) by using Arlequin 3.5.1.2 (Excoffier and Lischer, 2010).
The outliers were calculated with a hierarchical island model
using the following parameters: 100 simulated demes and 20,000
coalescent simulations. To reduce the false discovery rate, loci
with minor allele frequency <5% were excluded. The loci
outside the 95% confidence interval were regarded as outlier
loci. To further test whether these outlier loci are driven
by environmental variables, we conducted an environmental
association analysis based on latent factor mixed model (LFMM)
by using LFMM 1.2 (Frichot et al., 2013). Given that the
Bayesian mixed model considers the population structure, this
model can avoid the bias caused by population history and
isolation by distance and yields a robust result for environment-
associated loci (EAL). The association analysis was run using
the following parameters: 10,000 sweeps, 1,000 burn-in sweeps,
and the number of latent factors used was recommended by
PHYLIP. The loci with |z| > 3 and P < 0.001 were regarded
as EAL.

RESULTS

Genetic Structure
Ten SCoT primers were selected to investigate the population
genetic structure of F. suspensa. A total of 1,242 unambiguous
loci were identified with sizes ranging from 60 to 1,000 bp. The
number of loci in 10 primers ranged from 60 (SCoT31) to 161
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FIGURE 1 | Locations of the 20 sampled F. suspensa populations. Map produced by software DIVA-GIS 7.5.0, URL: http://www.diva-gis.org/download/.

TABLE 1 | Details of population locations, sample size, genetic diversity of 20 populations for F. suspensa.

Population no. and code Locations Lat. (N)/Long. (E) N NA PPA HE

1. SXWT Wutai Mt., Shanxi 39.00/113.58 8 226 18.2 0.061

2. SDYM Yuan Mt., Shandong 36.47/117.85 10 428 34.5 0.108

3. SDTM Tai Mt., Shandong 36.25/117.10 12 461 37.1 0.109

4. SDMM Meng Mt., Shandong 35.50/117.80 12 454 36.6 0.105

5. SDBD Baodugu, Shandong 35.00/117.70 12 496 39.9 0.110

6. SXTL Tianlong Mt., Shanxi 37.70/112.43 6 425 34.2 0.137

7. SXLK Lingkong Mt., Shanxi 36.60/112.83 12 504 40.6 0.109

8. SXBT Baota Mt., Shaanxi 36.58/109.48 6 340 27.4 0.110

9. HBWZ Wuzhi Mt., Hebei 36.50/113.65 12 444 35.7 0.101

10. HNJL Jiulian Mt., Henan 35.58/113.58 10 300 24.2 0.074

11. SXHM Hua Mt., Shaanxi 35.55/110.10 12 400 32.2 0.090

12. SXWL Wulaofeng, Shanxi 34.83/110.58 12 419 33.7 0.101

13. HNSM Song Mt., Henan 34.47/113.08 10 239 19.2 0.060

14. SXLJ Laojun Mt., Shaanxi 34.33/110.25 12 388 31.2 0.094

15. HNLJ Laojieling, Henan 33.75/111.33 10 312 25.1 0.077

16. HNLY Longyuwan, Henan 33.70/111.75 10 298 24.0 0.076

17. HBWD Wudang Mt., Hubei 32.40/111.00 12 571 46.0 0.136

18. HNTB Tongbai Mt., Henan 32.38/112.83 10 451 36.3 0.116

19. HNJG Jigong Mt., Henan 31.83/114.08 10 530 42.7 0.144

20. HBDH Dahong Mt., Hubei 31.52/112.97 6 649 52.3 0.223

NA, number of polymorphic alleles; PPA, percentage of polymorphic alleles; HE , Nei’s (1973) measure of gene diversity.

(SCoT4). The gene diversity of Nei (HE) at the species level was
0.124. The lowest number of polymorphic alleles (NA = 226,
PPA = 18.2) was exhibited in SXWT (P1) population and the

highest (NA = 649, PPA = 52.3) in HBDH (P20) population.
The lowest gene diversity of Nei (HE = 0.060) was exhibited in
HNSM population and the highest (HE = 0.223) in HBDH (P20)
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population. Overall, Table 1 shows the summary statistics of the
genetic diversity analyses of 20 populations of F. suspensa.

