AUTHOR=Sperschneider Jana , Williams Angela H. , Hane James K. , Singh Karam B. , Taylor Jennifer M. TITLE=Evaluation of Secretion Prediction Highlights Differing Approaches Needed for Oomycete and Fungal Effectors JOURNAL=Frontiers in Plant Science VOLUME=6 YEAR=2015 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.01168 DOI=10.3389/fpls.2015.01168 ISSN=1664-462X ABSTRACT=
The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen's advantage. Proteinaceous effectors are synthesized intracellularly and must be externalized to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (