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Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an

intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal

structures of cyanobacterial PSII are an essential foundation for understanding PSII

function, but nonetheless provide a snapshot only of the active complex. To study

aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful

tool that can be used in conjunction with biochemical techniques. In this article, we

present the MS-based approaches that are used to study PSII composition, dynamics,

and structure, and review the information about the PSII life-cycle that has been gained

by these methods. This information includes the composition of PSII subcomplexes,

discovery of accessory PSII proteins, identification of post-translational modifications and

quantification of their changes under various conditions, determination of the binding site

of proteins not observed in PSII crystal structures, conformational changes that underlie

PSII functions, and identification of water and oxygen channels within PSII. We conclude

with an outlook for the opportunity of future MS contributions to PSII research.

Keywords: Photosystem II, Photosystem II life-cycle, mass spectrometry, post-translational modification,

chemical cross-linking, protein footprinting

INTRODUCTION

Since the late 1990s, mass spectrometry (MS) has become a central tool for the study of
proteins and their role in biology. The advent of electrospray ionization (ESI) and matrix-assisted
laser desorption ionization (MALDI) permits the ionization of peptides and proteins and their
introduction into the gas phase, enabling their analysis by MS. The typical “bottom-up” workflow
that emerged in the wake of these breakthroughs involves: (1) enzymatic digestion (often by
trypsin) of a protein to produce peptides of small enough size (typically 1–3 kDa) to be ionized

Abbreviations: A.thaliana, Arabidopsis thaliana; BS3, (bis(sulfosuccinimidyl)suberate); C. reinhardtii, Chlamydomonas

reinhardtii; DSP, dithiobis(succinimidyl propionate); DTSSP, 3,3′-dithiobis(sulfosuccinimidyl propionate); EDC, 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide; ESI, electrospray ionization; FAB, fast atom bombardment; FTICR, Fourier
transform ion cyclotron resonance; GEE, glycine ethyl ester; LC, liquid chromatography; LHCII, Light-harvesting complex
II; LMM, low-molecular-mass; LTQ, linear ion trap quadrupole; MALDI, matrix-assisted laser desorption ionization; MS,
mass spectrometry; N. tabacum, Nicotiana tabacum; NHS, N-hydroxysuccinimide; OCP, orange carotenoid protein; PBS,
phycobilisome; PSII, Photosystem II; PC, plastocyanin; PTM, post-translational modification; QqQ, triple-quadrupole; SCP,
small CAB-like protein; Synechococcus 7002, Synechococcus sp. PCC 7002; Synechocystis 6803, Synechocystis sp. PCC 6803; T.
elongatus, Thermosynechococcus elongatus; TOF, time-of-flight; WOC, water-oxidizing complex.
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and fragmented efficiently in a mass spectrometer; (2) liquid
chromatographic (LC) separation of the peptides; and (3)
online (or offline) injection of the separated peptides into a
mass spectrometer. The “top-down” approach is an attractive
alternative that eliminates the protein digestion step, but the
subsequent steps are generally more difficult for intact proteins
than peptides, and this approach is currently best-suited for
small, soluble proteins. After injection of the peptides, a typical
tandem MS analysis consists of: (1) ionization of the peptide
sample by ESI or MALDI and introduction into the gas phase;
(2) measurement of the mass-to-charge (m/z) ratio of the
intact peptide (also referred to as “MS1” analysis); and (3)
fragmentation of the precursor ion and measurement of its
“product-ion” spectrum (“MS/MS” or “MS2” analysis), which
provides information about the peptide’s amino acid sequence.
When genomic information is available to predict the sequence
of all proteins in the organism, computer analysis of the peptide
masses and product-ion spectra can determine the highest-
scoring match for each peptide from the protein database. This
highest-scoring match is taken as the identity of the peptide,
assuming data quality meets certain statistical criteria. A given
protein is then determined to have been present in the sample if
the quality and number of its peptide hits meet an additional set
of statistical criteria. The ability to identify many proteins in a
sample at once by MS has become the cornerstone of the field of
proteomics.

Protein identification is only the most basic application
of MS-based proteomics, and it has traditionally been
described as the first “pillar” of the field. The second pillar
is characterization of the many proteoforms that exist for each
protein, arising, e.g., from splice variants and post-translational
modifications (PTMs). These two pillars address questions
about the composition of a protein sample. The third pillar is
quantification—either absolute or relative—of proteins using
isotopic labeling or label-free approaches. This pillar is typically
used to address questions about the dynamics of a system—how
composition of proteins or proteoforms changes over time, space,
or under different environmental conditions or perturbations. A
proposed fourth pillar focuses on the emerging area of structural
proteomics that uses MS-based techniques to address questions
about the three-dimensional structure of proteins and protein
complexes in a cell.

These four pillars of proteomics have each become
indispensable tools for gleaning information about
photosynthesis (Battchikova et al., 2015; Bricker et al., 2015;
Heinz et al., 2016) and, in particular for this review, the life-cycle
of PSII. A search for publications containing both “Photosystem
II” and “mass spectrometry” in the article title, abstract, and/or
keywords was performed on the Scopus database. The results,
displayed in Figure 1, show that prior to the advent of ESI and
MALDI in the late 1980s, publications were nearly zero per
year. Starting in the early 1990s and continuing through 2015,
publications have risen steadily, with around 20–30 publications
per year in the last several years. The rise can be attributed
to method and instrument development, and to increasing
accessibility of MS instrumentation to biology researchers. An
overview of how MS-based tools are typically applied to PSII

FIGURE 1 | Plot of publications that use MS for PSII research over

time. Publications that contain “Photosystem II” and “mass spectrometry” in

their article title, abstract, or keywords were searched on the Scopus

database. Each data point represents the total number of publications for that

range of years.

life-cycle research is given in Table 1. This review focuses on
MS of proteins. However, it should be noted that another widely
used application of MS in PSII research is the analysis of the
isotopic composition of evolved oxygen by membrane-inlet mass
spectrometry. This technique has yielded significant insight into
the mechanistic aspects of water oxidation by PSII (reviewed in
Shevela and Messinger, 2013).

In the sections that follow, we consider questions of PSII
composition, dynamics, and structure separately. For each area, a
brief overview of the relevant MS-based tools is given, followed
by examples of several PSII life-cycle research areas that have
benefitted from these techniques. In the final section, the outlook
for future contributions of MS techniques to PSII life-cycle
research is discussed.

COMPOSITION OF PSII COMPLEXES

MS-Based Methods to Study the
Composition of PSII Complexes
PSII Subunits with Soluble Domains
The bottom-up MS workflow is highly effective at identifying
soluble proteins or proteins with soluble domains. It is,
therefore, the main MS strategy that has been used to detect
the core PSII proteins D1, D2, CP43, and CP47, which are
transmembrane proteins but have multiple soluble domains,
the extrinsic (soluble) PSII proteins, or unknown PSII-bound
proteins. Bottom-upMS analysis can be preceded by either in-gel
or in-solution digestion of the protein, each with advantages. Gel
electrophoresis serves as a one- or two-dimensional fractionation
step, simplifying the mixture to be analyzed by MS. Using
this approach to remove interferences can improve instrument
sensitivity toward proteins in the band of interest. Native PAGE,
either alone or followed by denaturing SDS-PAGE (2D-BN-
PAGE), is a common choice for resolving multiple protein
complexes in a thylakoid membrane or purified PSII preparation;
unknown bands can be excised and analyzed by MS to identify
components of specific complexes (Granvogl et al., 2008;
Pagliano et al., 2014; Gao et al., 2015). However, targeted band
excision can miss potentially important proteins that migrated at
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TABLE 1 | Overview of the role of MS in PSII life-cycle research.

Kind of information Information desired MS-based technique

Composition PSII subunits present in a complex Bottom-up MS (intact or top-down MS for LMM subunits)

Accessory proteins that associate with PSII Bottom-up MS

PTMs Bottom-up MS

Dynamics Protein and PTM changes between samples Label-free or isotopic-label-based relative quantification

PSII subunit lifetime Rate of unlabeled protein disappearance after isotopic label exposure

Relative position of subcomplexes in PSII life-cycle Relative isotopic label incorporation after pulse

Structure Binding site of proteins not found in PSII crystal structures Cross-linking, footprinting

Conformational changes Footprinting, quantify changes in modification extent

Water and oxygen channel detection Footprinting

positions not selected for in-gel digestion. In theory, native PAGE
can remove unbound proteins from complexes, simplifying
MS analysis; however, disruption of certain relevant protein-
protein interactions in complexes cannot ever be fully excluded.
Alternatively, in-solution digestion allows a more comprehensive
analysis of the protein components in a sample, but without the
sample simplification or complex-specific resolution provided by
prior SDS-PAGE or native PAGE.

MS instrumentation, as well as membrane-protein sample
preparation (Whitelegge, 2013; Battchikova et al., 2015; Heinz
et al., 2016) and bioinformatics capabilities, has improved
over the last two decades to facilitate PSII life-cycle research
(Table 2 summarizes the kinds of experiments that have been
performed and the main MS instrumentation and features that
enable them). Early mass spectrometers that were applied to
PSII research, especially triple-quadrupole (QqQ) and MALDI-
time-of-flight (MALDI-TOF) instruments, had relatively low
sensitivity, resolving power, and mass accuracy (on the order
of 100-several hundred ppm; Michel et al., 1988; Sharma
et al., 1997a,b,c; Frankel et al., 1999). Scarcity of genomic
sequence data combined with low instrument sensitivity, mass
accuracy, and fragmentation efficiency meant that sample
analysis was mainly restricted to highly purified PSII complexes
or individual subunits, with poor capability for novel protein
identification. The mid-2000s saw the appearance of higher-
performing instruments, especially the hybrid quadrupole-TOF
(Q-TOF) and increasing availability of genomic sequence data
for commonly studied photosynthetic organisms. These enabled
routine bottom-up identification of the main subunits of PSII
complexes (those with soluble domains) from more complex
starting mixtures and identification of novel PSII-associated
proteins (Kashino et al., 2002; Heinemeyer et al., 2004; Komenda
et al., 2005). The fragmentation efficiency of the Q-TOF, however,
still limited sequence coverage of proteins. The development
and distribution of Fourier transform instruments (ion cyclotron
resonance and orbitraps) sometimes interfaced with ion traps
provided improved fragmentation efficiency and enabled analysis
of highly complex mixtures with higher sequence coverage
than ever before. These instruments allow proteome-wide
experiments, enable routine confident PTM site identification,
and have opened the door for bottom-up MS experiments on
photosynthetic systems not before feasible (see Table 2 and
sections below).

