AUTHOR=Simko Ivan , Hayes Ryan J. , Furbank Robert T. TITLE=Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors JOURNAL=Frontiers in Plant Science VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2016.01985 DOI=10.3389/fpls.2016.01985 ISSN=1664-462X ABSTRACT=
Rapid development of plants is important for the production of ‘baby-leaf’ lettuce that is harvested when plants reach the four- to eight-leaf stage of growth. However, environmental factors, such as high or low temperature, or elevated concentrations of salt, inhibit lettuce growth. Therefore, non-destructive evaluations of plants can provide valuable information to breeders and growers. The objective of the present study was to test the feasibility of using non-destructive phenotyping with optical sensors for the evaluations of lettuce plants in early stages of development. We performed the series of experiments to determine if hyperspectral imaging and chlorophyll fluorescence imaging can determine phenotypic changes manifested on lettuce plants subjected to the extreme temperature and salinity stress treatments. Our results indicate that top view optical sensors alone can accurately determine plant size to approximately 7 g fresh weight. Hyperspectral imaging analysis was able to detect changes in the total chlorophyll (RCC) and anthocyanin (RAC) content, while chlorophyll fluorescence imaging revealed photoinhibition and reduction of plant growth caused by the extreme growing temperatures (3 and 39°C) and salinity (100 mM NaCl). Though no significant correlation was found between