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γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in
growth regulations and plant development, however, a little information is available
on the consequences of exogenous GABA application on growth, development, and
associated physio-biochemical processes in maize. The present study examined the
GABA-induced regulations in early growth, net photosynthetic rate, gas exchange,
osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6,
Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L−1 and 50 mg L−1,
in solution form, with total application volume of 100 ml per pot containing 15 maize
seedlings were exogenously applied. Results revealed that exogenous GABA application
improved seedling growth in terms of seedling length and biomass accumulation in
all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted
net photosynthesis and variably affected gas exchange attributes, i.e., stomatal
conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as
well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde
(MDA)] under GABA treated maize seedlings were also remained variable; however,
osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes,
i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and
7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism,
e.g., nitrate reductase and glutamine synthetase were improved. These results suggest
the involvement of GABA in various physio-metablical mechanisms which might lead
to improvement in morphological growth of maize. In future, research is still needed at
molecular and genetic levels to unravel the involvement of GABA-mediated regulations
in growth and its associated physio-biochemical mechanisms.
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INTRODUCTION

Plants have complex mechanisms of inter and intra cellular
signal transductions which play a major role in growth regulation
and plant development. This system of plant signaling not only
controls the growth behavior but also projects the complete life
cycle or whole growth period of a plant. Plant signaling molecules
are important in this regard in which they integrate external
stimuli to internal plant processes for an appropriate response.
Most often, plants respond to these signaling molecules at the
level of their biosynthesis, transportation, and uptake or at the
level when these are perceived (Ma, 2003; Bouche and Fromm,
2004; Roberts, 2007).

γ-Aminobutyric acid (GABA), four-carbon non-protein
amino acid, is well recognized as an endogenous plant signaling
molecule and involved in various physio-biochemical processes
of a plant. For example, it triggers up the nitrate uptake and
nitrate transport gene expression (BnNrt 2) the in Brassica
napus and regulates 14-3-3 gene family members in seedling of
Arabidopsis thaliana (Beuve et al., 2004; Lancien and Roberts,
2006). Development of pollen tube and its orientation is also
related to GABA levels in the tobacco plants (Yu and Sun, 2007).
GABA-induced alleviation of proton and aluminum stress is well
explored by Song et al. (2010) at seedling stage in barley whereas
regulation of gene expression associated with H2O2 and ethylene
production in the roots of Caragana intermedia is also related
with endogenous GABA application (Shi et al., 2010). Activation
of antioxidant defense system to scavenge ROS and to palliate
oxidative damage is also a boon of GABA in peach under chilling
stress (Yang et al., 2011). Additionally, endogenous GABA levels
in plants are very low; however, it was produced rapidly in plants
under stressful conditions to withstand against them (Kinnersley
and Turano, 2000). Exogenous application of GABA promoted
morphological growth, functioning of photosynthetic machinery,
gas exchange capacities, chlorophyll biosynthesis, enzymatic,
and non-antioxidant responses and membrane stabilization in
tomato (Luo et al., 2011). Furthermore, roles of GABA in
osmoregulation, pH change, glutamate homeostasis and its action
as a signaling source for nitrate uptake are important with respect
to plant response to external environments (Carroll et al., 1994;
Shelp et al., 1999; Masclaux-Daubresse et al., 2002; Beuve et al.,
2004) whilst GABA is also involved in nitrogen metabolism
(storage or transport) and C:N fluxes.

γ-aminobutyric acid is synthesized in a complicate pathway
called the GABA shunt (conversion of glumate to succinate)
which includes three main enzymes, i.e., glutamate decarboxylase
(GAD), GABA transaminase, and succinic semialdehyde
dehydrogenase (SSADH), of which GAD is the key enzyme
which is responsible for irreversible α-decarboxylation of
glutamate “the first step of the GABA shunt”. Secondly, GABA is
catalyzed to succinate semialdehyde reversibly by the action of
GABA transaminase where α-ketoglutaric acid or pyruvate acts
as amino acceptors. Finally, succinic semialdehyde is irreversibly
oxidized to succinate (Rhodes et al., 1999). Moreover, GABA
might also be produced from γ- aminobutyraldehyde (a product
of the polyamine catabolic pathway) through betaine aldehyde
dehydrogenase which localized in chloroplasts and also involved

in biosynthesis of glycinebetaine. Exogenous application of
different plant growth regulators, phyto-hormones and growth
promoters have proved their significant impacts in growth
regulations in maize (Anjum et al., 2011a,b,c); however, reports
on the effects of GABA application on early maize growth and its
involvement in various metabolic events are very few. This study
examined the GABA-induced regulations in early performance of
maize seedling, photosynthetic and gas exchange capacities, and
anti-oxidative defense system to protect against oxidative stress
with the hypothesis that GABA may improve early performance
of maize by regulating its related physio-biochemical processes.