Populations of F. suspensa were significantly structured as
revealed by the clearly population-based NJ network, the 20
populations were subdivided into four genetic groups (Figure 2).
The four genetic groups identified were as follows: East group
(P1–P5), North group (P6–P11), Middle group (P12–P16), and
South group (P17–P20). Non-hierarchical AMOVA (Table 2)
revealed significant differences among these populations (FST =

0.115, P < 0.001). Despite the clear genetic subdivision in the
20 populations of F. suspensa, only minimal genetic variations
existed among these four groups (5.30%, FCT = 0.053, P <

0.05), and most genetic variations occurred within a population
(86.06%, FST = 0.139, P < 0.001). Non-significant patterns of
isolation-by-distance were detected among the 20 populations of
F. suspensa (r = 0.1209, P > 0.05), indicating that geographic
distance exerted no significant effect on genetic differentiation.
RDA analysis was performed to detect the contribution of
environmental variables on spatial genetic structure. The RDA
results are shown in Table 3 and Figure 3. Correlations between
genetic variables and environmental variables in axes 1 and
2 were 0.953 and 0.976, respectively. The percent variance
of the genetic variable-environmental variable relationship in
axes 1 and 2 were 26.9 and 19.0%, respectively. RDA results
showed that seven environmental variables were significantly
associated with RDA axes 1 and 2 (Table 3). Among these seven
environmental variables, mean diurnal range (Bio2), temperature
seasonality (Bio4), and min temperature of coldest month (Bio6)
were related to temperature. Meanwhile, annual precipitation
(Bio12), precipitation of the wettest month (Bio13), precipitation
seasonality (Bio15), and precipitation of driest quarter (Bio17)
were all related to precipitation. Bio12, Bio13, and Bio17
showed the highest correlation among the seven environmental
variables.

EAL Detection
Using the BayeScan method, 63 outlier loci were identified (5.1%
of the total number of SCoT loci) with a posterior probability
of higher than 0.76 (i.e., log10 PO > 0.5), which is a threshold
for substantial evidence under selection (Table S4). Using the
FDIST2 method, a relatively relaxed result of 132 outlier loci
(10.6% of the total number of SCoT loci) above the 95% threshold
were identified (Table S4). Based on the results yielded by two
identified methods, a total of 26 common loci were detected
by both methods, which represented more true outlier loci
(Figure 4). To further reduce the false discovery rate, we used
the 26 common loci for environmental association analyses.
Among these outlier loci, 23 environment-associated loci (EAL;
1.9% of the total number of SCoT loci) associated with at
least one environmental variable was detected in F. suspensa by
using LFMM (Table 4). Among these detected EAL, 20 were
significantly associated with both temperature and precipitation,
three were significantly associated with precipitation (Table 4).
Among the 10 environmental variables, Bio13, Bio15, and
Bio6 were associated with the highest numbers of EAL, which
indicated that these environmental variables might play more
important roles in adaptive evolution in F. suspensa (Table 4).

FIGURE 2 | Neighbor-joining network illustrating the genetic

relationships among 20 populations of F. suspensa based on Nei’s

(1987) unbiased genetic distance.

TABLE 2 | Hierarchical AMOVAs for SCoT variation surveyed in F.

suspensa.

Source of variation d.f. %Total

variance

F-statistic P-value

NON-HIERARCHICAL AMOVAs

Total 19 10.87 FST = 0.109 P < 0.001

East group 4 6.95 FST = 0.070 P < 0.001

North group 5 3.08 FST = 0.031 P < 0.001

Middle group 4 6.30 FST = 0.063 P < 0.001

South group 3 10.16 FST = 0.102 P < 0.001

HIERARCHICAL AMOVAs

Among four groups 3 5.87 FCT = 0.059 P < 0.001

Among populations 16 6.12 FSC = 0.065 P < 0.001

Within populations 184 88.01 FST = 0.120 P < 0.001

DISCUSSION

By using 1,242 SCoT loci, we analyzed the adaptive evolution of F.
suspensa in response to environmental variables. SCoT markers
present the advantages of high throughput, non-neutral bias, and
non-requirement for a priori genomic information (Deng et al.,
2015). Thus, SCoT markers are very suitable for adaptive loci
detection. However, markers are seldom applied in landscape
population genomics. To date, the genome information of F.
suspensa (2n= 26) is still unknown. According to a high-density
genetic linkage map in the related species of Olea europaea (2n
= 46), 5,643 markers produced a high resolution map of 0.53 cM
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TABLE 3 | Correlations between environmental variables and the

ordination axes.

