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In Arabidopsis thaliana, efficient microRNA (miRNA) production requires DICER-
LIKE1 (DCL1) with the assistance of a partnering protein, DOUBLE-STRANDED RNA
BINDING1 (DRB1) or DRB2. The presence of either of these DRB proteins is crucial
to determine the mode of action of a miRNA; i.e., cleavage or translation inhibition.
Here we studied the structural determinants for the role of DRB1 and DRB2 in the
miRNA pathway. We developed a series of chimeric vectors encoding different functional
domains of DRB1 and DRB2, and expressed these in the drb1 mutant background
in Arabidopsis under the control of the native DRB1 promoter. Complementation
of the drb1 developmental phenotype was used to assess the biological role that
each functional domain of DRB1 and DRB2 mediates in the miRNA-guided transcript
cleavage pathway. The DRB1 amino acid sequence differs considerably to that of DRB2,
and analysis of drb1 transgenic lines revealed that the first dsRNA-binding domains
of DRB1 and DRB2 are functionally similar; in contrast, the dsRBD2 of DRB1 and
DRB2 appear functionally distinct. Our bioinformatic analysis further suggests that the
C-terminal domain of DRB2 mediates a functional role in the miRNA pathway, whereas
its counterpart in DRB1 is known to be dispensable. Our results provide evidence for
the differences between DRB1 and DRB2 proteins in vivo, which may be essential for
the selection of the miRNA regulatory mechanisms, and suggest that these features are
conserved among land plants.

Keywords: DRB1, HYL1, DRB2, miRNA, dsRNA binding domain, chimera

INTRODUCTION

DOUBLE-STRANDED RNA BINDING1 (DRB1) is a well characterized partnering protein of
DCL1 and is required for accurate and efficient processing of miRNA/miRNA∗ duplexes from their
respective precursor transcripts (Kurihara et al., 2006; Dong et al., 2008). DRB1 also mediates the
preferential selection of miRNA guide strands over the corresponding duplex strand (the miRNA∗
passenger strand) for loading into the ARGONAUTE1 (AGO1)-catalyzed RNA-induced silencing
complex (RISC; Eamens et al., 2009). DRB2 is also a DCL1 partnering protein (Eamens et al.,
2012). We have recently shown that DRB1 is required only for miRNA-guided transcript cleavage,
whereas DRB2 represses DRB1 transcription and is required for the translational inhibition
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pathway (Reis et al., 2015). Thus, although DCL1 is the
ribonuclease III that excises miRNA/miRNA∗ duplexes from
precursor transcripts, its DRB partnering protein defines the
miRNA mode of action.

In Arabidopsis, genes encoding three additional DRB
proteins—DRB3, DRB4, and DRB5—are present and each DRB
is characterized by two amino-terminal dsRNA-binding domains
(dsRBDs; Curtin et al., 2008). dsRBD-containing proteins have
been identified in most eukaryotes, are typically 70 amino acid
residues in length, fold into an αβββα structure, mediate dsRNA
recognition and binding, and can also bridge protein-protein
interactions (Chang and Ramos, 2005). In a canonical dsRNA
binding domain, three regions of contact with the dsRNA
molecule can be distinguished: regions 1 and 2 bind the dsRNA
minor groove, while region three binds the major groove
(Gleghorn and Maquat, 2014). The regions are characterized by
positive electrostatic surface, with region two featuring a GPxH
motif.

The structures of both dsRBD domains of DRB1, termed
dsRBD1 and dsRBD2, respectively, have been determined (Yang
et al., 2010). These revealed that dsRBD1 adopts a canonical
dsRBD structure; i.e., it has the structural features found in most
dsRNA binding domains. Interestingly, dsRBD2 is structurally
distinct and its predicted low affinity for the dsRNA substrates
of DRB1 has been explained by deviations from the canonical
structure in region 2 (the loop that recognizes the dsRNA
minor groove), and to a lesser extent in the α-helices that
recognize both the minor and major dsRNA grooves (Yang et al.,
2010). The same authors also showed that DRB1 binds 21-
nucleotide (nt) dsRNA as a homodimer, probably mediated by
its dsRBD2. More recently, DRB1 homodimerization has been
further characterized, with the role of dsRBD2 shown to be
crucial to ensure the position of DCL1-catalyzed pri-miRNA
cleavage (Yang et al., 2014). Surprisingly, disruption of DRB1
homodimerization did not impair DRB1 interaction with DCL1,
or the pri-miRNA binding affinity of DRB1.

Engineered chimeric genes coding for different combinations
of dsRBDs have been widely used to study their functions
in humans and plants. In humans, a single dicer protein
processes both pre-miRNAs and pre-siRNAs in association with
DRB proteins, namely protein activator of PKR (PACT) (Lee
et al., 2006) and trans-activation response RNA-binding protein
(TRBP; Chendrimada et al., 2005; Haase et al., 2005), respectively.
Animal miRNAs primarily guide translation inhibition, while
short interfering RNAs (siRNAs) guide transcript cleavage. Lee
et al. (2013) showed that in humans this dichotomy is partially
aided by Dicer association with either PACT or TRBP. PACT was
found to inhibit the processing of pre-siRNA substrates by Dicer,
and experiments with chimeric versions of PACT and TRBP
demonstrated that the two N-terminal RNA-binding domains of
each protein confer their differential function. Chimeric versions
of DRB proteins have also been used to unravel the structural
components of Caenorhabditis elegans RDE-4 required to bind
dsRNA, interact with dicer DCR-1 and activate DCR-1 (Parker
et al., 2008). Interestingly, a chimeric DRB protein containing
the canonical TRBP2 dsRBD2 fused to the non-canonical DRB1
dsRBD2 compensated for DRB1 dsRBD1 by rescuing the drb1

severe phenotype (Yang et al., 2010), providing evidence that
certain dsRNA binding domains are primarily involved in the
recognition and binding of dsRNA; e.g., DRB1 dsRBD1.

In this study, we demonstrate that the dsRBD1 domain of
DRB1 is functionally similar to the corresponding domain in
DRB2, whereas their dsRBD2 domains are functionally distinct.
We also show that, while the C-terminal of DRB1 appears
functionally redundant, its counterpart in DRB2 is functional.
These results provide insights into the structural determinants
of DRB1 and DRB2 activity in vivo, and into the miRNA-guided
transcript cleavage pathway.

MATERIALS AND METHODS

Plant Lines and Growth Conditions
The drb1 T-DNA knockout insertion has been described
previously (Curtin et al., 2008; Eamens et al., 2012). Plant
lines were cultivated under standard growth conditions of
16 h light/8 h dark at a constant temperature of 24◦C.
Prior to soil transfer, all Arabidopsis lines were germinated on
Murashige and Skoog (MS) agar media containing 1% sucrose
for PCR-based genotyping to confirm genetic background. DNA
oligonucleotides used as primers for PCR-based genotyping are
listed in Supplementary Material.

Germination Under Abscisic Acid (ABA)
Treatment
Arabidopsis Col-0 wild-type, mutant and transgenic line seeds
were placed on filter paper saturated with either water (control)
or 0.5 μM abscisic acid (ABA), incubated at 4◦C for 48 h,
and then transferred to growth cabinets for germination under
standard growth conditions.

Protein Sequence Alignment
Putative Arabidopsis thaliana DRB1 and DRB2 ortholog
protein sequences were obtained using the Phytozome database
(Goodstein et al., 2012) and the basic local alignment search
tool (BLAST; Altschul et al., 1990). Sequence alignments were
performed using the default parameters of Clustal W (Larkin
et al., 2007). The evolutionary tree time scale was based on a
previous report (Clarke et al., 2011). The complete list of ortholog
proteins is presented in Supplementary Material.

Prediction of dsRNA Binding Domain
Structure
Secondary structure predictions for dsRNA binding domains of
DRB2, DRB3, DRB4 and DRB5 were performed using the default
parameters of the I-TASSER online server (Roy et al., 2010).

Construction of Expression Vectors and
Plant Transformation
The construction of the expression vectors used to transform
drb1 mutants was performed using standard cloning techniques
using Gateway R© cloning (Invitrogen) and synthesized DNA
sequences. The binary vector used to transform the plants
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FIGURE 1 | Phenotype and ABA response of wild-type, drb1 and transgenic plants. Col-0 wild-type, drb1, and drb1 transformed with either DRB1 (DRB-C1),
dsRNA binding domains of DRB1 (DRB-C2), or a chimeric gene (DRB-C3 to DRB-C9), driven by the endogenous promoter sequence of Arabidopsis DRB1. Protein
domains of DRB1 and DRB2, used to construct the vectors for transformation, are depicted in the boxed schematic (top), and domain identities of each vector are
shown above each transgenic plant. The arrow (DRB-C9) points to a drb1-like hyponastic leaf. Transgenic plants were cultivated on MS medium under long-day
conditions for 16 days. Scale bar, 50 mm. Approximately 10 homozygous transgenic plants were analyzed for each construct. All transgenic plants expressing the
empty vector or DRB-C3, C5-C8 failed to complement the drb1 phenotype. Transgenic plants expressing DRB-C1, C2, C4, and C9 showed wild-type phenotype in
10 out of 10 plants (10/10), 9/9, 9/10, 9/11, respectively.

was a Gateway vector, pKCTAP, obtained from Plant Systems
Biology (VIB, Belgium; http://gateway.psb.ugent.be/), which
has been previously described (Van Leene et al., 2007). The
selectable marker cassette from pORE-O1 (Coutu et al., 2007),
containing a Pat gene driven by PHPL (A. thaliana hydroperoxide
lyase promoter), was amplified using oligos that contained
overhanging restriction sites for RsrII at both 5′ and 3′ ends.
pKCTAP was digested with RsrII and the Pat gene cassette was
sticky-end ligated.

To prepare the gene constructs (chimeras) to be inserted into
the modified pKCTAP, a series of ∼500 nt DNA sequences,
termed gBlocks R© , were designed in-house and synthesized by
Integrated DNA Technologies (IDT). Each gBlock contained
sequences coding the dsRNA binding domain of DRB1 and/or
DRB2 as listed and described in Supplementary Material. The
gBlocks were designed to contain 5HindIII andMfeI and a 3NheI
restriction site, which were subjected to restriction enzymatic

digestion, followed by ligation, to aid their insertion into a vector
containing either the DRB1 (MfeI and NheI) or DRB2 (HindIII
and NheI) sequence. The obtained constructs, as well as the
dsRNA binding domains of DRB1, DRB1 full-length, and DRB2
full-length sequences, were amplified using a pair of primers
designed to introduce a 5′ CACC overhanging sequence to allow
their directional cloning into pENTR/D-TOPOR© (Invitrogen).

The DRB1 promoter region, containing the 5′UTR of DRB1
and 538 nt genomic sequence, as previously described (Curtin
et al., 2008), was modified to also include the first exon and
intron of the DRB1 gene. The longer DRB1 promoter region
was amplified from genomic DNA using oligos that added 5′
SphI and 3′ SalI overhanging restriction sites. The PCR-amplified
sequence was digested and ligated into a modified pEN::L4-2-R1
(also obtained from Plant Systems Biology, VIB). The pEN::L4-2-
R1 vector originally encodes the cauliflower mosaic virus (CaMV)
35S promoter; thus, to remove the 35S promoter, pEN::L4-2-R1
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FIGURE 2 | Effects of exogenous ABA on wild-type, drb1 and transgenic plants. Seeds of wild-type, drb1 mutant and drb1 transgenic lines were germinated
on filter paper saturated with either water (A) or 0.5 μM ABA (B). Seeds were incubated at 4◦C for 48 h and then transferred to room temperature for assessment of
their germination efficiency over a period of 10 days (n > 100, ± SD).

was amplified using oligos specific to its L4 and R1 att site pairs
oriented to amplify the entire vector except the 35S promoter.

