AUTHOR=Jagadish Krishna S. V. , Kavi Kishor Polavarapu B. , Bahuguna Rajeev N. , von Wirén Nicolaus , Sreenivasulu Nese TITLE=Staying Alive or Going to Die During Terminal Senescence—An Enigma Surrounding Yield Stability JOURNAL=Frontiers in Plant Science VOLUME=6 YEAR=2015 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.01070 DOI=10.3389/fpls.2015.01070 ISSN=1664-462X ABSTRACT=

Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.