Environmental

variable

Axe 1 Axe 2 Axe 3 Axe 4

Bio2 −0.530* −0.249 0.611** 0.108

Bio3 −0.396 −0.383 0.408 0.123

Bio4 −0.609** 0.261 0.617** −0.016

Bio5 0.374 −0.010 0.391 −0.306

Bio6 0.742** 0.082 −0.260 −0.280

Bio8 0.540* 0.294 0.175 −0.290

Bio12 0.693** 0.286 −0.502* 0.011

Bio13 0.153 0.760** −0.261 −0.303

Bio15 −0.686** 0.374 0.475* −0.216

Bio17 0.823** 0.220 −0.339 0.125

Statistically significant correlation by *P < 0.05 and **P < 0.01.

(İpek et al., 2016). Although a smaller number of markers were
used in this study, the overall outlier detection rate in F. suspensa
was 5.1% in BayeScan and 10.6% in FDIST2. These rates are
considered with those reported in other studies, such as 2.85%
in Alnus glutinosa (De Kort et al., 2014) and 4.5% in Picea
mariana (Prunier et al., 2011) as determined using SNPs, 4.22%
in Cephalotaxus oliveri (Wang et al., 2016) as determined using
ISSRs, and 9% in Arabis alpina (Poncet et al., 2010) and 10% in
13 alpine species (Manel et al., 2012) as determined using AFLPs.
Although SCoT markers are non-neutral biased, their detection
rates in this study are not significantly higher than that of other
molecular markers.

Understanding the spatial population genetic structure of
species is a key concern in landscape population genomics
(Schoville et al., 2012; Hall and Beissinger, 2014). In recent
years, research on the influence of environmental variables on
spatial structure gradually increased. Identifying the influence
of environmental variables on spatial genetic structure remains
difficult because of the complex reciprocal interactions of
multiple factors (Chung et al., 2004; Ohsawa and Ide, 2008).
Our survey demonstrated a significant spatial population genetic
structure across the studied populations. These populations
could be divided into four genetic groups, namely, East group
(P1–P5), North group (P6–P11), Middle group (P12–P16),
and South group (P17–P20). Three possible hypotheses can
explain the genetic divergence of these populations. First, the
current spatial genetic structure resulted from the mixing of
the four gene pools. Second, geographical barriers occurred
among the four genetic groups, and these barriers blocked
the gene flow and ultimately led to genetic differentiation
of the four groups. Third, the four groups were exposed to
significantly varying environmental conditions, and divergent
selection caused by these heterogeneous environmental variables
led to genetic divergence of the four groups. Assuming that
the first hypothesis is reasonable, high genetic diversity can be
expected in populations located at the contact zone. However,
results of the genetic diversity index based on SCoT data did not
support this explanation. Similarly, the populations (P1, P9, P11,
P12, P16, and P17) located at the contact zone of the four groups

did not show the expected high genetic diversity. Moreover, F.
suspensa displays strong pollen dispersal ability, resulting in a
high pollen-mediated gene flow among the populations (Fu et al.,
2014). The non-significant patterns of IBD in F. suspensa also
confirmed the strong gene flow among the populations. Long-
term strong gene flow among populations would result in a
consistent population genetic background. However, the results
for population structure are inconsistent with the expected strong
gene flow. Thus, the first hypothesis failed to explain the genetic
divergence of F. suspensa. Assuming that the genetic divergence
in F. suspensa can be explained by the second hypothesis, we
expect to observe considerable genetic divergence among the four
groups, with sufficiently strong geographic barrier separating
these groups from one another. However, the result of non-
hierarchical AMOVA did not support this hypothesis, and only
5.87% genetic variation was observed among the four groups.
More importantly, we did not find significant geographical
barriers, i.e., mountains and rivers, which separate the four
groups. Therefore, the second hypothesis apparently cannot
explain the genetic divergence in F. suspensa. Assuming that
the third hypothesis applies in F. suspensa, a shallow genetic
divergence among the four groups would be expected because
of the interaction between strong gene flow and significant
natural selection by environmental variables. The result of non-
hierarchical AMOVA (FCT = 0.059) was consistent with this
expectation. We then performed RDA to test whether the genetic
subdivision of the four groups was caused by environmental
factors. The RDA results indicated that seven environmental
variables related to temperature and precipitation significantly
contributed to the spatial genetic structure of F. suspensa. Among
these environmental variables, Bio12, Bio13, and Bio17 were
the most important environmental factors that have shaped the
spatial genetic structure of F. suspensa. Moreover, RDA results
showed that these environmental variables could clearly divide
the populations into East group, South group, and the combined
Middle and North groups (Figure 3). These findings showed that
environmental variables greatly influenced the spatial genetic
structure of F. suspensa. However, other unknown factors have
possibly led to the eventual divergence of the Middle and North
groups. Overall, our results for F. supsensa support the third
hypothesis.