The modified linear vector was digested with SpeI (restriction
site included via PCR) and re-circularized, resulting in an L4/R1-
containing vector that contained a multiple cloning site (MCS),
which was also included via PCR. This vector was then digested
with SphI and SalI and ligated with the longer DRB1 promoter
sequence, generating the pEN::L4-DRB1pro-R1. Finally, gateway
cloning was performed using the entry vectors pENTR/D-TOPO
containing a chimeric gene, pEN::L4-DRB1pro-R1, pEN::R2-
GStag-L3, and the modified destination vector, pKCTAP. The
resulting expression vector was used to transform drb1 mutant
plants via Agrobacterium-mediated transformation using the
floral dip method (Clough and Bent, 1998). Plants were selected
for resistance to the herbicide glufosinate. The sequences of oligos
used are listed in Supplementary Material.

RNA Isolation
For all RNA analyses, total RNA was isolated using TRIzol
Reagent (Invitrogen) according to the manufacturer’s
instructions.

Real Time RT-PCR
Synthesis of cDNA for real-time reverse-transcription PCR
(RT-PCR) was performed using SuperScript R© III Reverse
Transcriptase (Life Technologies) following the manufacturer’s
instructions. RT-PCR was performed using Brilliant III SYBR R©

MM according to the Agilent Technologies protocol. The
sequences of oligos are listed in Supplementary Material.

miRNA Real Time RT-PCR
RT-PCR for the quantification of miRNA accumulation was
performed according to a previous report (Chen et al., 2005).
SuperScript R© III Reverse Transcriptase (Life Technologies) and
Brilliant III SYBR R© MM (Agilent Technologies) were used to
perform the cDNA synthesis and RT-PCR, respectively, following
the manufacturers’ instructions. Arabidopsis SnoR101was used to

normalize the miRNA accumulation. The sequences of primers
are listed in Supplementary Material.

RESULTS AND DISCUSSION

Expression of Chimeric Gene Series in
drb1 Plants
Arabidopsis plants defective in the activity of DRB1—drb1
knockout mutant plants—exhibit pleiotropic developmental
defects characterized by reduced overall size and hyponastic
rosette leaves (Lu and Fedoroff, 2000; Wu et al., 2007). To
investigate the structural components that direct the functional
activity of DRB1, and that differentiate it from DRB2 in the
Arabidopsis miRNA pathway, we transformed drb1 plants with
a series of chimeric vectors. Each vector harbored coding
sequences for DRB1 and DRB2 as full-length, truncations
or rearrangements. The in vivo expression of these chimeric
vectors, termed DRB-C1 to DRB-C9, was driven by the native
DRB1 promoter. Homozygous plants were identified in the T2
generation and further selected by gene expression of chimeras
relative to endogenous DRB1 in wild-type Arabidopsis (Col-
0). The assessment of each chimera’s expression level was
performed such that all selected transgenic plants had chimeric
genes at levels similar to endogenous DRB1 in wild-type plants.
Transgenic plants were then visually assessed for comparison to
wild-type and drb1 plants.

Previous work has shown that in vivo expression of both
N-terminal dsRBDs of DRB1 lacking its C-terminal region,
when driven by the constitutive CaMV 35S promoter, was
sufficient for complementation of the severe drb1 developmental
phenotype (Wu et al., 2007). Here, we observed that the
expression of DRB1 full-length (DRB-C1) or DRB1 N-terminal
dsRBDs (DRB-C2), driven by the DRB1 endogenous promoter
in a drb1 mutant background (drb1/DRB-C1 and drb1/DRB-
C2 plants), also allowed for phenotypic complementation
of this mutant (Figure 1). This further confirms that the
N-terminal dsRBDs fulfill the function of the whole DRB1.
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FIGURE 3 | miRNA accumulation and their target levels in wild-type, drb1, and transgenic plants. (A) Stem-loop RT-PCR quantification of miRNA
accumulation relative to Col-0 wild-type levels (dashed line) (n = 3, ±SD, ∗∗p-value < 0.01). miRNA levels are normalized to SnoR101 accumulation. (B) RT-PCR
quantification of miRNA target gene expression relative to Col-0 wild-type levels (dashed line) (n = 3, ±SD, ∗∗p-value < 0.01). Gene expression levels normalized to
ACTIN2 (AT3G18780) expression.