The Low-Molecular-Mass (LMM) Subunits
Fully assembled PSII contains around 13 low-molecular-mass
(LMM) proteins (<10 kDa) whose transmembrane domains
account for around 40–85% of the sequence. Identification
of these very hydrophobic proteins by bottom-up LC-MS/MS
is challenging, with typically four or fewer LMM proteins
detected (Granvogl et al., 2008; Haniewicz et al., 2013; Pagliano
et al., 2014). Difficulties are associated with the proteins’
hydrophobicity and lack of soluble domains, which lead
to sample losses during preparation, poor tryptic digestion
due to infrequent arginines and lysines, slow elution during
chromatography, and poor ionization efficiency due to lack
of abundant proton-accepting residues. Fractionation by gel
electrophoresis carries the additional challenge of extracting
the protein from the gel, made more difficult because tryptic
digestion sites are infrequent (Granvogl et al., 2008).

To circumvent these difficulties, intact-mass measurement
(no MS/MS fragmentation of the protein) and more recently
top-down MS strategies have been employed, both of which
avoid protein digestion and are able to identify nearly all
the LMM subunits in a purified complex (summarized in
Table 3). Intact-mass measurement of the LMM subunits was
demonstrated by both ESI and MALDI methods, using QqQ
and MALDI-TOF instruments (see references cited in Table 3).
Both methods achieve roughly 50–200 ppm mass accuracy;
especially without fragmentation data, this would typically
not be enough for confident identification of an unknown
protein. However, because there are only approximately 13 LMM
subunits, predicted masses, which are available from genomic
sequences in many organisms, are distinctive, and because
the starting sample is typically a purified PSII complex, these
intact-mass measurements are routinely accepted as confident
identifications.

MS/MS fragmentation of intact LMM subunits, however,
can be induced using both ESI and MALDI, although ESI has
been more successful (see Table 3 and references cited therein).
Whitelegge and co-workers (Thangaraj et al., 2010) identified 11
LMM proteins in purified PSII from G. sulphuraria with a linear
ion trap quadrupole-Fourier transform ion cyclotron resonance
(LTQ-FTICR) instrument after offline LC and confirmed
several modifications. They employed both collisional-activated
dissociation (CAD) and electron-capture dissociation (ECD)
to fragment the proteins, but CAD gave better results for all
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TABLE 2 | MS instruments and instrument features for PSII life-cycle research applications.

Biological application Mass accuracy

(MS1)

Mass accuracy

(MS2)

Sensitivity/Good

sequence

coverage

QqQ TOF Q-TOF LTQ-Orbitrap Q-Exactivea LTQ-FT-ICR

ID proteins-purified PSII

complex/simple mixture/gel

band

Med Low Low + + ++ ++ ++ ++

ID LMM subunits-purified

PSII

complex-intact/top-down

Med Low Low + + ++ ++ ++ ++

ID proteins-

membranes/complex

mixture/unknown protein

search

High Med Med − − + ++ ++ ++

ID modifications-targeted

search

High Med Med + + + ++ ++ ++

ID

modifications-non-targeted

search (PTMs, footprinting)

High Med High − − − + ++ +

Quantification of

proteins/modificationsb-

targeted

search

High Med Med + + + ++ ++ ++

Quantification of

proteins/modificationsb-

non-targeted

search

High Med High − −c − + ++ +

Cross-linking High Med-High High − − − + ++ +

High: high priority; Med: medium priority; Low: low priority. “−,” undesirable instrument choice; “+,” acceptable instrument choice; “++,” desirable instrument choice.
aThe Q-Exactive is the most sensitive instrument listed. For experiments where it is given an equal rating as other instruments, high sensitivity was not deemed absolutely critical to the

experiment. However, if a Q-Exactive is readily accessible, it is generally the preferred choice of the instruments listed. Other high-performing instruments have been released recently

and are expected to be highly useful for PSII research as well.
bRatings are assuming precursor-ion-based quantification, as has been used in the large majority of studies focused on the PSII life-cycle. Product-ion-based quantification is relevant

for studies that use iTRAQ and some forms of spectral counting.
cAs an exception, rough quantification of relative LMM subunit stoichiometry between samples has been performed by intact-mass measurement on a MALDI-TOF (Sugiura et al.,

2010a).

LMM proteins. Eichacker and co-workers (Granvogl et al., 2008)
demonstrated top-down analysis on a Q-TOF with sequence
coverage ranging from 14 to 82%. This method has been used
in several other recent studies (Plöscher et al., 2009; Boehm et al.,
2011, 2012). Notably, Eichacker and co-workers (Granvogl et al.,
2008) developed a protocol to perform in-gel extraction of intact
LMM proteins prior to top-down analysis (capable of extracting
all but the PsbZ protein from the gel matrix). This technique
can be used to analyze individual BN-PAGE bands and, thus,
identify the LMM components specific to individual types of
PSII complexes in heterogeneous mixtures such as a thylakoid
membrane proteome or affinity-tagged PSII complexes.

PSII Life-Cycle Application: Composition of
Subcomplexes
Many subcomplexes form during the PSII life-cycle, and MS has
played a critical role, in combination with gel electrophoresis,
immunoblotting, crystallography, electron microscopy and other
biochemical techniques, in identifying their components (Heinz
et al., 2016). A schematic of the life-cycle is shown in Figure 2

(for reviews of the life-cycle and the subcomplexes that form,
see Baena-González and Aro, 2002; Aro et al., 2005; Nixon
et al., 2010; Shi et al., 2012; Komenda et al., 2012b; Nickelsen
and Rengstl, 2013; Järvi et al., 2015; Heinz et al., 2016). A
summary of the main subcomplexes whose composition has been
studied by MS is found in Table 4 (for completeness, several
other subcomplexes are also included). MS analysis generally
allows more rapid, comprehensive, and definitive profiling of
PSII subunits than other methods, and is especially useful for the
LMM subunits that tend to stain poorly on gels. However, owing
to the high sensitivity of MS and because relative quantification
by MS is not straightforward, it can be difficult to distinguish a
trace component of a complex from one that is stoichiometric.
Immunoblotting, therefore, complements MS for characterizing
composition of subcomplexes.

At the start of de novo PSII assembly, each of the four core
subunits D1, D2, CP47, and CP43, forms a pre-complex with
specific LMM components. Using a1D1mutant in Synechocystis
sp. PCC 6803 (hereafter Synechocystis 6803) and top-down ESI-
MS on a Q-TOF, Nixon and co-workers (Boehm et al., 2011)
showed that the CP47 pre-complex contains the LMM subunits
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TABLE 3 | Identification of LMM subunits by MS.

MS technique Ionization method Number of LMM

subunits identified

Instrument Mass accuracy (MS1) References

Bottom-up ESI, MALDI 0–4 Variety ∼1–100 ppm (peptides) Many, e.g., Kereïche et al., 2008; Plöscher et al.,

2011; Haniewicz et al., 2013; Pagliano et al., 2014

Intact ESI 9–11 QqQ ∼50–200 ppm Sharma et al., 1997a; Gómez et al., 2002;

Laganowsky et al., 2009; Thangaraj et al., 2010

MALDI 9–13 MALDI-TOF ∼50–200 ppm Sugiura et al., 2010a; Pagliano et al., 2011;

Nowaczyk et al., 2012; Nakamori et al., 2014;

Pagliano et al., 2014

Top-down ESI 8–13 Q-TOF, LTQ-FTICR 3–30 ppm (Q-TOF), <1–5

ppm (LTQ-FTICR)

Granvogl et al., 2008; Plöscher et al., 2009;

Thangaraj et al., 2010; Boehm et al., 2011, 2012

MALDI 5 MALDI-TOF/TOF ∼50–200 ppm Pagliano et al., 2014

PsbH, PsbL, and PsbT, whereas the CP43 pre-complex contains
the LMM subunits PsbK and Psb30. In this study, it was
not possible by MS alone to demonstrate fully stoichiometric
binding, just co-purification, of those LMM subunits to CP47 and
CP43. However, these results are consistent with the PSII crystal
structures and other non-MS-based results (Boehm et al., 2011
and references cited therein). Previous evidence implies PsbZ
could also associate with the CP43 pre-complex (Iwai et al., 2007;
Guskov et al., 2009; Takasaka et al., 2010), but it was not detected
by MS in this study. As determined by affinity purification and
immunoblotting, the D1 pre-complex contains PsbI and possibly
Ycf48 (Dobáková et al., 2007). It was suggested that a Ycf39-ScpB-
ScpE complex may also associate as early as this stage to insert
chlorophyll into D1 (Knoppová et al., 2014). The D2 pre-complex
contains PsbE and PsbF (Müller and Eichacker, 1999; Komenda
et al., 2008).

The D1 and D2 pre-complexes merge to form the reaction
center (RC) complex, the earliest subcomplex capable of charge
separation (Baena-González and Aro, 2002; Dobáková et al.,
2007). The RC complex, initially isolated from spinach and
wheat by detergent solubilization of thylakoid membranes, was
characterized by gel electrophoresis and immunoblotting to
contain D1, D2, PsbE, PsbF, and PsbI (Nanba and Satoh, 1987;
Ikeuchi and Inoue, 1988). Intact-mass and bottom-upMS studies
later confirmed this composition (Sharma et al., 1997a,b,c).
Several biochemical studies detected the 10-kDa PsbW subunit,
which is found in green algae and higher plants but not in
cyanobacteria, as an additional component (Irrgang et al., 1995;
Lorković et al., 1995; Shi and Schröder, 1997). Subsequently,
more specific studies (including an MS-based one, Granvogl
et al., 2008) showed that PsbW associates later, to dimers
during formation of PSII-Light-harvesting complex II (LHCII)
supercomplexes (see below; Shi et al., 2000; Thidholm et al.,
2002; Rokka et al., 2005; Granvogl et al., 2008). Despite attaching
to PSII at a late stage of assembly, PsbW may bind tightly
to the D1/D2 surface and, thus, remain partially attached to
the RC complex during solubilization, while other peripheral
PSII subunits are removed, explaining the controversy (Rokka
et al., 2005). This case highlights that subcomplexes obtained
from detergent solubilization, a technique used especially in
early PSII subcomplex studies, do not necessarily represent

subcomplexes that form in vivo. An alternative major method
for isolating PSII subcomplexes is purifying them from mutant
strains that are “blocked” at a particular stage of assembly.
Such complexes are indeed formed in vivo, but it is possible
that the altered relative quantity of PSII subunits in the
thylakoid membrane arising from the mutation may lead to
artefactual binding of certain subunits to some subcomplexes
(Thidholm et al., 2002). In cyanobacteria, two slightly different
forms of the RC complex were observed, labeled RCII∗ and
RCIIa, which differ slightly in accessory protein content (see
Table 3 and the section below). MS was critical in RCII∗

component characterization, and was indirectly used for RCIIa
characterization as well by gel and immunoblot comparison
(Knoppová et al., 2014).