Landscape genomics studies have devoted more attention to
the identification of adaptive gene loci (Rellstab et al., 2015;
Shryock et al., 2015). However, less attention has been devoted
to the environmental variables affecting the adaptive evolution of
species. Under extreme environments, a strong selection pressure
will facilitate convergent evolution of species (Azua-Bustos
et al., 2012). The environmental variables driving the convergent
evolution of species in these regions are usually common
(Kültz, 2015; Givnish, 2016). However, extreme environmental
variables are inexistent in most vegetation distribution areas. In
regions lacking extreme environmental variables, the direction
of adaptive evolution of the genome is uncertain, and the
environmental variables driving their adaptive evolution vary.
Thus, identifying whether commonality exists among these
environmental variables in driving diverse adaptive evolution of
species is important.
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FIGURE 3 | RDA analysis was performed to determine the relative contribution of environmental variations shaping the genetic structure. The biplot

depicts the eigenvalues and lengths of eigenvectors for the RDA. Population locations on the spatial axes are marked by their number.

FIGURE 4 | The results of outlier loci identified by Bayescan and Arlequin. Sixty-three, one hundred and thirty-two, and twenty six loci were detected as outlier

loci in F. suspensa using Bayescan, Arlequin, and both with Bayescan and Arlequin, respectively.

In this study, we chose F. suspensa as a model to address
the above mentioned concerns. This species is distributed in
the warm temperate zone in China, and this zone lacks strong
selection pressure. We hypothesized that ecological habitats

determine adaptive evolution of species and drive the genome
to generate a large number of EAL. Thus, understanding the
ecological habitats of F. suspensa is urgent. In this study, we
focused on the ecological habitats related to temperature and
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TABLE 4 | The EAL as indicated by |z|-score.

Locus Bio2 Bio3 Bio4 Bio5 Bio6 Bio8 Bio12 Bio13 Bio15 Bio17

4-026 4.083*** 4.780*** 3.392*** 4.889*** 5.022*** 6.150***

4-039 3.578*** 4.466*** 4.273*** 3.934*** 4.685***

4-046 3.859*** 3.790*** 4.065*** 4.426*** 4.946***

4-117 3.700*** 5.691***

4-118 3.913*** 7.034***

5-018 3.690*** 8.406*** 5.828*** 10.536*** 3.580***

5-083 6.539*** 3.782*** 8.600*** 6.102*** 6.873*** 8.491*** 6.714***

18-037 4.195*** 4.344***

21-004 3.294*** 6.387*** 4.402***

21-005 3.848*** 6.570*** 4.230***

21-009 5.475***

21-045 4.044*** 3.312***

21-046 5.012*** 4.114***

21-061 7.511*** 6.715*** 4.228*** 7.665*** 5.494*** 8.349*** 6.311*** 7.532***

21-073 4.538*** 5.028*** 3.812***

21-076 6.053*** 7.655*** 7.198***

21-077 4.390*** 7.796*** 4.146*** 3.976*** 8.423***

21-091 5.201*** 5.014*** 3.720***

21-115 5.570*** 6.115*** 3.600*** 3.762*** 5.132*** 7.759*** 4.113***

21-116 5.333*** 5.717*** 4.421*** 4.887*** 5.136*** 7.611*** 4.088***

21-124 3.302*** 3.856*** 5.046*** 6.179*** 3.616*** 4.075*** 3.921***

21-136 4.882*** 6.140*** 3.475*** 4.675*** 5.713*** 4.338***

31-022 3.931*** 6.169*** 3.901*** 5.657***

Statistically significant correlation by ***P < 0.001.

precipitation. F. suspensa prefers warm and humid climate and
can tolerate cold and drought but not waterlogging (Niu et al.,
2003). Among the adopted environmental variables, Bio12 was
associated with the ecological habitat of “prefer humidity”; Bio6
was associated with the ecological habitat of “tolerate cold”;
Bio17 was associated with the ecological habitat of “tolerate
drought”; and Bio13 was associated with the ecological habitat
of “avoid waterlogging.” Most of the time, the warmest and
wettest seasons in the warm temperate zone in China overlap,
and the same is true for the coldest and driest seasons.
The results of LFMM expectedly showed that the ecological
habitat of “avoid waterlogging” (Bio13) were associated with
the highest number of EAL; the ecological habitat of “tolerate
cold” (Bio6), and “tolerate drought” (Bio17) were associated
with increased number of EAL. Unexpectedly, Bio4 and Bio15
were also associated with increased number of EAL. This result
implies that seasonal variation in temperature and precipitation
exerted strong selection pressure on F. suspensa and drove the
genome to generate adaptive evolution. However, the ecological
habitats of “prefer warmth” and “prefer humidity” was only
related to a small number of EAL. Overall, most aspects of
the characterized EAL of F. suspensa are consistent with the
hypothesis that ecological habitats determine adaptive evolution
of a species.