Frontiers in Plant Science | www.frontiersin.org 5 January 2016 | Volume 6 | Article 1201

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Reis et al. Motif Determinants for DCL1 Partners

FIGURE 4 | Evolutionary conservation of DRB1. (A) An overview amino acid sequence alignment of Arabidopsis DRB1 (used as the search query) and orthologs
identified in other plant species. The regions corresponding to the two dsRBDs of each analyzed DRB1 are indicated by the red boxes. Region 2, which has low
sequence conservation in dsRBD1 of DRB1, is indicated by the solid red line. (B) Alignment of the amino acid sequence of the dsRBD2 domains of each plant
DRB1. The solid red line identifies region 2, the region of low sequence conservation in dsRBD2 of DRB1.

However, transformation of drb1 mutant plants with chimeric
genes lacking the non-canonical DRB1 dsRBD2 (DRB-C5,
C6 and C8) failed to complement the severe phenotype.
Transgenic lines drb1/DRB-C5, drb1/DRB-C6 and drb1/DRB-
C8 displayed the drb1-like phenotype, showing that the non-
canonical domain of DRB1 is essential for its in vivo activity.
This also revealed that DRB2 under control of the endogenous
promoter of DRB1 (drb1/DRB-C8 plants) is not capable of
complementing drb1 phenotype, whereas under control of the
strong and constitutive 35S promoter, DRB2 can compensate
for DRB1 null mutation (Eamens et al., 2012). This is in
accordance with the lower affinity of DRB2 for DCL1 as
compared with that of DRB1 protein (Kurihara et al., 2006),
and further suggests that DRB2 can only compensate for

DRB1 at elevated levels in order to compensate for its lower
affinity.

The DRB-C7 chimeric gene also failed to complement the
drb1 phenotype. In the DRB-C7 chimeric gene, the canonical first
dsRBD of DRB1 was replaced with DRB2 dsRBD2, which was
predicted to fold into a canonical RBD (Figure 1). drb1/DRB-
C7 plants showed a drb1-like phenotype, suggesting that (i)
DRB2 RBD2 is a non-canonical dsRNA binding domain or (ii)
it mediates specific protein–protein interaction(s) different to
those of DRB1. DRB1 interaction with its partnering proteins has
been shown to require its second dsRNA binding domain (Yang
et al., 2010); hence, it is likely that the second dsRNA binding
domain of DRB2 plays a similar role inmediating protein-protein
interactions.
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Although the C-terminal region of DRB1 appears to be
dispensable for its function (Wu et al., 2007), the transformation
of drb1 with chimeric genes harboring the DRB2 C-terminal
region (DRB-C3 and DRB-C9) resulted in different phenotypes.
DRB-C3 has the DRB1 dsRNA binding domains fused to the
C-terminus of DRB2, and drb1/DRB-C3 plants displayed a drb1-
like phenotype (Figure 1). The DRB-C9 chimeric gene, however,
is similar to DRB-C3, with the difference that it has the first
dsRBD of DRB1 replaced by DRB2 dsRBD1. Interestingly, the
drb1/DRB-C9 phenotype was closely related to wild-type, but
also had some hyponastic leaves, characteristic of drb1 mutants.
These results show that the DRB2 C-terminus can impair
DRB1 function in the absence of DRB2 dsRBD1, suggesting
that these domains may interact. In addition, the DRB-C4
chimeric gene has the first RBD of DRB1 replaced by DRB2
RBD1, and drb1/DRB-C4 is wild-type in appearance. Although
it is possible that certain chimeric combinations may lead to
disruption of protein tertiary structure, this is unlikely as several
dsRBD chimeric combinations have been previously shown to be
functional (Parker et al., 2008; Yang et al., 2010; Lee et al., 2013).
However, it is still possible that the chimeric genes that failed to
complement the drb1 phenotype are non-functional because of
improper folding, altered posttranscriptional modification (e.g.,
phosphorylation) or posttranscriptional regulation (e.g., loss of
binding site). These are all interesting avenues for further studies,
and our results present a comprehensive picture of domain
swapping that, due to incompatibility or non-functionality, give
combinations impaired in their ability to complement the drb1
phenotype. These results also suggest that the dsRBD1 of DRB1
and DRB2 are functionally similar in the miRNA pathway.