The next complex formed during PSII assembly is the RC47
intermediate, also called the CP43-less core monomer in plants,
formed by attachment of the CP47 pre-complex to the RC
complex. In 1998, Barber and co-workers (Zheleva et al., 1998)
showed by MS that the monomeric RC47 complex from spinach
contains the D1, D2, CP47, PsbE, PsbF, PsbI, PsbTc, and PsbW
proteins, and the dimeric form contains, in addition, PsbK and
PsbL. From the later studies on PsbW cited above, PsbWpresence
may arise from a tight binding to the D1/D2 surface, not in vivo
presence in the RC47 complex during assembly. Based on Nixon
and co-workers’ study (Boehm et al., 2011) on the CP47 pre-
complex in Synechocystis 6803, it would be expected that RC47
also contains PsbH. Indeed, a more recent MS-based study of the
RC47 complex from Synechocystis 6803 identified all the proteins
found by Barber and co-workers (Zheleva et al., 1998) in their
monomeric RC47 complex (except PsbW which is not found in
cyanobacteria), plus PsbH, PsbM, PsbX, PsbY, and Psb28 (Boehm
et al., 2012).

Attachment of the CP43 pre-complex to RC47 forms the
inactive PSII monomer (Nickelsen and Rengstl, 2013). Active
monomeric PSII is formed upon D1 processing (Liu et al.,
2013a), dissociation of Psb27 (Liu et al., 2013a), assembly of the
water-oxidizing manganese-calcium cluster and photoactivation
(Dasgupta et al., 2008), and binding of PsbO, PsbU, and PsbV
(cyanobacteria) or PsbO, PsbP, and PsbQ (algae and higher
plants; Bricker et al., 2012). Active monomers dimerize and can
attach to the phycobilisome antenna complex (cyanobacteria)
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FIGURE 2 | A schematic of the PSII life-cycle. Refer to the text for description of each step. This schematic represents the cyanobacterial PSII life-cycle. The

subcomplex progression is similar in algae and higher plants, though several homologous subunits are named differently in these species than in cyanobacteria, and

certain subunits are unique to each group (see Rokka et al., 2005; Shi et al., 2012; Nickelsen and Rengstl, 2013; Järvi et al., 2015; Heinz et al., 2016). In algae and

higher plants, damaged complexes migrate from thylakoid grana to stromal lamellae for repair and the first steps of reassembly (Tikkanen and Aro, 2014; Järvi et al.,

2015). In cyanobacteria, chloroplasts and such inter-thylakoid structure are absent, and repair is not believed to require spatial migration of damaged complexes. De

novo PSII synthesis through RC formation appears to begin in specialized membrane subfractions in cyanobacteria, algae, and higher plants before PSII migration to

the general thylakoid membrane space, though the details of this process in the various species classes remains to be resolved (Zak et al., 2001; Nickelsen et al.,

2011; Nickelsen and Rengstl, 2013; Rast et al., 2015). E, F, H, I, J, K, L, M, O, Q, T, U, V, X, Y, Z, and 30 refer to the PsbE, PsbF, PsbH, etc. proteins, respectively.

PSII-M, PSII monomer; PSII-D, PSII dimer.

(Mullineaux, 2008) or various oligomeric states of LHCII
complexes (algae and higher plants) (Kouřil et al., 2012).

Although, crystal structures of active PSII dimers from
cyanobacteria are available, several MS studies of fully-assembled
cyanobacterial PSII have provided independent confirmation of

the subunits present in purified complexes under more native
conditions (Sugiura et al., 2010a; Nowaczyk et al., 2012). Using
native conditions has even helped discover a component (PsbQ)
that was lost during crystallization (Kashino et al., 2002; Roose
et al., 2007). The majority of PSII from algae and higher plants
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is found in several PSII dimer-LHCII supercomplexes (for a
review see Kouřil et al., 2012). MS studies (in concert with
other techniques) have identified their subunit compositions,
even in the absence of crystal structures of the complexes from
these organisms. Eichacker and co-workers (Granvogl et al.,
2008) showed that the four PSII-LHCII supercomplexes in
Nicotiana tabacum contain identical PSII core and LMMsubunits
(of the eight LMM subunits identified), and that only PSII-
LHCII supercomplexes contain the PsbW protein. These results
support previous studies that suggest that PsbW may facilitate
linkage of LHCII trimers to PSII (Shi et al., 2000; Thidholm
et al., 2002; Rokka et al., 2005). Using both bottom-up and
top-down MS techniques, Pagliano et al. (2014) found that
the various supercomplexes in pea contain identical core and
LMM subunits, but that the C2S2M2 supercomplex contains the
PsbQ, PsbR, PsbP, Lhcb3, and Lhcb6 proteins whereas the C2S2
supercomplex does not. In light of the stabilizing effect of the
PsbQ and PsbP proteins on oxygen evolution, this finding raises
interesting questions about the role of the C2S2 supercomplex.
Another recent study used MS to characterize PSII-LHCII
supercomplexes in N. tabacum and found a few differences
in subunit composition; in particular, the C2S2 supercomplex
contained Lhcb1 isoform CB25, while the C2S2M2 supercomplex
did not (Haniewicz et al., 2015).

Several studies indicate that PSII-PSI-antenna
megacomplexes can form in both cyanobacteria and higher
plants. Using in vivo cross-linking, Blankenship and co-
workers (Liu et al., 2013b) captured a PSII-PSI-phycobilisome
megacomplex in Synechocystis 6803. The authors used MS to
demonstrate presence of subunits from each complex in the
preparation (Tables 3, 5), and identified cross-links revealing
specific inter-complex subunit interactions. Aro and co-workers
(Tikkanen et al., 2008b, 2010) showed that LHCII can transfer
excitation energy to PSI in grana margins of higher plants as a
means of balancing energy flux under varying light conditions. In
support of this hypothesis, two PSII-PSI-LHCII megacomplexes
from Arabidopsis thaliana were observed by a novel large-pore
BN-PAGE system (Järvi et al., 2011), and more recently, a
PSII-PSI-LHCII megacomplex was identified by MS from the
macroalga Ulva sp. under drought stress conditions (Gao et al.,
2015).

PSII Life-Cycle Application: Identification
of Accessory Proteins
Many accessory proteins bind transiently to PSII subcomplexes
during the PSII life-cycle, serving key regulatory roles, but are
not present in the crystal structure owing to their absence in
fully assembled PSII. For reviews of the accessory proteins of
PSII (see Shi et al., 2012; Komenda et al., 2012b; Nickelsen
and Rengstl, 2013; Mabbitt et al., 2014; Järvi et al., 2015;
Heinz et al., 2016). Bottom-up MS has played a key role
in identifying some of the known ones, and others likely
remain to be identified. Identifying a previously unknown PSII-
associated protein in this manner, however, is not straightforward
because the mass spectrometers used for bottom-up analysis
are so sensitive that dozens of contaminant proteins are often

detected even in “purified” complexes. Low signal intensity of
a peptide compared to those of known PSII peptides does not
necessarily indicate a contaminant at low abundance because
different peptides have different intrinsic ionization efficiencies,
and many accessory proteins bind sub-stoichiometrically to PSII.
Certain contaminant proteins such as NDH-1 complex subunits
(Nowaczyk et al., 2012), ATP synthase subunits (Komenda et al.,
2005), phycobilisome subunits (Kufryk et al., 2008), certain
ribosomal proteins (Liu et al., 2011b), and several carbon dioxide-
concentrating mechanism proteins (Kufryk et al., 2008; Liu
et al., 2011b) are frequently observed. Careful examination of
the full list and consideration of the experimental conditions are
needed to distinguish plausible PSII-interaction candidates from
contaminant proteins (Kashino et al., 2002). Although, different
MS search software packages use different algorithms for scoring
protein hits, a strict statistical confidence threshold should be
employed and reported. Overall, although a simple bottom-up
experiment is a powerful tool to suggest new candidate proteins
that associate with PSII, subsequent targeted experiments on each
one are needed to confirm the interaction.

This strategy has proven successful many times for identifying
new PSII interaction partners. An early example (Kashino et al.,
2002) analyzed SDS-PAGE bands by MALDI-TOF MS from a
highly purified PSII preparation and identified several novel
proteins, Sll1638 (PsbQ), Sll1252, and Sll1398 (Psb32), that
appeared to be plausible PSII interaction partners. Follow-up
biochemical studies targeting these proteins confirmed their
role in the PSII life-cycle and elucidated functional aspects of
each (Inoue-Kashino et al., 2011; Wegener et al., 2011; Bricker
et al., 2012). A later proteomic study of purified PSII complexes
revealed that the Slr0144-Slr-0152 proteins, all part of one
operon, associate with PSII, leading to further characterization
of their role in PSII assembly (Wegener et al., 2008). In other
cases, specific subcomplexes were isolated beforeMS analysis and
identification of accessory proteins. For example, analysis of a
gel band from 1ctpA-HT3-PSII revealed that the Psb27 protein
binds specifically to a PSII subcomplex that accumulates before
D1 processing (Roose and Pakrasi, 2004), initiating the studies
that ultimately elucidated its role in PSII assembly (Nowaczyk
et al., 2006; Roose and Pakrasi, 2008; Grasse et al., 2011; Liu et al.,
2011a,b; Komenda et al., 2012a). MS analysis showed that the
Ycf39, ScpB (HliC), and ScpE (HliD) proteins bind specifically to
the RCII∗ form of the reaction center complex, but not the related
RCIIa form (Knoppová et al., 2014). The specific binding of the
accessory proteins Psb28 (Dobáková et al., 2009; Boehm et al.,
2012) and Psb28-2 (Boehm et al., 2012) to the RC47 complex, and
of Ycf48 to RCII∗ and RCIIa (Knoppová et al., 2014), was initially
discovered by immunoblotting, but the proteins’ presence was
confirmed by MS, strengthening the finding.

PSII Life-Cycle Application: Identification
of PTMs
Identification of Processing Events to Form Mature

PSII Proteins
The D1 protein is synthesized as a precursor protein (pD1)
with a C-terminal extension that gets cleaved during PSII
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TABLE 5 | Summary of MS-based PSII cross-linking studiesa.