MATERIALS AND METHODS

Experimental Material and Growing
Conditions
A pot experiment was conducted by using three popular maize
varieties, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2
collected from Crop Research Institute, Guangdong Academy
of Agricultural Sciences, Guangzhou, China. This region has a
humid subtropical monsoonal type of climate characterized by
hot summers and warm winters with yearly average temperature
ranged from 21 to 29◦C (Li et al., 2016; Mo et al., 2016) The
cultivars used in this study are well-recognized and widely grown
corn cultivars in South China. Before sowing, healthy seeds with
uniform color, shape and with intact seed coat were selected from
the seed lot and sown in plastic pots (18 cm × 13 cm × 6 cm)
containing sandy loam soil with total nitrogen 0.97 g kg−1, total
phosphorous 0.82 g kg−1, total potassium 25.50 g kg−1, and pH 6.
The pots were placed at room conditions (28◦ C) under sun
light with light/dark period of 12/12 h and 60 ± 5% relative
humidity (RH).

Treatments
Two levels of GABA (Sigma) (0 mgL−1 (−GABA) and 50 mgL−1

(+GABA), in solution form), with total application volume of
100 ml per pot and split into twice (50 ml for 15 days after
sowing (DAS), the rest 50 ml were applied at 16 DAS), were
exogenously applied to the seedlings (at 2–3 leaves stage). The
pH of the solution was 7.0 (the same as the control (distilled
water application). For each variety, 25 seeds per pot were sown
with 10 pots per treatment whilst at first fully expanded leaves,
15 seedlings with consistent growth were kept in each pot and
other pants were thinned out. The treatments were arranged in
completely randomized design (CRD).

Observations
Photosynthesis and SPAD Value
The photosynthesis characters were measured with the portable
photosynthesis system (LI-6400, LI-COR, USA) during 9:00–
11:00 am according to Pan et al. (2015). The top fully
expanded leaves of two represented seedlings from each three
different pots of each cultivar were selected to measure
the net photosynthetic rate (Pn), stomatal conductance (Gs),
intercellular CO2 concentration (Ci), and transpiration rate
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(Tr) with the following adjustments: photo-synthetically active
radiation at leaf surface was up to1200 µmol m−2 s−1, molar
flow of air per unit leaf area was 500 µmol s−1, ambient
CO2 concentration was 400 µmol mol−1, air temperature was
30◦C, and RH was 60%. The SPAD values represented as
chlorophyll contents were recorded with a SPAD meter ‘SPAD-
502’ (Konica Minolta, Japan) according to Wu et al. (1998) that
provided a precise, rapid and non-destructive estimation of leaf
chlorophyll contents. The average SPAD values (determination
was done at the upper 1/3rd, middle, and lower 1/3rd SPAD
value in leaves) was considered as the relative chlorophyll
content.

Physiological Parameters
To determine physiological parameters, a total number of 25
seedlings were harvested from 5 pots (5 seedlings per pot),
separated into leaves and roots and immediately dropped into
liquid nitrogen for 30 s then stored at –80◦ C till biochemical
analyses.

The soluble protein content was measured base on the method
of Bradford (1976) by using G-250. Briefly, 0.1 g of tissue was
homogenized with 1 ml of 0.1 M ice-cold phosphate buffer,
pH 7.0, containing 1% polyvinylpolypyrrolidone. The resulting
homogenate was centrifuged at 10,000 g at 4◦ C for 10 min,
and the supernatant was immediately used for soluble protein
measurements. The supernatant was mixed with the comassie
brilliant blue-G250 solution and the absorbance of the reaction
mixture was read at 595 nm with a spectrophotometer. Protein
content was determined from a standard curve (bovine serum
albumin) and expressed as µg g−1.