Abscisic Acid Treatment of the drb1
Transgenic Lines
It has been previously demonstrated that drb1 seed germination is
inhibited by exogenous ABA application (Lu and Fedoroff, 2000).
To further characterize the transgenic populations resulting from
the in vivo expression of the chimeric vector series, T3 seed
was collected from homozygous T2 transgenic lines and the
germination efficiency of each seed pool assessed via germination
on filter paper soaked with either water or 0.5 μM ABA
(Figure 2). In contrast to seeds germinated on water-soaked filter
paper, on which all assessed drb1 transgenic lines germinated
efficiently, all plant lines showed reduced or completely abolished
germination in the presence of ABA (Figure 2). In accordance
with the phenotypic analysis (Figure 1), transgenic lines
drb1/DRB-C1, drb1/DRB-C2, drb1/DRB-C4 and drb1/DRB-
C9, all of which displayed wild-type-like phenotypes, showed
limited sensitivity to ABA, as did Col-0 plants (Figure 2).
However, seeds collected from transgenic lines that displayed
drb1-like phenotypes, including drb1/DRB-C3, drb1/DRB-C5,
drb1/DRB-C6, drb1/DRB-C7, and drb1/DRB-C8 plants, were
highly sensitive to the ABA treatment (Figure 2). Furthermore,
the ABA-sensitivity displayed by these transgenic lines was highly
similar to the ABA hypersensitivity of non-transgenic drb1 plants
(Figure 2). Taken together, these results reveal a clear correlation
between complementation of the drb1 phenotype and ABA

sensitivity; i.e., drb1 transgenic lines that complemented the
drb1 phenotype were not hypersensitive to ABA, whereas the
transgenic lines that failed to complement the drb1 phenotype
were hypersensitive.

miRNA Accumulation and Target Gene
Expression in Plants Transformed with a
Chimeric Vector Series
At the molecular level, drb1 mutants are characterized by
reduced miRNA accumulation and de-repression of miRNA
target gene expression (Han et al., 2004; Kurihara et al.,
2006). The accumulation of four highly conserved and well-
characterized plant miRNAs, and the expression of their target
genes, was therefore assessed in drb1 transgenic lines expressing
the chimeric vector series. As observed for the ABA sensitivity
assay, levels of miRNA accumulation and miRNA target gene
expression were strongly correlated with the phenotype displayed
by each of the drb1 transgenic lines (Figure 3). In the
transgenic lines drb1/DRB-C1, drb1/DRB-C2, drb1/DRB-C4,
and drb1/DRB-C9, which displayed wild-type-like phenotypes,
accumulation of miR164, miR165/166, miR398 and miR408 and
target gene expression of CUP SHAPED COTLEDONS2 (CUC2;
miR164),ARABIDOPSIS THALIANAHOMEOBOX PROTEIN14
(ATHB-14; miR165/166), REVOLUTA (REV ; miR165/166),
COPPER/ZINC SUPEROXIDE DISMUTASE2 (CSD2; miR398),
and PLANTACYANIN (ARPN; miR408) were at approximately
wild-type levels (Figures 3A,B). Furthermore, the degree of
drb1 phenotype complementation displayed by drb1/DRB-C1,
drb1/DRB-C2, drb1/DRB-C4 and drb1/DRB-C9 transgenic lines
(Figure 1) was supported by the molecular analyses presented
in Figures 3A,B. drb1/DRB-C1 transgenic lines that expressed
the full-length DRB1 transgene and displayed the highest degree
of complementation (Figure 1) gave miRNA accumulation and
target gene expression levels equivalent to those determined for
wild-type plants. drb1/DRB-C9 transgenic lines, which expressed
the DRB-C9 chimeric vector that housed only the second dsRBD
of DRB1, and developed rosette leaves with mild hyponasty, had
only slightly reduced miRNA accumulation and a corresponding
mild elevation in miRNA target gene expression. Furthermore,
drb1 transgenic lines that expressed chimeric vectors DRB-C3,
DRB-5, DRB-C6, DRB-C7 or DRB-C8, and displayed drb1-
like phenotypes, gave miRNA and target gene expression levels
equivalent to those observed in non-transgenic drb1 mutant
plants. Taken together, the phenotypic and molecular analysis
(Figures 1–3) showed that (i) DRB1 and DRB2 dsRBD1 are
functionally similar, (ii) their dsRBD2s appear functionally
distinct, and (iii) their C-terminal regions appear to perform
different functions.

