AUTHOR=El-Hendawy Salah E. , Hassan Wael M. , Al-Suhaibani Nasser A. , Refay Yahya , Abdella Kamel A. TITLE=Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions JOURNAL=Frontiers in Plant Science VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.00435 DOI=10.3389/fpls.2017.00435 ISSN=1664-462X ABSTRACT=
Field-based trials are crucial for successfully achieving the goals of plant breeding programs aiming to screen and improve the salt tolerance of crop genotypes. In this study, simulated saline field growing conditions were designed using the subsurface water retention technique (SWRT) and three saline irrigation levels (control, 60, and 120 mM NaCl) to accurately appraise the suitability of a set of agro-physiological parameters including shoot biomass, grain yield, leaf water relations, gas exchange, chlorophyll fluorescence, and ion accumulation as screening criteria to establish the salt tolerance of the salt-tolerant (Sakha 93) and salt-sensitive (Sakha 61) wheat cultivars. Shoot dry weight and grain yield per hectare were substantially reduced by salinity, but the reduction was more pronounced in Sakha 61 than in Sakha 93. Increasing salinity stress caused a significant decrease in the net photosynthesis rate and stomatal conductance of both cultivars, although their leaf turgor pressure increased. The accumulation of toxic ions (Na+ and Cl-) was higher in Sakha 61, but the accumulation of essential cations (K+ and Ca2+) was higher in Sakha 93, which could be the reason for the observed maintenance of the higher leaf turgor of both cultivars in the salt treatments. The maximum quantum PSII photochemical efficiency (