Whether this hypothesis demonstrates a certain degree of
universality must be determined. The adaptive evolution of
Achyranthes bidentata and Cotinus coggygria in warm temperate

zone in China is also associated with their ecological habitats
(unpublished data). For A. bidentata, the highest number
of EAL is associated with its ecological habitats of “cold
intolerance” and “avoiding waterlogging.” For C. coggygria,
the highest number of EAL is associated with its ecological
habitat of “avoiding waterlogging.” To further confirm the
universality of our hypothesis, we reviewed the recent landscape
population genomics studies in other regions. For example,
the high number of EAL in Picea mariana is related to its
ecological habitat of “cold resistance” (Prunier et al., 2011);
additionally, EAL is related to “drought resistance” in Alnus
glutinosa (De Kort et al., 2014), to “temperature and precipitation
sensitivity” in Cephalotaxus oliveri (Wang et al., 2016), and
to “drought and cold tolerance” in Abies alba (Roschanski
et al., 2016). Based on the above-mentioned evidence, the
hypothesis that the ecological habitats determine adaptive
evolution of species possibly demonstrate a certain degree of
universality.

Despite the lack of extreme environmental variables in
the warm temperate zone in China, various environmental
factors more or less produce selection pressure on F. suspensa.
Therefore, the level of adaptabilities to various environmental
variables varies. Another important concern is the evaluation of
the adaptation status of species in response to environmental
variables. Thus, we propose a model of adaptive evolution of
species in response to environmental variables. The adaptive
evolution of species was divided into five stages (Figure 5). In
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FIGURE 5 | The adaptation model of species in response to environmental variables.

stage 1 (S1), environmental variables did not exert selection
pressure on the species, and the species did not yield adaptive
differentiation. Consequently, EAL could not be detected in the
genome. In S2, the altered environmental variables generated
selection pressure on the species, and the species genome
produced EAL to cope with such selection pressure. Eventually,
EAL increased gradually. However, the increased EAL loci were
not sufficient to respond to this selection pressure, and species
showed sensitivity to this environmental variable at this stage.
In S3, the species genome generated an adequate amount of
EAL in response to selection pressure. At this stage, species
showed adaptability, and this adaptability would be further
strengthened with time delay. In S4, selection pressure yielded by
environmental variable disappeared or did not occur frequently,
and the EAL on the species genome decreased gradually. At
this stage, the species was resistant to this environmental
variable. In S5, the EAL on the species genome completely
disappeared because the selection pressure yielded by this
environmental variable has long been inexistent. We used this
model to help us identify the adaptation status for F. suspensa
in response to various environmental variables. Despite a high
number of EAL driven by waterlogging (Bio13), F. suspensa still
showed the ecological habitats of “avoid waterlogging.” Thus,
the adaptability for F. suspensa in response to waterlogging
must have occurred in S2. In the same manner, we detected
a high number of EAL associated with cold (Bio6) and
drought (Bio17). However, the selection pressure from cold
and drought gradually declined and reached a level far below
the critical value that F. suspensa can tolerate. For example,
the minimum temperature during the coldest month (Bio6)
from 1950 to 2000 was −2◦C, which was far lower than the
minimum temperature that F. suspensa can tolerate (−30◦C;
Xu et al., 1996). Thus, we speculate that adaptability of F.

suspensa to cold and drought occurred in S4. Interestingly,
seasonal variation in temperature and precipitation is required as
reported by studies on F. suspensa cultivation,whereas numerous
EALs are associated with temperature seasonality (Bio4) and
precipitation seasonality (Bio15). This phenomenon is possibly
consistent with the ecological habitats of F. suspensa, i.e., “prefer
humidity” and “tolerate drought,” as well as “prefer warmth”
and “tolerate cold.” Overall, the combination of identification
of EAL and ecological habitats and our adaptation model is
useful in understanding the adaptation of species to various
environmental variables.
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