Species Cross-linked subunit 1 Cross-linked subunit 2 Cross-linker Method notes References

Syn. 6803 Psb27 CP43 EDC, DTSSP • Cross-linked species enriched on gel Liu et al., 2011a

• In-gel digestion; trypsin or chymotrypsin

• LTQ-Orbitrap XL

• MassMatrix search software

Syn. 6803 PsbQ CP47, PsbO EDC, DTSSP • No cross-link enrichment Liu et al., 2014b

• In-solution digestion; trypsin

• LTQ-Orbitrap XL

• MassMatrix search software

Syn. 6803 D2, CP43, CP47 ApcE DSP • No pre-MS cross-link enrichment Liu et al., 2013b

• In-solution digestion; trypsin + LysC

• LTQ-Orbitrap XL

• ≥ +3 charge states selected for MS2 to maximize

cross-link selection

• MassMatrix search software

T. elongatus Psb27 CP43 BS3 d0/d12 • Isotope-encoded cross-linker Cormann et al., 2016

• No cross-link enrichment

• In-solution digestions; trypsin

• Orbitrap Elite Velos Pro

• StavroX search software

C. reinhardtii PsbP PsbQ EDC • Wash step isolates extrinsic proteins after cross-linking Nagao et al., 2010

• Cross-linked species enriched on gel

• In-gel digestion; trypsin or Asp-N

• Ultraflex MALDI-TOF

• MS1 only; trypsin and Asp-N samples independently

indicate the same cross-linked residues

Spinach PsbP PsbQ BS3 • Wash step isolates extrinsic proteins after cross-linking Mummadisetti et al., 2014

• Cross-linked species enriched on gel

• In-gel digestion; trypsin ± LysC

• LTQ-FTICR

• MassMatrix search software

Spinach PsbP PsbE EDC • Biotin-tagged PsbP isolates the free protein + its

cross-linked partners

Ido et al., 2012

• Cross-linked species enriched on gel

• In-gel digestion; trypsin

• LTQ-Orbitrap XL

• MassMatrix search software

Spinach PsbP PsbR, CP26 EDC • Biotin-tagged PsbP isolates the free protein + its

cross-linked partners

Ido et al., 2014

• Cross-linked species enriched on gel

• In-gel digestion; trypsin

• LTQ-Orbitrap XL

• MassMatrix search software

aOnly inter-protein cross-links that reveal interactions not detectable in the available PSII crystal structures are shown here.
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assembly (Takahashi et al., 1988). An early study using peptide
sequencing showed that in spinach, cleavage occurs after Ala-
344, removing nine C-terminal residues (Takahashi et al., 1988).
Several years later, it was found that, in Synechocystis 6803,
cleavage also occurs after Ala-344, removing 16 C-terminal
residues (Nixon et al., 1992). In this study, peptide sequencing
as well as fast atom bombardment (FAB)-MS (a predecessor
for ESI and MALDI) were used to pinpoint this cleavage
site. Ala-344 serves as a ligand for a Mn ion in the water
oxidation cluster (Umena et al., 2011) so that without cleavage,
PSII remains incapable of oxygen evolution (Roose and
Pakrasi, 2004). The extension, thus, protects early assembly
intermediates from harmful premature water oxidation activity.
Interestingly, although D1 in higher plants is cleaved in a
single step, cyanobacterial D1 is cleaved in two steps, and an
intermediate D1 (iD1) is formed transiently (Inagaki et al., 2001).
Although, the iD1 cleavage site remained unknown for two
decades, in 2007, MS and biochemical evidence demonstrated
that the CtpA protease cleaves after Ala-352 to form iD1,
which is then cleaved again after Ala-344 to form mature
D1 (Komenda et al., 2007). The significance of the two-
step cleavage remains unknown, although iD1 may serve as a
signal for transferring an early PSII assembly intermediate from
the cytoplasmic to the thylakoid membrane (Komenda et al.,
2007).

The CP43 protein also appears to be cleaved before, or
during an early stage of, PSII assembly. Tandem MS analysis
identified a CP43 peptide in spinach starting with a modified
form of Thr-15 (Michel et al., 1988). Based on the genomic
sequence, the preceding residue is a leucine, so this peptide
would not be a predicted trypsin cleavage product. It was also
found that the N-terminus of CP43 is blocked from analysis by
Edman degradation, likely owing to N-terminal modification.
Taken together, these results show that the first 14 residues of
CP43 are cleaved, leaving Thr-15 as the mature protein’s N-
terminus (Michel et al., 1988). Subsequent studies identified the
corresponding CP43 peptide in A. thaliana (Vener et al., 2001)
and Synechocystis 6803 (Wegener et al., 2008), suggesting that this
cleavage is conserved. Crystal structures of cyanobacterial PSII
were not able to resolve the most N-terminal portion of CP43,
so those structures do not address this question of CP43 cleavage
(Loll et al., 2005; Umena et al., 2011).

Cyanobacterial Psb27, PsbQ, and PsbP have unusually
hydrophobic properties for soluble lumen-localized proteins
and contain a lipoprotein signal motif and conserved cysteine
in their N-terminal regions (Thornton et al., 2004; Nowaczyk
et al., 2006; Fagerlund and Eaton-Rye, 2011). This led to the
suggestion that they are N-terminally lipid-modified and, thus,
anchored to the lumenal surface of the thylakoid membrane.
Using lipase treatment and MALDI-TOF MS, Rögner and
co-workers (Nowaczyk et al., 2006) showed that Psb27 from
Thermosynechococcus elongatus does indeed contain such a
modification. Also using MALDI-TOF MS, Wada and co-
workers (Ujihara et al., 2008) confirmed this finding with Psb27
from Synechocystis 6803 and also found that Synechocystis 6803
PsbQ, recombinantly expressed in E. coli, is also N-terminally
lipid modified. Notably, this group developed amethod to extract

lipid-modified peptides from a gel matrix after in-gel digestion,
enabling downstream MS analysis (Ujihara et al., 2008). During
PSII assembly, it is important that Psb27 binds to the lumenal
surface before the other extrinsic proteins (Liu et al., 2013a),
and the lipid anchor may facilitate this sequence by keeping
Psb27 in close proximity at all times. A similar role for the lipid
anchor of PsbQ was proposed recently (Liu et al., 2015). A lipid
modification on PsbP has not yet been demonstrated although
strong suggestive evidence indicates its presence (Fagerlund and
Eaton-Rye, 2011).

Identification of Phosphorylation Sites
In the early 1980s, phosphorylation of the four PSII subunits
that later came to be known as D1, D2, CP43, and PsbH,
was observed. These studies were conducted in vivo and
in vitro using 32P labeling of whole cells and thylakoid
membranes from Chlamydomonas reinhardtii and pea, with
detection of phosphoproteins by autoradiography (Owens and
Ohad, 1982, 1983; Steinback et al., 1982). Immunoblotting
with antibodies that recognize phosphorylated residues was
introduced later and became another popular detection method
(Rintamäki et al., 1997). Neither of these methods, however,
reveal the modified residue. This information was first obtained
by gas-phase sequencing using Edman degradation, which
demonstrated that the PsbH phosphorylation site is Thr-2,
its N-terminus, in spinach (Michel and Bennett, 1987) and
C. reinhardtii (Dedner et al., 1988). Since then, MS analysis
has replaced Edman degradation and become the dominant
method for phosphorylation-site determination, as it is higher-
throughput, more definitive, more sensitive, and not limited by
N-terminal blockage (e.g., acetylation). The main sites identified
are presented below (for reviews, see Vener, 2007; Pesaresi et al.,
2011; Puthiyaveetil and Kirchhoff, 2013).

TandemMS demonstrated phosphorylation of D1-Thr-2, D2-
Thr-2, and CP43-Thr-15, the mature proteins’ N-termini, in
spinach (Michel et al., 1988), A. thaliana (Vener et al., 2001),
and C. reinhardtii (Turkina et al., 2006). Phosphorylation of
CP43 was also observed at Thr-20, Thr-22, and Thr-346 in
spinach (Rinalducci et al., 2006), and at Thr-346 and Ser-468
in A. thaliana (Sugiyama et al., 2008; Reiland et al., 2009).
MS analysis showed that PsbH is phosphorylated at its N-
terminus in A. thaliana, supporting the Edman degradation data
from spinach and C. reinhardtii, and additionally demonstrated
phosphorylation of Thr-4 (Vener et al., 2001). Intact-mass
MS evidence also indicates double PsbH phosphorylation in
spinach and pea (Gómez et al., 1998, 2002). More recently,
phosphorylation of the extrinsic proteins PsbP, PsbQ, and
PsbR was observed in phosphoproteomic studies of A. thaliana
(Sugiyama et al., 2008; Lohrig et al., 2009; Reiland et al., 2009).
Although, not discussed here, phosphorylation of LHCII is well-
documented, and it regulates state transitions in green algae
and higher plants (for reviews see Lemeille and Rochaix, 2010;
Minagawa, 2011; Schönberg and Baginsky, 2012; Tikkanen and
Aro, 2014; Tikhonov, 2015).

Phosphorylation of PSII subunits is not absolutely required
for PSII repair (Bonardi et al., 2005) but assists in transferring
damaged PSII complexes from the stacked thylakoid grana to
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stromal lamellae, where repair occurs. Phosphorylation appears
to induce architectural changes in the stacked grana and increase
membrane fluidity in such a way as to promote mobility
of damaged PSII centers to the stromal lamellae for repair
(Tikkanen et al., 2008a; Fristedt et al., 2009, 2010; Herbstová et al.,
2012; Järvi et al., 2015). For many of the PSII phosphorylation
sites, light intensity and/or other environmental conditions affect
the phosphorylation extent, with implications for the functional
significance of these modifications. MS analysis has played a
critical role in these quantitative studies, and methodology for
such measurements is discussed in the dynamics section below.
For reviews that discuss the role of PSII phosphorylation (see
Pesaresi et al., 2011; Mulo et al., 2012; Schönberg and Baginsky,
2012; Järvi et al., 2015).

PSII phosphorylation may not be needed in cyanobacteria
owing to the lack of spatial organization of thylakoids (Mulo
et al., 2012). However, a recent global proteomics study of
the cyanobacterium Synechococcus sp. PCC 7002 (hereafter
Synechococcus 7002) found that a portion of D1 copies are
phosphorylated at their N-terminus, Thr-2 (Yang et al., 2014), as
in higher plants. This finding opens the possibility for a role of
phosphorylation in PSII turnover in cyanobacteria.