Evolutionary Conservation of DRB1 and
DRB2
DOUBLE-STRANDED RNA BINDING1 and DRB2 play a
major role in determining the silencing fate of a miRNA (Reis
et al., 2015). Here we identified the structural components of
DRB1 and DRB2 required for the miRNA-guided transcript
cleavage pathway. To further characterize these proteins, we
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FIGURE 5 | Comparison of the conservation between identified DRB1 and DRB2 orthologs. The full-length sequences of DRB1 and DRB2 orthologs were
scaled to the same size for direct comparison and the level of amino acid sequence conservation across these two DRB proteins schematically shown.

FIGURE 6 | dsRNA binding domains of Arabidopsis DRB proteins. (A) Alignment of dsRBD structures of DRB1 (3ADG and 3ADJ) and predicted structure of
DRB2, DRB3, DRB4, and DRB5 RBDs. Region 2 of non-canonical DRB1 dsRBD2 is shown (blue ribbon). (B) Amino acid sequence alignment of Arabidopsis DRB1
and DRB2. (C) Alignment of dsRNA binding domains of DRB1 and DRB2. Secondary folding structure is shown (top). dsRBD regions 1, 2, and 3 are boxed, and
their conserved amino acids are underlined. The conserved histidine (H) of region 2 is shown in blue, and arginine (R) in red.
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FIGURE 7 | Hypothetical model for the role of DRB1 and DRB2 domains. miRNAs are encoded as gene-like structures and are recognized by a dicer (DCL1)
and a DRB protein. DRB1 dsRBD1 recognizes dsRNAs and its dsRBD2 promotes dimerization and interaction with other proteins, without the aid of its C-terminus
(shown as a dotted line). DRB2 dsRBD1 also recognizes dsRNAs and its dsRBD2 appears to mediate different protein–protein interactions to those of DRB1,
possibly assembling dicing bodies (D-bodies) different to those containing DRB1. This may also require the presence of the DRB2 C-terminus (shown as a
continuous line).

studied their evolutionary conservation among land plants.
The Arabidopsis DRB1 sequence was aligned to those of
orthologs identified in public databases. The DRB1 orthologs
were from a wide range of evolutionarily diverse plant species,
including eudicots, monocots, and a moss. The alignment
clearly showed a high degree of conservation in the N-terminal
region relative to the whole sequence (Figure 4). Previously
it has been shown that the severe developmental phenotype
of Arabidopsis drb1 plants can be complemented via the
transgene-based expression of a truncated version of Arabidopsis
DRB1 (419 aa) lacking the 249 amino acid residues of the
C-terminal domain (Wu et al., 2007; Yang et al., 2010). This
is in accordance with our amino acid alignment because
of the lack of C-terminal conservation, suggesting that the
DRB1 C-terminus may not be required in all plant species.
A lack of sequence conservation is also evident in region
2 of the second dsRBD of DRB1, dsRBD2. In canonical
dsRNA binding domains, region 2 is characterized by a
GPxH motif (where x is any residue), which is crucial for
recognition of, and binding to, molecules of dsRNA (Gleghorn
and Maquat, 2014). The dsRBD2 of Arabidopsis DRB1 has
been shown to be a weak, non-canonically structured binding
domain that primarily mediates protein–protein interaction,
and not dsRNA recognition or binding (Yang et al., 2010,
2014). The lack of sequence conservation within region 2
may therefore account for the function of dsRBD2 in DRB1
in the miRNA pathway among land plants. The sequence
conservation of DRB2 orthologs in land plants revealed two
surprising findings: i) both DRB2 dsRBDs have very high
sequence conservation, and ii) compared to the C-terminal
region of plant DRB1 orthologs, the C-terminal region is
markedly conserved (Figure 5). Taken together, these results
suggest that DRB1 dsRBD2 has a conserved low affinity for
dsRNA and that DRB2 has been more conserved in evolution
than DRB1.