The proline content was measured by method of Bates et al.
(1973) by using ninhydrin. The fresh sample of 0.3 g was
homogenized in 3%sulphosalycylic acid and homogenate filtered
through filter paper. After addition of acid ninhydrin and glacial
acetic acid, the mixture was then heated in water bath at 100◦C for
1 h. Reaction was then stopped by using ice bath. After reaction
the absorbance of the red chromosphere in the toluene fraction
was measured at 520 nm. Proline content was determined using
calibration curve and expressed as µmol g−1.

The malondialdehyde (MDA) content was measured by the
method of Chen and Wang (2006). Fresh sample (0.3 g) was
homogenized in 5 ml of 10 % trichloroacetic acid and centrifuged
at 4000 g for 15 min. To each 2 ml of the supernatant, 2 mL of
0.6% thiobarbituric acid in 10% TCA was added. The mixtures
were heated at 100◦C for 15 min and then quickly cooled in
an ice bath. After centrifugation at 10,000 g for 20 min, the
absorbance of the reaction solutions was recorded at 532 nm,
600 nm, and 450 nm. The MDA content of the reaction solutions
was calculated as: MDA content (µmolL−1) = 6.45 (OD532–
OD600)-0.56OD450, and final result of MDA was expressed as
µmolg−1.

The super-oxide dismutase (SOD, EC 1.15.1.1) activity was
measured by using nitro blue tetrazolium (NBT) method (Chen
and Wang, 2006). After reaction, the color changed was measured
at 560 nm, and one unit of SOD activity equaled the volume of
extract needed to cause 50% inhibition of the color reaction and
express as U g−1.

For peroxidase (POD, EC1.11.1.7) activity, enzyme extract
(50 µl) was added to the reaction solution system containing
1 ml 0.3% H2O2, 0.95 ml 0.2% guaiacol, and 1 ml 50 mmol/L
pH 7.0PBS, the absorbance change of the brown guaiacol at
470 nm was recorded for calculating POD activity. One POD
unit of enzyme activity was defined as the absorbance increase
because of guaiacol oxidation by 0.01 (Ug−1) (Chen and Wang,
2006).

The glutamine synthetase (GS, EC 6.3.1.2) activity was
measured according Sun et al. (2009). The reaction system
containing 50 mM imidazole, 18 mM ATP-Na2, 28 mM MgCl2,
25 mM hydroxylamine, 92 mM l-glutamate-Na, (pH 7.2). The
enzyme reaction was terminated with 500 µl of stopping solution
containing 370 mM FeCl3, 200 mM TCA, 700 mM HCl. After
centrifugation (5 min, 13,000 g) 600 µl of supernatant was mixed
with 300 µl of water, and read at 540 nm and expressed as 1A.
mg−1 protein h−1 and 1A represents the change of absorption
value.

The nitrate reductase (NR, EC 1.7.99.4) activity was
determined by the method of Sun et al. (2009). The
extract was incubated in a reaction mixture containing
100 mM potassium phosphate buffer (pH 7.4), 10 mM
EDTA, 0.15 mM NADH, and 0.1 M KNO3 at 30◦C for
30 min. The reaction was stopped by the addition of
TCA. The absorbance of the supernatant was determined
at 540 nm after adding sulfanilamide and N-(1-napthyl)-
ethylenediamine-dihydrochloride. The units was expressed as µg
g−1 FW h−1.

Morphological Characters
The rest of the seedlings, total 50 seedlings in each treatment (10
seedlings per pot and 5 pots per treatment) were harvested for
the measurements of the root and shoot fresh and dry weight,
seedling length, weight per unit height, and root shoot ratio.
The root and shoot fresh weight of the plant from each pot
was weighted by the electronic analytical balance (BSA224S,
Sartorius, Taiwan) immediately after harvesting. After weighing
of the fresh weight, the shoot part of the plant was used for
measuring of the seedling length by a plastic ruler. Then the fresh
sample of the root and shoot part of the plant was placed in the
oven, dried at 80◦ C to constant weight for measurement of the
root and shoot dry weight. The plant weight per unit seedling
length and root/shoot ratio was determined with the following
formulae:

Plant weight per unit seedling length (mg cm−1)= dry weight
of the shoot/seedling length.