Identification of Oxidative and Other Modifications
Light is necessary for PSII function, but even low light intensities
can lead to PSII damage, particularly of the D1 protein. Damage
triggers partial PSII disassembly, D1 degradation, insertion
of a new D1 copy, and PSII re-assembly (Nickelsen and
Rengstl, 2013). When the rate of damage exceeds that of
repair, photosynthesis is inhibited, referred to as photoinhibition.
Photodamage can be initiated in several ways, but a common
result of each mechanism is production of highly oxidizing
species (e.g., singlet O2, other reactive oxygen species (ROS),
or radical PSII cofactors). These species rapidly oxidize PSII
subunits, ultimately rendering the complex non-functional.
For reviews of the photoinhibition process (see Barber and
Andersson, 1992; Adir et al., 2003; Pospíšil, 2009; Allahverdiyeva
and Aro, 2012; Tyystjärvi, 2013).

Although oxidative damage of PSII was long believed to
be responsible for photoinhibition (Telfer et al., 1994), MS
studies provided the first concrete evidence for specific oxidative
modifications of PSII. Bottom-up MS analysis of the D1 and
D2 subunits from pea PSII found up to three +16 oxidative
modifications (each representing incorporation of an oxygen
atom) on certain peptides (Sharma et al., 1997c). Interestingly,
not all peptides were oxidized, but the oxidized ones were all
located near the predicted D1 and D2 redox cofactor sites,
supporting the idea that radical redox cofactors themselves, or
ROS produced by reaction with them, cause oxidative damage
to PSII. More recently, Bricker and co-workers (Frankel et al.,
2012, 2013b) used tandem MS to identify oxidized residues on
spinach D1, D2, and CP43 that are located near the QA, PheoD1,
and manganese cluster sites, all reasonable sources of oxidizing
species. Additionally, tryptophan oxidation products in spinach
were identified on CP43-Trp-365 and D1-Trp-317, which are
located near the manganese cluster (17 and 14 Å, respectively,
in the crystal structure from T. elongatus; Anderson et al., 2002;

Dreaden et al., 2011; Kasson et al., 2012). By monitoring the
digested peptides’ absorption at 350 nm, the authors found that
these tryptophan oxidations are correlated with increased light
intensity and decreased oxygen evolution. Other modifications
to PSII subunits were also detected by MS (Gómez et al., 2002,
2003; Anderson et al., 2004; Rexroth et al., 2007; Sugiura et al.,
2013). Notably, a recent global proteomics study of Synechococcus
7002 identified many new PSII PTMs (Yang et al., 2014), but
the functional significance of these modifications remains to be
determined.

DYNAMICS: QUANTITATIVE OR
SEMI-QUANTITATIVE CHANGES IN PSII
PROTEINS AND PTMS

MS-Based Methods to Study PSII
Dynamics
Most MS-based quantification experiments seek the relative, not
absolute quantity of a protein or PTM in one sample compared
to another. We focus here on relative quantification methods
because nearly all the work on PSII dynamics fell into that
category.

Gel-Based Quantification
Perhaps the most basic MS-based semi-quantitative method
is in-gel digestion at the same band in two different sample
lanes, prompted by a significant staining-intensity difference
between the two bands. This approach was used frequently when
analyzing different purified PSII complexes (Liu et al., 2011b;
Knoppová et al., 2014), yielding information about accessory
proteins that bind specifically to certain subcomplexes. A proper
loading control (typically equal chlorophyll) must be used to
ensure a meaningful comparison. Multiple proteins are typically
identified by MS in both bands, however, so it may not be
immediately apparent which protein is the main component (Liu
et al., 2011b). Confirmation may be necessary by western blotting
or one of the more quantitative MS-based techniques described
below.

The accuracy of gel-based quantification can be improved
by introducing a second electrophoretic separation dimension
before in-gel digestion and LC-MS/MS. Semi-quantitative two-
dimensional denaturing gel electrophoresis (2DE) (distinct from
2D BN-PAGE described above), a popular technique especially in
early proteomics studies, usually first separates proteins by size
and then on the basis of pI (Rabilloud et al., 2010). The difference
in staining intensity indicates the relative content of that protein
in each sample. Because two proteins migrate less often together
in two dimensions than in one, separation and quantification
accuracy are improved. 2DE is useful for large-scale studies such
as whole-cell or whole-organelle proteome profiling that require
higher-resolution separation than a 1D gel provides. However,
in recent years, 2DE has declined in popularity owing to its
numerous drawbacks (reviewed in Rabilloud et al., 2010) and the
improvements in other more versatile quantitative MS methods.
Such large-scale proteomics studies have detected expression-
level changes in several PSII proteins in response to a variety of
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stress conditions (e.g., Ingle et al., 2007; Aryal et al., 2011; Li et al.,
2011; Guerreiro et al., 2014). However, insights into the PSII life-
cycle havemainly emerged frommore focused studies on purified
PSII complexes.

Label-Free Quantification
Some MS-based relative quantification methods use a so-called
label-free approach, but the better approach, when feasible,
is to introduce a stable isotope into the sample. For label-
free quantification, the samples to be compared are analyzed
by LC-MS/MS separately. A variety of software tools can
then be used to obtain an extracted ion chromatogram (EIC)
of any peptide. The EIC displays the total intensity (peak
area) of that peptide. Comparing the intensities of the same
peptide from two different samples indicates the relative content
of that peptide in those samples. Although the concept is
simple, accurate label-free quantification depends on a number
of factors: equal sample loading (on a relevant basis, e.g.,
chlorophyll concentration), reproducible LC runs, lack of ion
suppression, and appropriate normalization during data analysis.
For quantification of proteins, data from component peptides
must be merged in a statistically sound way (Bantscheff et al.,
2012; Nahnsen et al., 2013). Thorough mass spectral sampling
of possible precursors—not as crucial in non-quantitative
experiments—is necessary for accurate peak definition, but that
typically diverts instrument time from obtaining product-ion
spectra that give information for peptide identification and
sequence coverage (Bantscheff et al., 2012). Various strategies
have been designed to address this challenge (e.g., data-
independent acquisition approaches such as MSE (Silva et al.,
2006; Grossmann et al., 2010) and “all-ion fragmentation”
(Geiger et al., 2010) especially when combined with Ultra-
Performance LC (UPLC) (Bantscheff et al., 2012). Label-free
quantification by spectral counting, which involves comparing
the total number of product-ion (MS/MS) spectra obtained for
a given peptide or protein, is a common approach (Lundgren
et al., 2010), although that has been used in fewer PSII-
related studies (Fristedt and Vener, 2011; Stöckel et al., 2011).
Label-free quantification of intact proteins is more direct than
comparing peptides, but best applied for small proteins. Intact-
mass spectra (MALDI and ESI) of the LMM PSII proteins
indeed have been used in a number of instances for label-free
quantification between states (Laganowsky et al., 2009; Sugiura
et al., 2010a).

Isotope Label-Based Quantification
The alternative to label-free quantification is introduction of
a stable isotope label into one of the two samples being
compared (certain methods also allow greater multiplexing,
see below). In contrast to the label-free approach, the labeled
and unlabeled samples (often called “heavy” and “light”) are
mixed and analyzed in a single LC-MS/MS run. The mass
spectra of the light and heavy peptide show two peaks shifted
slightly in mass. Comparison of their peak areas, just as in
label-free quantification, indicates the relative amount of that
peptide in each sample (Bantscheff et al., 2012). Although,
comparing peak areas from a single LC-MS/MS run eliminates

the concerns of label-free LC reproducibility and ion suppression,
labeling introduces additional sample preparation steps and often
involves costly reagents.

Isotopic labeling (with 2H,13C, 15N, or 18O) of all proteins
can be accomplished during cell growth (metabolic labeling),
or by labeling a subset of proteins or peptides at various
stages after cell lysis (chemical or enzymatic labeling). In
the SILAC method (“stable isotope labeling by amino acids
in cell culture”; reviewed in Chen et al., 2015), addition of
labeled arginine or lysine to the growth medium results in
incorporation of only the labeled form of that amino acid
into all proteins. Hippler and co-workers (Naumann et al.,
2007) used a SILAC-based method to measure changes in
expression of PSII subunits and other proteins in C. reinhardtii
under iron deficiency, and Jacobs and co-workers (Aryal et al.,
2011) used this method to measure light-dark diurnal cycles
in Cyanothece sp. ATCC 51142. A more common approach in
PSII life-cycle research, however, has been 15Nmetabolic labeling
(see “Measuring the temporal dynamics of life-cycle events
using isotopic labeling” below), in which the growth medium
is modified so that the only nitrogen source is a labeled salt
such as potassium nitrate or ammonium chloride (Gouw et al.,
2010).

Isotopic labeling at the peptide or protein level during
downstream processing after cell lysis is an alternative to
metabolic labeling. Tandem mass tags (TMT) (Thompson et al.,
2003), isotope tags for relative and absolute quantification
(iTRAQ) (Ross et al., 2004), enzymatic 18O labeling, and isotope-
coded affinity tags (ICAT) can be used in proteomics experiments
in photosynthetic organisms (Thelen and Peck, 2007). TMT
and iTRAQ are related approaches that have become popular
recently (Bantscheff et al., 2012). Both modify peptides with one
of several possible isobaric tags that produce reporter ions during
MS/MS fragmentation. Each sample is labeled with a different
tag, but owing to the tags’ isobaric nature, identical peptides
from each sample are observed together chromatographically
and as a single peak in a low-resolving power mass spectrum.
Each tag, however, contains a unique reporter ion that appears
as a distinct peak in the product-ion (MS/MS) spectra, and the
ratio of these ions reveals the relative amounts of that peptide
in each sample. The iTRAQ reagent modifies primary amines,
and TMT tags are available that modify primary amines, thiols,
or carbonyl groups. Advantages of these labeling approaches
include the ability to multiplex up to 8 or 10 samples, greater
than with metabolic and other chemical labeling methods, and
the isobaric nature of the same peptide across all samples
reduces both LC separation demands and MS data complexity
(Bantscheff et al., 2012). Although, many proteomics studies
on photosynthetic organisms have used these chemical labeling
methods, most have not focused on PSII life-cycle issues (Thelen
and Peck, 2007; Battchikova et al., 2015). Two relevant examples
include the detection of elevated PsbO cysteine oxidation under
DCMU and dark conditions (Guo et al., 2014), and intriguing
evidence that PSII thermotolerance in Synechocystis 6803 may
arise in part from antenna trimming and an increased rate of
electron transfer to the cytochrome b6/f complex (Rowland et al.,
2010).
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PSII Life-Cycle Application: Measuring
Changes in Phosphorylation Levels
Asmentioned in the composition section above, phosphorylation
of PSII subunits affects membrane fluidity and inter-thylakoid
dynamics, thus playing a role in facilitating PSII turnover in green
algae and higher plants (see the reviews cited in that section for
in-depth treatment of this topic). Many of the studies that have
contributed to our current understanding of this process used
MS quantification techniques to compare phosphorylation levels
between samples and under different environmental conditions.

