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Maize Chlorotic Mottle Virus (MCMV) is a deleterious pathogen which causes Maize

Lethal Necrosis Disease (MLND) that results in substantial yield loss of Maize crop

worldwide. The positive-sense RNA genome of MCMV (4.4 kb) encodes six proteins:

P32 (32 kDa protein), RNA dependent RNA polymerases (P50 and P111), P31 (31 kDa

protein), P7 (7 kDa protein), coat protein (25 kDa). P31, P7 and coat protein are encoded

from sgRNA1, located at the 3′end of the genome and sgRNA2 is located at the extremity

of the 3′genome end. The objective of this study is to locate the possible attachment

sites of Zea mays derived miRNAs in the genome of MCMV using four diverse miRNA

target prediction algorithms. In total, 321 mature miRNAs were retrieved from miRBase

(miRNA database) and were tested for hybridization of MCMV genome. These algorithms

considered the parameters of seed pairing, minimum free energy, target site accessibility,

multiple target sites, pattern recognition and folding energy for attachment. Out of 321

miRNAs only 10 maize miRNAs are predicted for silencing of MCMV genome. The results

of this study can hence act as the first step towards the development of MCMV resistant

transgenic Maize plants through expression of the selected miRNAs.

Keywords: maize chlorotic mottle virus (MCMV), miRanda, TapirHybrid, Targetfinder, RNA22, R language, miRNA,

target prediction

INTRODUCTION

Maize Chlorotic Mottle Virus (MCMV) (Tombusviridae: Machlomovirus) is one of the most
harmful pathogen of maize (Zea mays) which, independently or synergistically with one or
more of the viruses from other members of Potyviridae family such as Sugarcane Mosaic Virus
(SCMV), causes significant yield losses in maize crop by causing Maize Lethal Necrosis Disease
(MLND) (Bockelman et al., 1982; Wu et al., 2013). The disease is characterized by yellow streaks,
chlorotic mottle and subsequent leaf damage by necrosis; these conditions can lead to functional
abnormalities in plants and plant death (Nelson et al., 2011; Wangai et al., 2016). MCMV first
emerged in Peru in 1974 (Castillo and Hebert, 1974) and afterwards in America (Uyemoto et al.,
1980; Jiang et al., 1992) and has recently been detected in different regions around the world,
including China (Xie et al., 2011), Taiwan (Deng et al., 2015), and Africa (Lukanda et al., 2016;
Wangai et al., 2016).

MCMV is known to be transmitted by various means such as through insect vectors (beetles,
mites, stem borers and aphids), infected soils and human activities (Kiruwa et al., 2016). Moreover,
increasing international trade of maize seeds has been pointed out to incur a high risk of MCMV
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transmission between countries (Liu et al., 2016). Biological
indexing, ELISA, electron microscopy, RT-PCR and surface
plasmon resonance are among the frequently used detection
approaches for MCMV and new strategies are under
development for improved diagnosis (Zhang et al., 2011).

The genome of MCMV is positive-sense RNA of size 4.4 kb
and complete virion is icosahedral with 30 nm diameter (Lommel
et al., 1991; Stenger and French, 2008). Genome lacks both the
5′genome linked protein, VPG (viral protein genome-linked) and
the 3′polyA tail, and encodes six overlapping open reading frames
(ORFs) thereby generates six proteins of distinct molecular
weights (Nutter et al., 1989). Mapping from the 5′end of RNA
genome, the sequence encodes for P32 (32 kDa protein), RNA
dependent RNA polymerases (replicases P50 and P111), P31 (31
kDa protein), P7 (7 kDa protein), coat protein (25 kDa). Two
large RNA molecules called sub-genomic RNA1 (sgRNA1) and
sub-genomic RNA2 (sgRNA2) are at the 3′end of the genome.
sgRNA1 possesses genetic code for expressing P7, P31, coat
protein, and also sgRNA2 (Stenger and French, 2008; Deng et al.,
2015).

MicroRNAs (miRNAs) are small endogenous ssRNA
molecules, 21–23 nucleotides in length, which are formed after
processing of hair-pin loop like miRNA precursors (pre-miRNA)
by RNase-III like enzyme (Dicer) and can negatively regulate the
gene expression (Brodersen and Voinnet, 2006). RNA silencing,
through miRNAs present in host plant species, thus imparts
natural immunity and resistance to the host against foreign
genetic elements including plant viruses (Qu et al., 2007; Iqbal
et al., 2016). In maize genome, 321 mature miRNAs have been
found (Griffiths-Jones et al., 2008; Kozomara and Griffiths-Jones,
2014); a subset of these mature miRNAs in Zea mays should have
targets in MCMV genome and these miRNAs, once identified,
can be expressed through cloning to enhance the resistance
against infection fromMCMV(Ali et al., 2014, 2016).