Root shoot weight ratio = dry weight of the root /dry weight
of the shoot.

Statistical Analysis
Analyses of variances (ANOVA) were performed by the Linear
Model Procedure of Statistix version 8 (Statistix 8, Analystical,
Tallahassee, FL, USA). Comparisons of means among different
treatments were made according to the least significant difference
(LSD) at the 5% probability level. The figures were made by using
the SigmaPlot for windows version 10. 0 (Systat Software Inc., San
Jose, CA, USA).
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RESULTS

Analysis of Variance of the Investigated
Parameters
All maize verities differed significantly regarding most of the
investigated parameters in both sampling stags, except for Ci and
NR activity in leaves at 3 DAT and for SOD activity and MDA
content in root and GS and NR activity in leaves at 7 DAT. GABA
application also affected some of the investigated parameters;
nevertheless, no significant effect was noted for shoot weight
per unit height, root shoot weight ratio, Ci, proline and MDA
contents in leaves of both harvest stages. Moreover, activities of
POD, GS, and NR in leaves at 3 DAT and root dry weight and
GS activity in leaves at 7 DAT were also affected considerably.
For variety and GABA interaction, the significant effects were
observed for root and shoot fresh weight, Ci, SPAD values in
leaves, protein content in both leaves and roots, SOD activity
in leaves, and MDA content in roots at both 3 and 7 DAT
(Table 1).

Morphological Characters
γ-aminobutyric acid treated maize seedlings improved root fresh
weight of Yuebainuo 6, Zhengtian 68, and Yuecainuo 2 at 3
DAT by 45.30, 23.57, and 49.45%, respectively, compared with
non-treated seedlings (Figure 1A). At 7 DAT, GABA treated
seedlings showed significant increase in root fresh weight by

26.82% for Yuebainuo 6 and by 38.88% for Zhengtian 68, but no
significant difference was observed for Yuecainuo 2 (Figure 1B).
With GABA application, the shoot fresh weight was improved
up to 27.33, 3.52, and 33.09% for Yuebainuo 6, Zhengtian 68,
and Yuecainuo 2, respectively, at 3 DAT, and the significance
was detected for Yuebainuo 6 and Zhengtian 68 only whereas
a remarkable increase in shoot fresh weight was observed for
Yuebainuo 6, Zhengtian 68, and Yuecainuo 2 by 38.11, 42.33,
and12.71%, respectively, at 7 DAT (Figures 1C,D).

γ-aminobutyric acid treated seedlings improved root dry
weight by 34.80% for Yuecainuo 2 at 3 DAT and by 16.60% for
Yuebainuo 6 at 7 DAT (Figures 2A,B) whilst a notable increase
in shoot was observed for Yuecainuo 2 (23.47%) at 3 DAT.
Furthermore, a significant improvement in shoot dry weight was
recorded for Yuebainuo 6, Zhengtian 68, and Yuecainuo 2 at
7 DAT by 22.10, 21.73, and 13.16%, respectively, (Figures 2C,D).

Additionally, under GABA treatment, the seedling length
was significantly improved for Yuebainuo 6 and Yuecainuo 2
at 3 DAT, and for Zhengtian 68 at 7 DAT, nevertheless, non-
significant effect of GABA application was observed for the shoot
weight per unit seedling length and root shoot weight ratio
(Figure 3).

Photosynthesis and Gas Exchange
γ-aminobutyric acid-induced enhancement in net
photosynthetic rate (Pn) were recorded for Yuebainuo 6 and

TABLE 1 | Analysis of variance of the investigated parameters.