When using peak-area-based label-free quantification to
determine the change in a modified peptide between samples, it
is crucial that the peak area of the unmodified peptide be taken
into account as well, to distinguish a true change in modification
extent from simply an increased level of protein expression in
one of the states. This method is demonstrated in a study of
phosphorylation and nitration in A. thaliana grown under low
and high light regimes (Galetskiy et al., 2011b). The authors
first normalized each modified-peptide peak area in each sample
to that of its unmodified counterpart and then compared the
modified peptides’ normalized peak area to each other. This
method can reveal fold-changes in modification extent between
the two states, but not the absolute percentage of that peptide that
contains the modification (the “modification stoichiometry”).

To find the modification stoichiometry, it is necessary to
know in addition the relative “flyability” (ionization efficiency)
of the modified and unmodified peptides. Vierstra and co-
workers (Vener et al., 2001) showed that the relative flyabilities
of six synthetic phosphopeptides and their non-phosphorylated
counterparts are nearly identical. Suggesting this as a general
phenomenon for phosphorylated peptides, they estimated the
modification stoichiometry for the phosphorylated peptides of
D1, D2, CP43, PsbH, and an LHCII protein. In 2010, Vener and
co-workers (Fristedt et al., 2010) calculated the actual relative
flyability ratio for these PSII peptide pairs, and reported reliable
modification stoichiometry for these proteins for the first time
under the various conditions in their study. Interestingly, the
flyability ratios were indeed close to 1 for each pair (ranging
from 0.89 to 1.23), supporting the earlier suggestion that this
may be the case for most phosphorylated/non-phosphorylated
peptide pairs (Vener et al., 2001). Other studies have since used
those flyability ratios to determine changes in the modification
stoichiometry of those same phosphorylation sites under other
growth conditions (Fristedt and Vener, 2011; Romanowska
et al., 2012; Samol et al., 2012). Knowledge of modification
stoichiometry under different conditions is quite valuable; it
enabled, for example, a greater level of confidence and detail in
the model proposed for how phosphorylation affects thylakoid
membrane stacking than would have been possible with fold-
change data alone (Fristedt et al., 2010).

Chemical isotopic labeling of peptides has also been applied
fruitfully to the study of PSII phosphorylation. Immobilized
metal-ion affnity chromatography (IMAC) is a standard protocol
for enrichment of phosphopeptides, taking advantage of the
interaction between phosphoryl groups and a Fe3+-agarose
matrix (Andersson and Porath, 1986). Given that free carboxyl
groups can also interact with the resin, it has become common

to convert free carboxylates to methyl esters after digestion
and prior to IMAC, to avoid this interaction (Ficarro et al.,
2002). Vener and co-workers (Vainonen et al., 2005) modified
this approach by using deuterated methanol (CD3) as the
esterification reagent for one sample, and unlabeled methanol for
a second sample to quantify by “isotope encoding.” After mixing
the samples and analyzing by LC-MS/MS, the relative amount of
each phosphorylated peptide in the two samples is quantified by
comparison of their mass spectral peak areas. It should be noted
that this approach does not reveal the modification stoichiometry
of any phosphorylation site; rather the techniques described
above still need to be performed to gain that information.
Instead, as with other isotope-labeling strategies, it enables more
confident and straightforward comparisons of the level of any
given peptide between samples. This labeling method was used
to study phosphorylation of PSII under a variety of conditions
and genetic backgrounds (Vainonen et al., 2005; Lemeille et al.,
2010; Fristedt and Vener, 2011; Samol et al., 2012).

PSII Life-Cycle Application: Measuring
Changes in Oxidation Levels
As discussed above, oxidation of PSII subunits is a well-
documented phenomenon, and occurs, at least partially, from
oxidizing species generated during the electron transfer reactions
of PSII, especially under stress. However, relatively few studies
have quantified changes in PSII subunit oxidation under different
controlled conditions. Adamska and co-workers (Galetskiy et al.,
2011a) used label-free quantification to compare oxidation and
nitration (also associated with oxidative stress) levels of thylakoid
membrane protein complexes from A. thaliana grown under
low and high light. They found significantly more modified sites
in PSII than in the PSI, cytochrome b6/f, and ATP synthase
complexes. Interestingly, the modified D1, D2, and PsbO sites
increased around 2-5-fold, whereas CP47, CP43, PsbE, and PsbR
oxidation levels remained roughly constant. D1 and D2 bind
most of the redox-active cofactors of PSII, so the increased
oxidation especially of these two proteins is not surprising.
Similarly, by measuring the increase in 350 nm absorption, Barry
and co-workers (Dreaden et al., 2011; Kasson et al., 2012) found
that two tryptophan oxidation products increase after exposure
to high light, with a corresponding decrease in oxygen evolution
activity. Adamska and co-workers (Galetskiy et al., 2011b) found
that nitration levels in assembled PSII complexes decrease after
exposure to high light, but increase in PSII subcomplexes. This
may imply that once nitrated, PSII complexes are damaged and
targeted for disassembly and repair.

PSII Life-Cycle Application: Measuring the
Temporal Dynamics of Life-Cycle Events
using Isotopic Labeling
Measurement of PSII subunit lifetimes has focusedmainly onD1,
using immunodetection following addition of a protein-synthesis
inhibitor or by radioisotope pulse-chase labeling with detection
by autoradiography or phosphorimaging (Aro et al., 1993; Mullet
and Christopher, 1994; Ohnishi and Murata, 2006). Recently,
several studies used 15N labeling pulses and quantified the
disappearance of unlabeled PSII subunits using MS. This method
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enables simultaneous detection of a larger number of PSII
subunits and eliminates any concern of overlapping signal from
proteins with similar electrophoretic mobility (Yao et al., 2012b).
From surveying nine PSII subunits from Synechocystis 6803,
Vermaas and co-workers (Yao et al., 2012a) found that protein
half-lives range from 1.5 to 33 h in a PSI-less mutant grown under
low light (4µmol m−2s−1 photon flux). In WT Synechocystis
6803 grown under 75µmol m−2s−1 photon flux, half-lives of
D1, D2, CP47, and CP43 ranged from <1 to 11 h (Yao et al.,
2012b). In both studies, D1 exhibited the shortest half-life. These
studies highlight the wide range in PSII subunit lifetime and the
tight regulation of protein synthesis and PSII assembly that must
occur to ensure constant proper stoichiometric availability of all
subunits. Interestingly, the chlorophyll half-life was several times
longer than that of the core chlorophyll-binding proteins, but
the half-life was reduced in the absence of the small CAB-like
proteins (SCPs), implying that SCPs play a role in chlorophyll
recycling during PSII turnover (Yao et al., 2012a).

Rögner, Nowaczyk, and co-workers demonstrated an elegant
application of 15N labeling by purifying several subcomplexes
in the PSII life-cycle after a pulse with 15N (from 15NH4Cl).
Comparing extents of incorporation of 15N in different
subcomplexes (e.g., monitoring D1 and D2 peptides) reveals
the subcomplexes’ position in the PSII life-cycle. Using this
method, the authors demonstrated that in T. elongatus, Psb27
binds to a monomeric subcomplex early in the PSII assembly
process (Nowaczyk et al., 2006), and that Psb27 binds again
during disassembly to inactive dimers (Grasse et al., 2011). This
information fits well with the current understanding of Psb27 as a
gatekeeper preventing manganese cluster assembly in immature
complexes (Liu et al., 2013a; Mabbitt et al., 2014).

Cyanobacteria contain multiple versions of the psbA gene,
and the resulting versions of the D1 protein have some different
properties and are expressed preferentially under different
environmental conditions (for reviews see Mulo et al., 2009;
Sugiura and Boussac, 2014). For example, the psbA1 gene product
in T. elongatus is dominant under standard growth conditions,
but expression of the psbA3 gene product, which differs from
the PsbA1 copy by ∼21 residues, increases under high light
conditions (Clarke et al., 1993; Kós et al., 2008; Mulo et al.,
2009). Characterization of PSII from mutants that express only
specific versions of the gene has shown differences in electron-
transfer properties, with the implication that PsbA3 assists in
photoprotection of PSII under light stress conditions (Sander
et al., 2010; Sugiura et al., 2010b). D1-copy expression was mainly
monitored on the transcript level (Golden et al., 1986; Komenda
et al., 2000; Kós et al., 2008; Sugiura et al., 2010b). However,
using 15N labeling and MS-based quantification, Rögner and co-
workers showed that PsbA3 incorporation on the protein level
could be monitored unambiguously in T. elongatus under high
light conditions (Sander et al., 2010) and in the 1psbJ mutant
(Nowaczyk et al., 2012). Those studies used 15N-labeled PSII
from a strain that only expresses the PsbA3 copy as a standard
for 100% incorporation; relative peak area of the unlabeled
PsbA3 peptides compared to this standard is a measure of the
incorporation. Such definitive monitoring should allow further
detailed studies of psbA gene incorporation dynamics.

Progress has also recently been made on the role of the PsbA4
D1 copy; an iTRAQ labeling study found elevated expression of
PsbA4 in Cyanothece sp. PCC 7822 in the dark (Welkie et al.,
2014), providing complementary evidence to that of Pakrasi
and co-workers (Wegener et al., 2015) who found that PsbA4
incorporation into PSII renders the complex non-functional.
PsbA4 replaces PsbA1 at night in cyanobacterial species that fix
nitrogen during this time, protecting against even the trace levels
of oxygen evolution that could occur and damage the nitrogenase
enzyme (Wegener et al., 2015).

STRUCTURE: DETERMINING
PROTEIN-PROTEIN INTERACTIONS IN
PSII COMPLEXES

MS-Based Methods to Study PSII Structure
X-ray crystallography remains the benchmark for determining
the structure of protein complexes, but besides fully-assembled
active PSII, many complexes that form during the PSII life-cycle
are too transient and low in abundance to be easily amenable
to crystallography. Valuable information about protein-protein
interactions within PSII was obtained from immunogold labeling
(Tsiotis et al., 1996; Promnares et al., 2006) and yeast two-
hybrid assays (Schottkowski et al., 2009; Komenda et al., 2012a;
Rengstl et al., 2013), but the former is primarily suitable for large
PSII complexes (Dobáková et al., 2009), and the latter is time-
consuming and low-throughput. Both provide relatively low-
resolution structural information. Recently, advanced structural
proteomics techniques bypass the limitations of the above
techniques and offer higher-resolution structural data (although
still lower than X-ray crystallography). Either chemical cross-
linking or protein footprinting followed by MS detection of
these modifications are enabled by MS instruments with high
sensitivity, resolving power, and <1–5 ppm mass accuracy
on orbitrap- and FTICR-based instruments (Table 2). These
methods allow not only identification of the binding partners of a
specific protein but also a low-resolution mapping of the binding
site.