The purpose of this research work was to implement the
computational methods for the identification of the targets
of Maize-derived microRNAs in the genome of MCMV, as a
precedent for enhancing the resistance of the maize plants to
MCMV through RNAi. For this objective, a set of miRNAs were
retrieved frommiRNA databases and were tested against MCMV
genome through in-silico experiments involving four different
miRNA prediction algorithms. The predicted miRNAs can lead
to the development of MCMV resistant Zea mays plants by using
transformation techniques.

MATERIALS AND METHODS

Retrieval of Mature miRNAs of Zea mays
The microRNA database, miRBase (Griffiths-Jones et al., 2008;
Kozomara and Griffiths-Jones, 2014) accessed from http://www.
mirbase.org/cgi-bin/browse.pl, was used to retrieve 321 miRNAs
of Zea mays.

MCMV Genome Retrieval and Annotation
The complete genome sequence of MCMV with the accession
number KJ782300 was downloaded from NCBI and CLC

Genomics Workbench (v 9.5.2) was used for annotation of
genome features of MCMV (Figure 1).

miRNA Target Prediction in MCMV Genome
Four tools (Table 1) named miRanda, Tapirhybrid, Target finder
and RNA22 were used for screening miRNAs of Zea mays
against MCMV genome to locate miRNA targeting regions.
The sequences of Maize miRNAs and the genome of MCMV,
both in FASTA format, were processed through these algorithms
using the desired parameters. Figure 2 shows a detailed workflow
pipeline adopted to predict the miRNA sites within the MCMV
genome.

miRanda
miRanda algorithm (John et al., 2004) has been used for plant
miRNA target prediction (Archak andNagaraju, 2007; Iqbal et al.,
2016). It considers the properties of sequence complementarity,
free energy of RNA-RNA duplex and cross-species conservation
of the target site to produce the output which is a weighted
sum of match and mismatch scores for base pairs and gap
penalties. It also promotes the prediction of multiple miRNA
target sites including the ones with imperfect binding in the seed
region within the 3′UTR of the target site thereby enhancing the
specificity (Betel et al., 2008; Witkos et al., 2011). The algorithm
was run after defining the settings (gap open penalty = −9.0,
gap extend penalty = −4.0, score threshold = 140, energy
threshold=−20 kcal/mol and scaling parameter= 4.0).

Tapirhybrid
Tapirhybrid (Bonnet et al., 2010) considers the parameters of
seed pairing, target site accessibility, multiple target sites and
is a highly recommended tool for plant miRNA prediction, as
it predicts with a greater accuracy as compared to many other
tools (Srivastava et al., 2014). Precise mode of algorithm was
run which is based on RNAhybrid algorithm, for miRNA target
prediction. It generates miRNA target scores after taking into
account the number of mismatches, gaps, the number of GU
pairs and mismatches in the seed region. Thus, the usage of this
tool was primarily to implement a high precision algorithm to
enhance the accuracy of the results. The input parameters were
set to score <= 8 and mfe_ratio >= 0.5.

Targetfinder
Targetfinder (Allen et al., 2005; Fahlgren and Carrington, 2010)
has been evaluated to be a highly sensitive and accurate algorithm
for plant miRNA prediction, with a high percentage of true
positive results as compared to other algorithms(Srivastava et al.,
2014). It uses FASTA searches to find the potential targets,
considering the seed matches, and score them after assessment of
penalties for mismatches, bulges, gaps and G:U pairs. Score was
set to 10, while the other parameters were set at default.

RNA22
RNA22 (Miranda et al., 2006; Loher and Rigoutsos, 2012) uses
an approach divergent from the other miRNA prediction tools;
it implements a pattern-based approach and folding energy
to locate the possible miRNA target sites without a cross-
species conservation filter. Identification of putative miRNA
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FIGURE 1 | Genome annotation of maize chlorotic mottle virus. Six genes (p32, p50, p111, p7, p31, and coat protein) of MCMV are represented along with

their sizes. sgRNA1 and sgRNA2 at the 3′end of the genome are also shown.

TABLE 1 | Main parameters considered by some of the common miRNA

target prediction algorithms.