Index 3 DAT 7 DAT

V T V × T V T V × T

Root fresh weight 16.56∗∗ 76.52∗∗ 6.41∗ 47.10∗∗ 17.47∗∗ 4.51∗

Shoot fresh weight 34.16∗∗ 34.25∗∗ 6.77∗ 14.87∗∗ 44.48∗∗ 4.40∗

Root dry weight 37.49∗∗ 6.43∗ 2.71ns 70.72∗∗ 2.25ns 1.48ns

Shoot dry weight 25.47∗∗ 8.62∗ 2.44ns 25.38∗∗ 43.28∗∗ 1.41ns

Plant height 113.95∗∗ 104.19∗∗ 28.10∗∗ 28.40∗∗ 41.68∗∗ 3.91ns

Shoot weight per unit height 18.70∗∗ 0.01ns 0.78ns 41.20∗∗ 0.40ns 2.19ns

Root shoot weight ratio 6.93∗ 0.25ns 0.22ns 85.04∗∗ 3.51ns 0.16ns

Pn in leaves 21.26∗∗ 77.40∗∗ 27.72∗∗ 164.31∗∗ 55.52∗∗ 0.02ns

Gs in leaves 36.63∗∗ 11.37∗∗ 0.24ns 117.92∗∗ 5.67∗ 2.56ns

Ci in leaves 4.22ns 2.91ns 11.07∗∗ 420.51∗∗ 0.15ns 4.47∗

Tr in leaves 91.51∗∗ 11.02∗∗ 0.81ns 121.35∗∗ 24.08∗∗ 11.25∗∗

SPAD value in leaves 395.46∗∗ 1.45ns 19.23∗∗ 321.23∗∗ 53.95∗∗ 30.97∗∗

Protein content in leaves 233.57∗∗ 50.01∗∗ 43.22∗∗ 117.87∗∗ 105.90∗∗ 80.67∗∗

Protein content in roots 7872.24∗∗ 22971.2∗∗ 7814.13∗∗ 517.23∗∗ 2437.08∗∗ 628.13∗∗

Proline content in leaves 177.42∗∗ 0.36ns 0.69ns 18.89∗∗ 2.51ns 5.33∗

SOD activity in leaves 156.99∗∗ 5.43∗ 4.33∗ 77.99∗∗ 40.17∗∗ 42.42∗∗

SOD activity in roots 59.71∗∗ 35.88∗∗ 23.41∗∗ 1.47ns 8.96∗ 0.97ns

POD activity in leaves 15.48∗∗ 1.37ns 4.24ns 619.31∗∗ 58.93∗∗ 56.43∗∗

POD activity in roots 33.48∗∗ 25.07∗∗ 5.85∗ 13.20∗∗ 9.21∗ 0.97ns

MDA content in leaves 32.50∗∗ 0.00ns 0.46ns 56.00∗∗ 0.06ns 0.23ns

MDA content in roots 300.57∗∗ 70.40∗∗ 12.43∗∗ 0.07ns 9.51∗ 8.71∗∗

GS activity in leaves 5.33∗ 0.25ns 1.38ns 4.31ns 0.91ns 1.32ns

NR activity in leaves 4.31ns 0.91ns 1.32ns 4.62ns 12.28∗∗ 2.56ns

ns, non-significant at P < 0.05 level; ∗P < 0.05; ∗∗P < 0.01 levels.
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FIGURE 1 | Fresh weight of root and shoot of maize seedling at 3 DAT (A,C) and 7 DAT (B,D). Vertical bars with different lower case letters above are
significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

FIGURE 2 | Dry weight of root and shoot of maize seedling at 3 DAT (A,C) and 7 DAT (B,D). Vertical bars with different lower case letters above are
significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

Zhengtian 68 with an increment of 25.13 and 12.94% at
3 DAT, respectively; however for Yuebainuo 6, Zhengtian
68, and Yuecainuo 2, the net photosynthesis rate were
12.45, 11.23, and 13.19% higher at 7 DAT, respectively. For
stomatal conductance (Gs), significant increase was found for
Yuebainuo 6 upto 9.75 and 15.91% at 3 and 7 DAT, respectively
(Figures 4C,D), however, there was no significant effect of

GABA on intercellular CO2 concentration (Ci) for all maize
verities, except for a significant reduction of for Yuebainuo
6 at 3 DAT (Figures 4E,F). Interestingly, the transpiration
rate (Tr) and stomatal conductance (Gs) showed similar
trends for all three maize verities with an increase of 8.93
and 32.72% for Yuecainuo 6 at 3 and 7 DAT, respectively
(Figures 4G,H).
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FIGURE 3 | Plant height, shoot weight per unit height, root shoot weight ratio of maize seedling at 3 DAT (A,C,E) and 7 DAT (B,D,F). Vertical bars with
different lower case letters above are significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

SPAD Value and Protein Content
There was no significant effect of GABA on SPAD value in
leaves was observed, besides the significant reduction of SPAD
for Yuebainuo 6 at 7 DAT (Figures 5A,B). For protein content
in leaves, GABA application significantly improved protein
content of Zhengtian 68 and Yuecainuo 2 by 11.98 and 5.77%,
respectively, at 3 DAT as well as significantly improved protein
content of Yuebainuo 6 and Zhengtian 68 by 5.07 and 23.07%,
respectively, at 7 DAT (Figures 5C,D). However, for protein
content in root, significant reduction was recorded for all the
varieties and both sampling stages (Figures 5E,F).