Chemical Cross-Linking
Briefly, the chemical cross-linking technique (reviewed in Sinz,
2014) uses a small molecule with two functional groups on
either end that can react with protein residues, separated by a
spacer arm (typically less than 14 Å). Many types of cross-linkers
are available (Paramelle et al., 2013). The ones most commonly
used in PSII research (Bricker et al., 2015) can react with either
the primary amine of a lysine and protein N-terminus (and
under certain conditions, to a lesser extent with the hydroxyl
group of a serine, threonine, or tyrosine, Mädler et al., 2009),
or with the carboxylate of aspartate and glutamate side chains
and protein C-termini. After both sides of the cross-linker react
with neighboring proteins, digestion, LC-MS/MS, and specialized
data analysis can identify cross-linked peptides. Inter-protein
cross-linked peptides provide structural information about the
complex because the two linked residues are constrained to the
spacer arm-length distance from each other.
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Cross-linking has been used for decades to study protein-
protein interactions (Clegg and Hayes, 1974; Wetz and
Habermehl, 1979; Walleczek et al., 1989; Back et al., 2003;
Sinz, 2014), but its power was limited until modern MS
instrumentation and the proteomics platform enabled high-
throughput analysis and confident identification of linked
peptides (Rappsilber, 2011). Identification of cross-linked
peptides by MS is more challenging than for a typical protein
digest, especially for large complexes, because the candidate
peptide database increases roughly with the square of the
number of peptides. As a result, false positives based on the
mass spectrum are common even with high mass accuracy
instruments, making high-quality product-ion spectra critical
for a confident assignment. Despite powerful and constantly
improving cross-link search algorithms (Rinner et al., 2008;
Xu and Freitas, 2009; Petrotchenko and Borchers, 2010; Götze
et al., 2012, 2015; Yang et al., 2012; Hoopmann et al., 2015),
manual verification of the product-ion spectra of hits is highly
recommended. Successful cross-linking requires high sequence
coverage and high mass accuracy as is now practical with
orbitrap- and FTICR-based instruments (Table 2).

Because cross-linked peptides give typically low-intensity
signals compared to those of unlinked peptides, they are often
not selected for fragmentation by the instrument’s traditional
“highest-abundance ion” selection criteria. Several strategies have
been developed to improve cross-link selection and/or reduce
false positives. They include various methods to enrich for cross-
linked peptides before LC-MS/MS (Chu et al., 2006; Kang et al.,
2009; Fritzsche et al., 2012; Leitner et al., 2012); use of isotope-
coded linkers whose “fingerprint” increases confidence in an
identification and can enable real-time guided selection of cross-
links for fragmentation (Müller et al., 2001; Pearson et al., 2002;
Seebacher et al., 2006; Petrotchenko et al., 2014); and MS-
cleavable linkers that simplify data analysis by cleaving a cross-
linked peptide into its component peptides before fragmentation
(Kao et al., 2011; Petrotchenko et al., 2011; Weisbrod et al., 2013;
Buncherd et al., 2014).

Protein Footprinting
Protein footprinting is another MS-based structural technique
that has been used to study PSII. Its principle is that a protein
residue’s solvent accessibility determines its susceptibility to
modification by a reagent in the solution; residues buried in a
protein-protein interface are less susceptible to modification than
surface-exposed residues. These modifications are then detected
by MS. Instruments with high sensitivity, resulting in high
sequence coverage, are critical so that footprinting experiments
yield maximal information (Table 2). A common approach
is hydroxyl radical footprinting using the well-established
technique of synchrotron radiolysis of water to generate the
radicals (Takamoto and Chance, 2006; Wang and Chance, 2011).
Fast photochemical oxidation of proteins (FPOP) is amore recent
hydroxyl radical fooptrinting technique that uses a laser pulse to
generate the radicals and can probe protein dynamics that occur
on a faster timescale, down to microseconds (Gau et al., 2011).
Hydroxyl radical footprinting can modify 14 of the 20 amino
acid side chains (Wang and Chance, 2011). Another technique,

glycine ethyl ester (GEE) labeling, adapts a long-standingmethod
for modifying and cross-linking carboxylate groups in proteins
(Hoare and Koshland, 1967; Swaisgood and Natake, 1973) for
protein footprinting (Wen et al., 2009; Gau et al., 2011). It
is easier to implement than hydroxyl radical footprinting, and
data interpretation is simpler, but it can only probe changes on
aspartate, glutamate, and protein C-termini.

PSII Life-Cycle Application: Cross-Linking
and Footprinting to Determine Interactions
among PSII Subunits
Early cross-linking studies on PSII provided information about
subunit connectivity before PSII crystal structures were available.
Many studies focused on the lumenal extrinsic proteins (Enami
et al., 1987; Bricker et al., 1988; Odom and Bricker, 1992; Han
et al., 1994), which are more easily accessible to soluble cross-
linkers, but interactions involving the transmembrane subunits
can also be detected (Tomo et al., 1993; Seidler, 1996; Harrer
et al., 1998). In the absence of the MS-based platforms currently
available, gel electrophoresis and immunoblotting identify cross-
linked products and their likely component proteins. Those
methods are still helpful today as confirmation and when cross-
linked peptides are not detected by MS (Hansson et al., 2007;
Nagao et al., 2010; Liu et al., 2011a, 2014b), but MS provides
much greater confidence in the identification and pinpoints
the exact cross-linked residues. Notably, Satoh and co-workers
(Enami et al., 1998) used FAB-MS to identify intramolecular
cross-linked peptides in PsbO, and deduced the linked residues
even without MS/MS capability.

Since these early studies, crystal structures have elucidated the
connectivity between the components of active cyanobacterial
PSII. As a result, more recent cross-linking studies have focused
on accessory proteins that bind only to subcomplexes and/or
that are not found in the crystal structures, though work has
continued on the lumenal extrinsic PSII subunits from algae and
higher plants, PsbP and PsbQ, which differ significantly from
their cyanobacterial counterparts (Bricker et al., 2012; results are
summarized inTable 5). Cross-linking-MS has also been recently
applied to study interactions within the phycobilisome (Tal et al.,
2014) and between the phycobilisome and the photoprotective
orange carotenoid protein (OCP) (Zhang et al., 2014; Liu et al.,
2016), reviewed in Bricker et al. (2015).

With complementary use of the cross-linkers EDC and
DTSSP, Pakrasi and co-workers (Liu et al., 2011a) demonstrated
that the accessory protein Psb27 binds on the lumenal surface
of CP43. Because this interaction is transient and occurs in only
a small fraction of PSII centers in the cell at a given time, the
authors purified PSII complexes from the 1ctpA mutant strain
of Synechocystis 6803 that accumulates such complexes (Liu et al.,
2011b), maximizing chances of capturing and observing Psb27
inter-protein cross-links. The two cross-linked species detected
were used to map Psb27 onto the PSII crystal structure, showing
how Psb27 accomplishes its role as a gatekeeper, protecting
partially assembled PSII complexes from gaining premature
harmful water oxidation activity (Roose and Pakrasi, 2008).
Recently, Nowaczyk and co-workers (Cormann et al., 2016)
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identified a different cross-link between Psb27 and CP43 in T.
elongatus using an isotope-encoded version of the BS3 cross-
linker. Despite the different cyanobacterial species used in the
two studies, and the different Psb27 residues that were cross-
linked, both cross-links localize Psb27 to the same domain on
CP43 (Liu et al., 2011a; Cormann et al., 2016).

Cyanobacterial PsbQ is a component of active PSII (Roose
et al., 2007), but is not found in any of the crystal structures,
presumably because it is destabilized under crystallization
conditions. Pakrasi and co-workers (Liu et al., 2014b) again used
EDC and DTSSP in parallel and detected a PsbQ-CP47 and
two PsbQ-PsbO cross-links by MS. A PsbQ-PsbQ cross-link that
appears to arise from two different copies of the protein was also
detected. Taken together, these results position PsbQ along the
lumenal PSII dimer interface, consistent with evidence that PsbQ
stabilizes the PSII dimer (Liu et al., 2014b). In this study, in-
solution digestion was used instead of in-gel digestion to avoid
losses of large cross-linked peptides that are difficult to extract
from the gel matrix.

Several recent studies have probed the binding sites of the
higher plant lumenal extrinsic proteins PsbP and PsbQ, which
help optimize Ca2+ and Cl− binding properties at the oxygen-
evolving center (Bricker et al., 2012). Ifuku and co-workers (Ido
et al., 2012, 2014) identified cross-links in spinach PSII between
PsbP and PsbE, PsbR, and CP26 by MS and provided MS-based
evidence for PsbP-CP43, PsbQ-CP43 and PsbQ-CP26 cross-links.
The suggestive evidence arose from MS identification of CP43
or CP26 in individual cross-linked gel bands after affinity pull-
downs using biotin-tagged PsbP or PsbQ (Ido et al., 2014). Their
binding model for PsbP is different than that proposed by Bricker
and co-workers (Mummadisetti et al., 2014), who identified nine
intra-protein cross-links between the N-terminal and C-terminal
regions of spinach PsbP that constrain significantly its binding
conformation. The authors also identified a PsbP-PsbQ cross-
link, consistent with that observed in C. reinhardtii by Enami and
co-workers (Nagao et al., 2010).

The PsbQ-CP43 interaction in spinach PSII suggested by
Ifuku and co-workers (Ido et al., 2014) contrasts with the
PsbQ-CP47 cross-link identified in Synechocystis 6803 by Pakrasi
and co-workers (Liu et al., 2014b) and their evidence for a
PsbQ-PsbQ interaction at the PSII dimer interface. Significant
sequence differences between cyanobacterial and plant PsbQmay
explain this discrepancy. Bricker and co-workers (Mummadisetti
et al., 2014) also found cross-linking evidence for a PsbQ-
PsbQ interaction in spinach that may require a position at the
dimer interface, consistent with the Pakrasi group’s results in
Synechocystis 6803. However, they suggest that that interaction
could in theory arise from an inter-PSII-dimer interaction, and,
thus, the results could alternatively be consistent with the Ifuku
group’s positioning of spinach PsbQ near CP43. Interestingly, the
recently published crystal structure of PSII from the eukaryotic
red algaCyanidium caldarium indeed shows PsbQ′ binding to the
lumenal surface of CP43 (Ago et al., 2016). PsbQ′ shares relatively
low sequence homology to green algal or higher plant PsbQ; and
though PsbQ′ can functionally replace PsbQ at least partially in
C. reinhardtii, it cannot bind to spinach PSII (Ohta et al., 2003).
Therefore, the red algal PsbQ′-CP43 interaction supports Ifuku

and co-workers’ (Ido et al., 2014) similar conclusion in spinach,
but at the same time it does not necessarily contradict the
alternate PsbQ-CP47 interaction observed by the other groups
in spinach and Synechocystis 6803. The recent characterization
of an active PSII complex from Synechocystis 6803 with multiple
copies of the PsbQ protein (Liu et al., 2015) hints at one
possible reconciliation of these findings, if such a complex is
present in other species as well. Despite some discrepancies, these
results begin to elucidate the binding orientation of the higher
plant lumenal extrinsic proteins, suggesting a mechanism for
stabilization of PSII-LHCII supercomplexes (Ido et al., 2014), and
paving the road for further structural studies.