Software/

Algorithm

Main parameters References

miRanda Seed pairing, Target site

accessibility, Multiple target sites

John et al., 2004

RNAhybrid Seed pairing, Target site

accessibility, Multiple target sites

Rehmsmeier et al., 2004

Targetfinder Seed pairing Fahlgren et al., 2007

Tapirhybrid Seed pairing, Target site

accessibility, Multiple target sites

Bonnet et al., 2010

TargetScan Seed pairing, Multiple target sites Lewis et al., 2005

Target-align Multiple target sites Xie and Zhang, 2010

Target_Prediction Target site accessibility Sun et al., 2011

RNA22 Site complementarity, Pattern

recognition and folding energy

Miranda et al., 2006

target sites is also possible even without the identity of the
targeting miRNA. The algorithm first analyzes the sequences
of known mature miRNAs and then on the basis of pattern
information in the miRNAs, it predicts the putative target
sites, with many aligned patterns and then identifies the
miRNAs which are likely to bind to the predicted target

sites. RNA22 was accessed from the web (cm.jefferson.edu/
rna22/Interactive/) and the miRNA and the target genome was
input to the algorithm. Sensitivity and specificity values were
kept at 63% and 61%, respectively and seed size of 7 was
selected with 1 unpaired base allowed in the seed region and
no limit was set to the maximum number of G:U wobbles
in the seed region. Minimum number of paired-up bases
was kept to 12 while the maximum folding energy was kept
at−14 kcal/mol.

Statistical Analysis
miRNA prediction data obtained from all the four algorithms
(Supplementary Table 1) was analyzed by the using R language
through RStudio (an integrated development environment for R)
(Gandrud, 2013). In-house scripts, Packages readxl and ggplot2
were used in the processing and graphical representation of the
result data.

miRNA-Genome Binding Site Conservation
Analysis
All the MCMV complete genome sequences were retrieved
from NCBI nucleotide database available till datebearing
accession numbers KJ782300.1, GU138674.1, EU358605.1,
JQ982468.1, KF010583.1, JQ982470.1, JQ982469.1, KP851970.3,
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FIGURE 2 | Flow chart of our miRNA target prediction in MCMV genome pipeline. Data group contains the type of data acquired for this study from

miRBase(miRNAs) and NCBI(virus genome). Algorithm group enlists all the miRNA target prediction tools used in this study. R language was used to make plots and

select/refine data using in-house scripts/codes. In the last, binding sites of miRNA-genome attachment conservation throughout other known MCMV strains, were

studied using MSA.

NC_003627.1, X14736.2. Sequences were analyzed for the
conservation of the attachment sites for bioinformatically
screened miRNAs using MEGA7 (Kumar et al., 2016).
Muscle sequence alignment algorithm was used to align
the MCMV genomes. miRNA binding site sequences (identified
by the four miRNA-target prediction tools) were aligned to
these already aligned genomes using clustalW algorithm,
individually.

RESULTS AND DISCUSSION

MLND, occurring due to the infection by MCMV, can have
adverse effect on the yield of Zea mays. Various reports of
maize infection with MCMV have been found from around
the world (Jiang et al., 1992; Xie et al., 2011; Deng et al.,
2015; Wangai et al., 2016). RNAi based silencing the genome
of DNA or RNA viruses is a robust technique that can be
implemented to enhance viral resistance in plants (Duan et al.,
2012). Niu et al. (2006) has reported the silencing of specific
genes of turnip yellow mosaic virus (TYMV) and turnip mosaic
virus (TuMV) by generating transgenic Arabidopsis thaliana. To
silence the gene encoding Pns12 protein of Rice dwarf virus,
Shimizu et al. (2009) cloned and expressed the RNAi constructs
in rice to create transgenic rice plants, resistant to Rice dwarf
virus. To boost the defense system of Zea mays against the
RNA genome of MCMV, genome encoded miRNAs of Zea
mays can be expressed after the potential miRNAs of Zea mays
targeting MCMV genome are found. Hence the core target
of this study was to find the miRNA targets in the genome
of MCMV, which can be targeted by specific miRNAs of Zea
mays.

miRNA Target Prediction in Genome of
MCMV
For prediction of miRNA targets in the genome of MCMV,
above mentioned tools were used in combination to maximize
the accuracy of miRNA target prediction and for filtering out
the false positive results. miRanda (John et al., 2004) was

used as it implements various parameters, including target
site conservation to predict a large number of miRNA target
sites. Afterwards, Targetfinder (Allen et al., 2005; Fahlgren
and Carrington, 2010) and Tapirhybrid (Bonnet et al., 2010)
were applied which have been recommended for plant miRNA
target prediction; various plant miRNA prediction algorithms
have been compared by Srivastava et al. (2014) and both of
these algorithms have been concluded as the ones giving the
most satisfactory output for plant miRNA target prediction.
RNA22 (Miranda et al., 2006; Loher and Rigoutsos, 2012) uses
an approach that is different from the three algorithms, and
predicts on the basis of patter-recognition in the target sequence.
Figures 3, 4 shows all the genome positions targeted by Zea mays
miRNAs by the various algorithms used.