Anti-Oxidant Enzymatic Activities
γ-aminobutyric acid treated maize seedling increased SOD
activity in root and leaves of Yuecainuo 2 significantly, the
increment in leaves was 68.91 and 307.53% at 3 and 7 DAT,
respectively, and in roots was 484.21 and 262.16% at 3 and
7 DAT, respectively, (Figures 6A–D). Significant increment of
POD activity in leaves was recorded for Zhengtian 68 (12.68%)
at 3 DAT and for Yuecainuo 2 (95.30%) at 7 DAT (Figures 6E,F).

For POD activity in root, the result showed 39.19, and 14.30%,
higher POD activities in the roots of Yuebainuo 6 and Yuecainuo
2, respectively, at 3 DAT whereas for Zhengtian and Yuecainuo
2 root POD activities was 3.23 and 12.40% higher at 7 DAT than
non-treated maize seedlings (Figures 6G,H).

Proline Content and MDA Content
Exogenous GABA application did not improved proline content
in leaves of all maize verities significantly at both 3 and
7 DAT (Figures 7A,B). Moreover, at 3 DAT, GABA application
reduced MDA contents in roots of Yuebainuo 6 and Zhengtian
68 significantly whereas in Yuecainuo 2 MDA contents were
statistically similar with non-treated seedlings while all treated
maize seedlings were remained statistically similar regarding
leaves MDA contents. Furthermore, at 7 DAT, leaves MDA
contents of Yuebainuo 6 were considerably lower than non-
treated maize seedlings while Zhengtian 68 and Yuecainuo
2 similar leaves MDA contents as non-treated seedlings (-
GABA). Interestingly, root MDA contents at 7 DAT were
considerably higher in Yuebainuo 6 and Yuecainuo 2 under
GABA treatment; nevertheless in Zhengtian 68 values for root
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FIGURE 4 | Photosynthetic physiology of maize seedling at 3 DAT (A,C,E,G) and 7 DAT (B,D,F,H). Vertical bars with different lower case letters above are
significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

MDA were marginally lower than non-treated maize seedlings
but non-significant (Figures 7C–F).

GS and NR Activity
There was no significant difference between with and without
GABA treatments regarding GS activity for the three cultivars.
For NR activity, the significant differences were observed for
Yuecainuo 2 at both sampling stages, the increase in NR
activity could be found for the other two cultivars; however,
the values were marginally higher. Overall, the increment of
NR activity in leaves were remained up to 12.06, 1.76, and
19.09% higher than –GABA at 3DAT for Yuecainuo 6, Zhengtian

68 and Yuecainuo2, respectively, whilst at 7 DAT, up to
16.13, 4.43, and 11.32% higher NR activities were observed
in Yuecainuo 6, Zhengtian 68, and Yuecainuo 2, respectively
(Figure 8)

Correlation Analyses
Correlation analysis revealed that shoot dry weight at 7 DAT was
in significantly and positively correlated with Pn and Tr in leaves
at both 3 and 7 DAT. Positive associations were also recorded for
the shoot dry weight at 7 DAT with NR activity in leaves, however,
significance was recorded only for 7 DAT. Further, shoot dry
weight at 7 DAT was negatively associated with SPAD values in
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FIGURE 5 | SPAD value in leaves and protein content in leaves and root of maize seedling at 3 DAT (A,C,E) and 7 DAT (B,D,F). Vertical bars with different
lower case letters above are significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

leaves at both 3 and 7 DAT, but the significance was only recorded
for 7 DAT (Figure 9).