Arabidopsis DRB dsRNA Binding
Domains
To study whether the lack of canonical structure of DRB1
dsRBD1 is unique to DRB1, the secondary structures for both

dsRBDs encoded by Arabidopsis DRB2, DRB3, DRB4, and DRB5
were predicted and superimposed onto the crystal structures
of these domains of DRB1. This in silico analysis showed
that dsRBD1 and dsRBD2 of DRB2, DRB3, DRB4, and DRB5
appear to adopt the canonical structure of DRB1 dsRBD1
(Figure 6A). The domain superimposition also revealed that
region 2, the loop between β1 and β2, was only re-oriented in
DRB1 dsRBD2. This structural alteration to dsRBD2 has been
previously suggested to reduce the dsRNA binding affinity of
DRB1 (Yang et al., 2010). We then analyzed the amino acid
sequence of DRB1 and DRB2 in more detail to gain insights
into the secondary structures of these proteins. Although both
DRB proteins are required in the miRNA pathway, their amino
acid sequences are strikingly different, suggesting that they
display different surfaces for protein–RNA and protein–protein
interactions (Figure 6B).

In a canonical dsRNA binding domain, regions 1 and 2 bind
dsRNA minor grooves while region 3 binds the dsRNA major
groove (Gleghorn and Maquat, 2014). Region 1 is conserved
in both dsRBDs of DRB1 and DRB2 (Figure 6C). Region 3
of DRB1 dsRBD2 and DRB2 dsRBD2 is also tightly conserved,
but is dissimilar in their first dsRNA binding domain. Region
2, in contrast, has the conserved GPxH motif in the dsRBD1
domains of both DRB proteins, but was only present in the
dsRBD2 of DRB2. This region aids dsRNA binding to the major
groove via the histidine (H) residue of the GPxH motif, which
is absent only in DRB1 dsRBD2 (Figure 6C). Nevertheless,
when this residue was mutated in DRB1 dsRBD1, a dsRBD with
high affinity to its dsRNA substrate, only a slight decrease in
dsRNA binding affinity was observed (Yang et al., 2010). Taken
together, these analyses provide evidence that DRB1 and DRB2
differ substantially at the amino acid and secondary structure
levels.

CONCLUSION

Although our knowledge of the biogenesis of plant miRNAs
has improved dramatically in recent years, several of the
latest findings indicate that some important mechanisms
remain poorly understood. The biogenesis of miRNA/miRNA∗
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from miRNA-containing intermediates occurs in dicing bodies
(D-bodies), and a growing number of genes, in addition
to well characterized core components (e.g., DCL1, SE, and
DRB1), have been shown to be required in this process
(reviewed by Rogers and Chen, 2013). Thus, it is likely
that the D-bodies are dynamic and may vary in protein
composition according to developmental stage, environmental
conditions and even precursor transcript structure. Although
DRB1 is a well-characterized DCL1 partnering protein, our
results reveal that DRB2 has been much more conserved during
plant evolution. In addition, DRB1 and DRB2 have similar
but functionally different domains, such as their dsRBD2 and
C-terminus. The results presented here, together with our
previous report (Reis et al., 2015), suggest that DRB1 and
DRB2 act as bridging proteins in the assembly of different
component proteins, and even different RNAs, into the core
of the D-bodies, thus altering the properties of the D-bodies

and the functionality of the miRNA pathway as a whole
(Figure 7).
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