Although the advanced techniques for improving cross-link
identification described in themethods section above have largely
not yet been applied to PSII studies (with the exception of the
recent use of isotope-encoded BS3 by Nowaczyk and co-workers,
Cormann et al., 2016), several other creative approaches have
been used. Enami and co-workers (Nagao et al., 2010) improved
identification confidence by detecting the same cross-linked
residues in peptides from two separate digestion experiments,
one with trypsin and one with Asp-N. Pakrasi and co-workers
(Liu et al., 2011a) provided strong evidence, using the thiol-
cleavable cross-linker DTSSP and 2D gel electrophoresis, that
Psb27 and CP43 cross-link to each other, allowing targeted data
analysis and providing higher confidence in the subsequent MS
cross-link identification. Ifuku and co-workers (Ido et al., 2012,
2014) used a biotin-tagged PsbP or PsbQ to purify only those
cross-linked proteins. Although this method is not as efficient
as purifying only cross-linked peptides by means of a tagged
linker, because following digestion many non-linked peptides
from the tagged protein will be present, it does simplify sample
complexity and focuses on cross-links containing a particular
protein of interest. Notably, Blankenship and co-workers (Liu
et al., 2013b) demonstrated that in-vivo cross-linking of thylakoid
membrane complexes is possible and can capture interactions
between protein complexes that are otherwise difficult to preserve
after cell lysis. Using the membrane-permeable cross-linker
DSP, they captured a PSII-PSI-phycobilisome megacomplex
and identified five cross-links between PSII subunits and the
PBS, and five between PSI subunits and the PBS, providing
the first molecular-level description of the interface of these
complexes.

Like cross-linking, protein footprinting is a technique that has
long been used in PSII structural studies but that has become
significantly more powerful in combination with modern MS.
Early studies using N-hydroxysuccinimidobiotin (NHS-biotin)
and other modification reagents investigated the binding site
of higher plant PsbO to PSII. In the absence of MS detection,
specific modification sites could either not be identified (Bricker
et al., 1988) or were localized to particular protein domains
by N-terminal sequencing of peptides (Frankel and Bricker,
1992). With the rise of protein MS in the mid-1990s, MALDI-
TOF and FAB-MS were used to identify modified peptides;
lack of MS/MS capability, however, produced lower-confidence
peptide identification than is achievable today, and meant that
specific modified residues could only be pinpointed in favorable
cases (Frankel and Bricker, 1995; Miura et al., 1997; Frankel
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et al., 1999). Nonetheless, these pioneering footprinting studies
demonstrated, e.g., that PsbO interacts with Loop E of CP47
(Frankel and Bricker, 1992), and that charged residues on the
surface of PsbO are involved in its interaction with PSII (Miura
et al., 1997; Frankel et al., 1999).

Recently, hydroxyl radical footprinting using synchrotron
radiolysis of water was used to study the binding surfaces of
spinach PsbP and PsbQ to PSII, with detection of modified
residues by MS (Mummadisetti et al., 2014). The results reveal
buried regions on the surface of these proteins that complement
the authors’ cross-linking data and suggest these proteins’
binding interfaces to other PSII subunits. The data also confirm
and elaborate on the binding region identified by this group
in a previous study using NHS-biotin as footprinting reagent
(Meades et al., 2005).

Although the above footprinting studies detected whether
or not a residue was modified in a given state, it is also
possible to analyze footprinting data quantitatively to detect a
conformational change in a complex in two different states. The
label-free approaches described above can be used to monitor the
relative change in modification, normalized to the unmodified
peptide, in different PSII complexes. The utility of this approach
was demonstrated in a study of the role of Psb27 in PSII assembly
(Liu et al., 2013a) using GEE labeling. The authors monitored
the relative changes in aspartate and glutamate modification
of three PSII complexes representing different stages of PSII
assembly, not only extending previous information about the
Psb27 binding site (Liu et al., 2011a; Komenda et al., 2012a), but
also demonstrating a conformational change upon D1 processing
that prompts Psb27 dissociation and permits assembly of the
oxygen evolving complex (Liu et al., 2013a). Blankenship and
co-workers have also used quantitative GEE labeling to detect
a light-dependent conformational change in the OCP protein
that appears to underlie its photoprotective function (Liu et al.,
2014a). The recent implementation of isotopically-labeled GEE
(iGEE) footprinting (Zhang et al., 2016) will streamline, and
increase confidence in, quantitative comparisons of modification
extent between states.

Hydroxyl radical footprinting has also been used to identify
putative water and oxygen channels in PSII (Frankel et al., 2013a),
a topic that has been explored previously through computational
studies (Murray and Barber, 2007; Ho and Styring, 2008;
Gabdulkhakov et al., 2009; Vassiliev et al., 2012). This study
provides general experimental support for the existence of
such channels, confirms specific channel identifications from
computational work (Ho and Styring, 2008; Vassiliev et al., 2012),
and proposes a previously unidentified putative oxygen/ROS exit
channel (see Bricker et al., 2015 for a discussion of the MS-based
and computational results).

FUTURE DIRECTIONS

MS technology and associated sample preparation techniques
are evolving rapidly. Increasing sensitivity and speed of
instruments for bottom-up proteomics allows better coverage
of transmembrane PSII proteins; for example, coverage of the
core D1, D2, CP47, and CP43 proteins is routinely ∼50–85%
on a Thermo Q-Exactive Plus instrument, whereas ∼20–40%

coverage was reported on LTQ-Orbitrap, LTQ-FTICR, and
MALDI-TOF instruments (Aro et al., 2005; Frankel et al., 2012;
Liu et al., 2013a,b). This increased coverage will mean that more
PTMs and cross-linked peptides can be identified, and a larger
portion of the PSII complex can be mapped by footprinting.
PTM analysis, especially using quantitative techniques to
compare complexes exposed to different conditions, may help
elucidate signals (largely unknown in cyanobacteria) that trigger
D1 degradation. The increasing availability of high-sensitivity
instruments that can achieve high sequence coverage is enabling
detailed quantitative and non-quantitative global proteomic
studies. The new challenge is to reduce the large amounts of
information becoming available into specific testable hypotheses
for targeted follow-up studies.

Improvements at all stages of the cross-linking workflow are
occurring, from linker design to linked-peptide enrichment and
software analysis. Specifically, isotope-labeled and MS-cleavable
linkers are powerful tools that are just beginning to be applied
to PSII research. In-vivo cross-linking is a promising approach
to detect transient or unstable interactions that are difficult to
capture after cell lysis. Cross-linking may enable binding site
identification for at least some of the approximately 30 accessory
proteins now known or believed to associate with PSII during
its life-cycle (Nickelsen and Rengstl, 2013; Järvi et al., 2015).
Detecting interactions between PSII subcomplexes and, e.g., D1
degradation proteases or proteins involved in chlorophyll loading
would also be of prime interest.

Intact-mass measurements of the large core PSII proteins D1,
D2, CP47, and CP43 were reported in several studies (Sharma
et al., 1997b;Whitelegge et al., 1998; Huber et al., 2004; Thangaraj
et al., 2010), with detection of the phosphorylated form of D1 as
well in some cases (Whitelegge et al., 1998; Huber et al., 2004).
However, their top-down analysis has not yet been achieved. Top-
down technology is continuously developing, especially methods
for increased product-ion sequence coverage (Frese et al., 2012;
Shaw et al., 2013; Brunner et al., 2015) and analysis of larger
integral membrane proteins and their PTMs (Ryan et al., 2010;
Howery et al., 2012). Such analysis will make it easier to identify
nearly-stoichiometric (and potentially important) PTM events
from trace ones under different conditions, not an easy task using
bottom-up MS. Native MS is capable of analyzing certain intact
membrane protein complexes, although the technology is still
developing, and no one approach works for all protein complexes
(reviewed in Mehmood et al., 2015). Native MS analysis of
PSII has not yet been demonstrated, but the technique could
in theory serve as a complementary method to native gels to
characterize the distribution of PSII subcomplexes under various
conditions, and their components. This might be particularly
useful to address the stoichiometry of accessory proteins and
cofactors, and could add a new tool to address the long-standing
question of chlorophyll loading in PSII.

CONCLUSION

The use of MS has been fueled by improvements in sample
preparation methods for analysis of membrane proteins,
increasing availability of MS instrumentation, and significant
advances in instrument sensitivity, speed, and mass accuracy.
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Techniques from each of the four pillars of proteomics will
continue to be employed to study the PSII life cycle. These
techniques have addressed a wide range of questions regarding
the composition of PSII complexes, the time-dependent dynamic
changes of individual subunits and complexes under different
environmental conditions, and the tertiary and quaternary
structure of PSII complexes.

Modern MS techniques provide a higher level of detail and
confidence than previous methods; examples are identification
of a protein’s phosphorylation site instead of mere detection of
a phosphorylated protein, and identification of specific cross-
linked residues instead of only suggestive evidence that two
particular proteins are cross-linked to each other. For other
applications, the use of MS permits entirely new questions to be
asked (e.g., what proteins are present on a proteome-wide scale
for a purified PSII complex).

The new information has opened up new questions about
function. For example, what are the physiological roles of the
many new PTMs that have been identified? What purpose does
an accessory protein serve by binding at this particular location
on a PSII complex? In some cases, the sensitivity of MS is a
potential pitfall: identification of a protein in a PSII sample
does not necessarily mean it is a stoichiometric component,
or that it associates specifically with the complex at all. Thus,
information fromMS should be a starting point formore targeted

genetic and biochemical studies, and MS is one component
of an expanding toolbox for PSII life-cycle research. Rapidly
developing MS technology promises continued contributions
to this field, which has a wide range of fascinating questions
about membrane protein complex composition, dynamics, and
structure yet to be answered.
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