DISCUSSION

γ-Aminobutyric acid (GABA), a non-protein amino acid,
consists a considerable fractions of free amino acids in plant cells;
however, its role in plants remained a bit unclear as compared
to animal cells where its role as a neurotransmitter is well-
recognized. Regulations in cytosolic pH, anti-oxidative enzymatic
systems, buffering agent in C and N metabolism, osmoregulation,
armoring against oxidative stress, and signal transduction are
the major roles of GABA that might lead to improvement in
overall plant performance (Kinnersley and Lin, 2000; Bouche and
Fromm, 2004)

In present study, exogenous GABA application significantly
improved morphological growth of seedlings of three maize
cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2 in
terms of improved root-shoot fresh and dry biomass, seedling

length, and root/shoot ratio (Figures 1–3). Previously, studies
declared GABA-induced improvement in many plant species that
might be due to improved photosynthetic activities, relative water
contents, osmolyte accumulation, leaf turgor and other related
physio-metabolical mechanisms (Deewatthanawong et al., 2010;
Shang et al., 2011; Yang et al., 2011; Nayyar et al., 2014). GABA
application might have promoted the maize seedlings growth
by inciting cell elongation and division or/and by maintaining
metabolic balance within plant tissues. Moreover, in another
experiment, GABA application at 250 and 5 µM enhanced
growth of Stellaria longipes and Lemna, respectively, under
normal growing conditions (Kathiresan et al., 1998; Kinnersley
and Lin, 2000).

Plant photosynthesis and transpiration rates are affected
by various factors while improvements in photosynthetic
yields and high photosynthetic acclimation would be of great
interest in a crop like maize (Ashraf et al., 2016). Our
results revealed that exogenous GABA application promoted
net photosynthesis, gas exchange capacities and chlorophyll
biosynthesis in all maize cultivars under study (Figures 4 and 5).
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FIGURE 6 | Super-oxide dismutase and POD activity in leaves and root of maize seedling at 3 DAT (A,C,E,G) and 7 DAT (B,D,F,H). Vertical bars with
different lower case letters above are significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

GABA application related improvement in net photosynthesis
and gas exchange in terms of stomatal conductance, intercellular
CO2 concentration, transpiration rate in all maize cultivars
of possibly due to maintenance of cell turgor, promoted
chlorophyll biosynthesis, reduced oxidative damage by regulating
various physio-biochemical processes. GABA could promote
the synthesis of photosynthetic pigments and carotenoids that
might be helpful in nurturing photosynthetic machinery. In a
recent study, Vijayakumari and Puthur (2016) found a significant
increase in the activities of photosystem I and II in Piper nigrum
Linn. Plants, when seeds were primed with GABA. In contrast,
effects of GABA application on net photosynthesis, chlorophyll
contents and some parameters of chlorophyll fluorescence, i.e.,
maximal photochemical efficiency of photosystem II (Fv/Fm)
and non-photochemical quenching coefficient (NPQ) were not
improved significantly with GABA application whilst promotive
effects were more prominent on electron transport rate (ETR),

actual photochemical efficiency (8PSII) and photochemical
quenching coefficient (qP) and Chl a/b in tomato seedlings grown
in hydroponic culture (Luo et al., 2011). Strong shielding effects
of GABA on photosynthetic machinery and chlorophyll contents
in rice seedlings under heat stress were also reported by Nayyar
et al. (2014).

Cytosolic accumulation of osmolytes is important to maintain
cell turgor and involved in osmoregulation (Anjum et al.,
2016). Our results indicated that GABA application enhanced
protein contents in leaves of all maize cultivars while lowered
in roots (Figure 5) whilst accumulation of proline concentration
remained non-significant (Figure 7). Sustained photosynthesis,
protection against protein and enzymes degradation as well as
osmoregulation is the most apparent physiological effects of
proline (Hare et al., 1999). Previously, GABA at 1, 5 10 mM
was applied to peach fruit (Prunus persica) and its application at
5 mM led to significant increase in proline accumulation (Shang
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FIGURE 7 | Proline content in leaves and MDA in root and leaves of maize seedling at 3 DAT (A,C,E) and 7 DAT (B,D,F).Vertical bars with different lower
case letters above are significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

et al., 2011). Proline inducted protection of thylakoid membrane
from oxidative damage caused by ROS is also of great importance
(Delauney and Verma, 1993).