32 kDa Protein (P32)
A very little is known about the function of this protein. It has
been found not be involved in replication and movement but its
removal has been found to be associated with decreased level of
virus accumulation and disease symptoms (Scheets, 2016).

P32 gene of MCMV was among the least targeted genes by
the host derived miRNAs of Zea mays. P32 was targeted at two
positions by two different miRNAs. Targetfinder and Tapirhybrid
predicted binding of miR160a-3p at locus 528 while RNA22
and Tapirhybrid predicted hybridization of miR408b-5p at
locus 752.

P50 and P111 (Putative Replicases)
P50 and P111 (read-through protein) both contain a GDD
box (glycine- aspartate- aspartate motif), also called polymerase
domain found in positive strand RNA viruses, and have been
predicted to be RNA-dependent RNA replicases (RdRp) as it has
been found through comparison with known replicases (Nutter
et al., 1989).

For P50 gene of MCMV, 11 targeting miRNAs were predicted
(miR160a-3p, miR164c-3p, miR164h-3p, miR166l-5p, miR171b-
5p, miR171f-5p, miR319a-5p, miR319c-5p, miR408b-5p,
miR528a-3p, and miR528b-3p). The greatest number of
potential targets of Zea mays miRNAs was for the P111 gene
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FIGURE 3 | miRNA Target prediction results of maize chlorotic mottle virus. (A) Indicates target prediction results from miRanda, (B) target prediction by

RNA22, (C) target prediction by TapirHybrid and (D) target prediction by TargetFinder. The color code/key has been linked to the respective figures.

FIGURE 4 | miRNA Target prediction results shown as a union from three algorithms: TapirHybrid, RNA22, and miRanda. The color code has been given

with the figure.
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targetted by eighteen different miRNAs (miR156j-3p, miR160a-
3p, miR164c-3p, miR164h-3p, miR164h-5p, miR166k-5p,
miR166l-5p, miR168b-3p, miR171b-5p, miR171f-5p, miR319a-
5p, miR319c-5p, miR399h-5p, miR408b-5p, miR444a, miR444b,
miR528a-3p, and miR528b-3p), in combination, at a total of 13
loci of P111 gene. miRNAs targeting both P50 and P111 genes at
the same loci were miR164c-3p and miR164h-3p (locus 1009),
miR171b-5p and miR171f-5p (locus 1300), miR319a-5p and
miR319c-5p (locus 1454), miR444a and miR444b (locus 2466),
and miR528a-3p and miR528b-3p (locus 1009).

P31 (31 kDa Protein)
This protein is encoded by a part of subgenomic RNA1 region at
the 3′end of MCMV genome and is produced due to suppression
of stop codon of the ORF encoding 7 kDa protein (Scheets,
2000). P31 is not involved in cell-to-cell movement; however, it
enhances the long distance spread of the virus in plants (Scheets,
2016).

Suitable miRNAs for targeting P31 gene were predicted to
be miR169c-3p, miR171b-3p, miR171n-3p, miR395a-5p, and
miR399c-5p. Moreover, miR171b-3p, and miR171n-3p targeted
the P31 gene at a common locus, while the rest of miRNAs
(miR169c-3p, miR395a-5p, and miR399c-5p) hybridized at
unique positions in P31 gene.

P7 (7 kDa Protein)
P7 includes proteins P7a and P7b which are similar to the
movement protein MP1 and MP2, respectively, found in
tombusviridae genera, and are required for cell-to-cell movement
of virus in plants (Turina et al., 2000; Yuan et al., 2006; Scheets,
2016). Constructs encoding aberrant transcripts of P7 eliminates
the disease symptoms of MCMV in Zea mays (Scheets, 2016).

P7 gene had the least number of predicted targets by Zea
mays miRNAs; only one miRNA of Zea mays (miR395a-5p) was
targeted at this this gene at locus 3201, indicated by RNA22 and
Targetfinder.

Coat Protein (25 kDa)
Full length coat protein is needed for cell-to-cell movement of
MCMV virions in plants. Reducing or stopping coat protein
production has the effect of impairment of virus infection in
vivo (Scheets, 2016). Four Zea mays miRNAs (miR169c-3p,
miR171b-3p, miR171n-3p, and miR399c-5p) were found to have
binding sites in coat protein gene at three different loci.

Potential miRNAs for targeting coat protein gene were
predicted to be miR169c-3p, miR171b-3p, miR171n-3p, and
miR399c-5p. Moreover, miR171b-3p and miR171n-3p targeted
the coat protein gene at the same locus, while the rest of predicted
miRNAs (miR169c-3p and miR399c-5p) had targets at different
positions in coat protein gene.

Subgenomic RNA1 and RNA2
Subgenomic RNA1 (sgRNA1) expresses all the ORFs in
the 3′end of the genome (Scheets, 2000). The proteins
encoded by sgRNA1 are P31, P7 (both of which start
from the same AUG) and the coat protein (which begins
at the second AUG of sgRNA1). sgRNA1 was potentially

targeted by 15 miRNAs: miR156i-3p, miR159a-3p,
miR159b-3p, miR159c-3p, miR159d-3p, miR159f-
3p, miR159h-3p, miR159i-3p, miR159j-3p, miR159k-3p,
miR169c-3p, miR171b-3p, miR171n-3p, miR395a-5p,
and miR399c-5p.

Subgenomic RNA2 (sgRNA2) is 337 nucleotide a non-coding
RNA which accumulates in protoplasts and plants infected with

FIGURE 5 | miRNAs predicted from at least three algorithms. Minimum

free energy (from miRanda and TapirHybrid) has been shown. The color code

has been given with the figure.
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FIGURE 6 | Secondary structures of pre-miRNAs, precursors of the mature miRNAs found in the study as the miRNAs detected by a consensus of

algorithms. Stems (canonical helices) = green, multiloops (junctions) = red, interior loops = yellow, hairpin loops = blue and 5′ and 3′ unpaired regions = orange.

MCMV (Scheets, 2000). However, it is not yet clear whether it
is a true sgRNA or a structure-protected degradation product
(Iwakawa et al., 2008).

Total 10 potential miRNAs for silencing sgRNA2 were
predicted: miR156i-3p, miR159a-3p, miR159b-3p, miR159c-3p,
miR159d-3p, miR159f-3p, miR159h-3p, miR159i-3p, miR159j-
3p, and miR159k-3p. Since the transcript of sgRNA2 overlaps
with the 3′terminal sequence of sgRNA1, miRNA targeting
sgRNA2 also hybridized to sgRNA1 at the same genome
locus. Those miRNAs targeting sgRNA1 (and not sgRNA2)
were exactly the same as those predicted for the P31 gene
(i.e., miR169c-3p, miR171b-3p, miR171n-3p, miR395a-5p, and
miR399c-5p).

Maize miRNAs (Detected by a Consensus
of Algorithms) for Silencing MCMV
Genome
Among all the targeting miRNAs of Zea mays for silencing
MCMV genome, ten miRNAs (miR159a-3p, miR159b-3p,
miR159f-3p, miR159h-3p, miR159i-3p, miR159j-3p, miR159k-
3p, miR166k-5p, miR168b-3p, and miR399h-5p) were predicted
by at least three algorithms (including RNA22) or by all the four
algorithms used (Figure 5). These miRNAs were classified as the
most suitable Zea mays miRNAs against the genome of MCMV,
since these were predicted after considering the parameters
of seed pairing, minimum free energy, target site accessibility,
pattern recognition and folding energy thus integrating all
aspects of miRNA target prediction and therefore are the most
suitable selections for gene silencing. Secondary structures of
miRNA precursors have been shown in Figure 6.

miRNA-Genome Binding Site Conservation
Analysis
Genomic sites serving as an attachment to the respective
screened miRNAs show the details of the level of conservation
in binding sites in different MCMV strains (Figure 7). This
study helps to refine the miRNA selection by investigating
the highest binding site conservation level. Furthermore,
base-by-base each miRNAs attachment to the complementary
MCMV genome sites can be found in the Supplementary
File 1.

CONCLUSION

This study presents an organized in silico approach for finding
host-derived miRNAs aimed at silencing the genome of virus
affecting the host plant by RNA interference. Through the use of
four different algorithms, putative miRNAs have been predicted
from the repertoire of Zea mays encoded miRNAs. Also, through
the MSA study, the level of conserved binding sites of MCMV
strains is identified. The short-listed miRNAs, identified as the
putative miRNAs of Zea mays are the best selections to be used
in transformation for the production of MCMV resistant Maize
varieties.
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FIGURE 7 | Multiple sequence alignment of MCMV genomes (available to date at NCBI nucleotide database) showing the conservation of attachment

site of the respective miRNAs (sites are numbered according to the KJ782300.1). Further, base-by-base nucleotide attachment of miRNAs with the

complementary MCMV genome sites can be found in the Supplementary File 1.
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