γ-aminobutyric acid induced regulations in enzymatic
activities (GS and NR activity in leaves), lipid peroxidation (in
terms of malnodialdehyde accumulation) and anti-oxidants
(SOD and POD) in roots and leaves were represented in
(Figures 6–8). Activities of GS and NR as well as anti-oxidants
(SOD and POD) were found higher in seedlings supplemented
with GABA (Figure 6), however, GABA application lowered
MDA contents at 3 and 7 DAT except Yuebainuo 6 and
Yuecainuo 2 at 7 DAT where values for MDA were significantly
higher under GABA treated maize seedlings (Figure 7). GABA
maintains C:N balance, nitrogen metabolism by regulating
nitrogen continuing compounds (Kinnersley and Turano,
2000; Bouche and Fromm, 2004). During nitrogen destitution,
its positive correlation was with nitrate influx during whole
growth period of rape which evidences its involvement in
nitrogen metabolism (Bown and Shelp, 1989; Beuve et al.,
2004). GABA-induced regulations in nitrogen and carbon

metabolism involved enzymes including NR, GS were also noted
in Arabidopsis thaliana seedlings (Barbosa et al., 2010 whereas
GABA-related modulation of GS activity in Lemna minorwere
also observed by Rhodes et al. (1975). Moreover, our results also
demonstrated that GABA might have an effect on NR activity and
phosphorylation (as activity of GR was increased due to GABA
application), and might play important roles in N-metabolism.

On the other hand, generation of ROS often caused membrane
damage and disintegration of various cellular structures and
organelles thus cause ultimate cell death (Mittler et al., 2004;
Ashraf et al., 2015; Anjum et al., 2016), however, timely
action of SOD and POD against ROS in GABA treated maize
seedlings to protect membrane damage indicated potential
of GABA to in maintaining cell integrity. GABA-induced
maintenance of higher activities of anti-oxidants is crucial to
improve plants’ ability against oxidative stress. Our results
corroborated with the outcomes of Shi et al. (2010) who resulted
that GABA modified the activities of various anti-oxidants to
scavenge ROS in Caragana intermedia plants. Furthermore,
GABA-mediated shielding effect on membrane integrity by
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FIGURE 8 | Glutamine synthetase and NR activity in leaves of maize seedling at 3 DAT (A,C) and 7 DAT (B,D). Vertical bars with different lower case letters
above are significantly different at P < 0.05 by LSD tests. Capped bars represent SD (n = 4).

FIGURE 9 | Correlation analyses between (A) shoot dry weight and Pn in leaves, (B) shoot dry weight and Tr in leaves, (C) shoot dry weight and SPAD
value, and (D) shoot dry weight and NR activity in leaves of maize seedling at 3 DAT and 7 DAT. ns, non-significant at P < 0.05 level; ∗, significant at
P < 0.05; ∗∗, significant at P < 0.01 levels.

controlling lipid peroxidation was also observed by Song et al.
(2010) in barley seedlings. Overall, GABA could improve the
nitrogen metabolism, anti-oxidative defense and reduced lipid

peroxidation in maize seedlings. However, in our experiment,
we sprayed 50 mg/L GABA but no control was included
with 50 mg/L of amonium or another amino acid. We can
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therefore not distinguish between specific GABA signaling effects
from effects of nitrogen fertilization through the leaves or roots
which suggest further research is needed in future. However,
GABA could improve nitrogen metabolism and anti-oxidative
defense in maize seedlings. Endogenous GABA concentrations
can play a role as a signaling molecule at low concentrations
(<10 µM) while at higher concentrations (>1 mM), its
involvement in various physio-metabolical processes, C/N
metabolism, osmoregulation, plant defense responses, cytosolic
pH homeostasis and protection of plants from oxidative damage
has great importance (Kinnersley and Lin, 2000; Bouche and
Fromm, 2004).

CONCLUSION

This study revealed that application of GABA could improve
maize seedling growth; while the increment of morphological
growth is associated with net photosynthetic rate and gas
exchange capacities as well as the improved antioxidant enzyme
activities to scavenge ROS. Nitrogen metabolism in terms of
improved NR and GS activities were also noted under GABA
treated maize seedlings. In future, further studies are still needed
at molecular levels to get better insight of GABA involvement in
physio-biochemical processes and nitrogen metabolism related to
better performance of crop plants.
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